upload tizen1.0 source
[kernel/linux-2.6.36.git] / drivers / net / wireless / rt2x00 / rt73usb.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt73usb
23         Abstract: rt73usb device specific routines.
24         Supported chipsets: rt2571W & rt2671.
25  */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/slab.h>
34 #include <linux/usb.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00usb.h"
38 #include "rt73usb.h"
39
40 /*
41  * Allow hardware encryption to be disabled.
42  */
43 static int modparam_nohwcrypt = 0;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
46
47 /*
48  * Register access.
49  * All access to the CSR registers will go through the methods
50  * rt2x00usb_register_read and rt2x00usb_register_write.
51  * BBP and RF register require indirect register access,
52  * and use the CSR registers BBPCSR and RFCSR to achieve this.
53  * These indirect registers work with busy bits,
54  * and we will try maximal REGISTER_BUSY_COUNT times to access
55  * the register while taking a REGISTER_BUSY_DELAY us delay
56  * between each attampt. When the busy bit is still set at that time,
57  * the access attempt is considered to have failed,
58  * and we will print an error.
59  * The _lock versions must be used if you already hold the csr_mutex
60  */
61 #define WAIT_FOR_BBP(__dev, __reg) \
62         rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
63 #define WAIT_FOR_RF(__dev, __reg) \
64         rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
65
66 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
67                               const unsigned int word, const u8 value)
68 {
69         u32 reg;
70
71         mutex_lock(&rt2x00dev->csr_mutex);
72
73         /*
74          * Wait until the BBP becomes available, afterwards we
75          * can safely write the new data into the register.
76          */
77         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
78                 reg = 0;
79                 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
80                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
81                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
82                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
83
84                 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
85         }
86
87         mutex_unlock(&rt2x00dev->csr_mutex);
88 }
89
90 static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
91                              const unsigned int word, u8 *value)
92 {
93         u32 reg;
94
95         mutex_lock(&rt2x00dev->csr_mutex);
96
97         /*
98          * Wait until the BBP becomes available, afterwards we
99          * can safely write the read request into the register.
100          * After the data has been written, we wait until hardware
101          * returns the correct value, if at any time the register
102          * doesn't become available in time, reg will be 0xffffffff
103          * which means we return 0xff to the caller.
104          */
105         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
106                 reg = 0;
107                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
108                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
109                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
110
111                 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
112
113                 WAIT_FOR_BBP(rt2x00dev, &reg);
114         }
115
116         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
117
118         mutex_unlock(&rt2x00dev->csr_mutex);
119 }
120
121 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
122                              const unsigned int word, const u32 value)
123 {
124         u32 reg;
125
126         mutex_lock(&rt2x00dev->csr_mutex);
127
128         /*
129          * Wait until the RF becomes available, afterwards we
130          * can safely write the new data into the register.
131          */
132         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
133                 reg = 0;
134                 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
135                 /*
136                  * RF5225 and RF2527 contain 21 bits per RF register value,
137                  * all others contain 20 bits.
138                  */
139                 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
140                                    20 + (rt2x00_rf(rt2x00dev, RF5225) ||
141                                          rt2x00_rf(rt2x00dev, RF2527)));
142                 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
143                 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
144
145                 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
146                 rt2x00_rf_write(rt2x00dev, word, value);
147         }
148
149         mutex_unlock(&rt2x00dev->csr_mutex);
150 }
151
152 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
153 static const struct rt2x00debug rt73usb_rt2x00debug = {
154         .owner  = THIS_MODULE,
155         .csr    = {
156                 .read           = rt2x00usb_register_read,
157                 .write          = rt2x00usb_register_write,
158                 .flags          = RT2X00DEBUGFS_OFFSET,
159                 .word_base      = CSR_REG_BASE,
160                 .word_size      = sizeof(u32),
161                 .word_count     = CSR_REG_SIZE / sizeof(u32),
162         },
163         .eeprom = {
164                 .read           = rt2x00_eeprom_read,
165                 .write          = rt2x00_eeprom_write,
166                 .word_base      = EEPROM_BASE,
167                 .word_size      = sizeof(u16),
168                 .word_count     = EEPROM_SIZE / sizeof(u16),
169         },
170         .bbp    = {
171                 .read           = rt73usb_bbp_read,
172                 .write          = rt73usb_bbp_write,
173                 .word_base      = BBP_BASE,
174                 .word_size      = sizeof(u8),
175                 .word_count     = BBP_SIZE / sizeof(u8),
176         },
177         .rf     = {
178                 .read           = rt2x00_rf_read,
179                 .write          = rt73usb_rf_write,
180                 .word_base      = RF_BASE,
181                 .word_size      = sizeof(u32),
182                 .word_count     = RF_SIZE / sizeof(u32),
183         },
184 };
185 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
186
187 static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
188 {
189         u32 reg;
190
191         rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
192         return rt2x00_get_field32(reg, MAC_CSR13_BIT7);
193 }
194
195 #ifdef CONFIG_RT2X00_LIB_LEDS
196 static void rt73usb_brightness_set(struct led_classdev *led_cdev,
197                                    enum led_brightness brightness)
198 {
199         struct rt2x00_led *led =
200            container_of(led_cdev, struct rt2x00_led, led_dev);
201         unsigned int enabled = brightness != LED_OFF;
202         unsigned int a_mode =
203             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
204         unsigned int bg_mode =
205             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
206
207         if (led->type == LED_TYPE_RADIO) {
208                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
209                                    MCU_LEDCS_RADIO_STATUS, enabled);
210
211                 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
212                                             0, led->rt2x00dev->led_mcu_reg,
213                                             REGISTER_TIMEOUT);
214         } else if (led->type == LED_TYPE_ASSOC) {
215                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
216                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
217                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
218                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
219
220                 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
221                                             0, led->rt2x00dev->led_mcu_reg,
222                                             REGISTER_TIMEOUT);
223         } else if (led->type == LED_TYPE_QUALITY) {
224                 /*
225                  * The brightness is divided into 6 levels (0 - 5),
226                  * this means we need to convert the brightness
227                  * argument into the matching level within that range.
228                  */
229                 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
230                                             brightness / (LED_FULL / 6),
231                                             led->rt2x00dev->led_mcu_reg,
232                                             REGISTER_TIMEOUT);
233         }
234 }
235
236 static int rt73usb_blink_set(struct led_classdev *led_cdev,
237                              unsigned long *delay_on,
238                              unsigned long *delay_off)
239 {
240         struct rt2x00_led *led =
241             container_of(led_cdev, struct rt2x00_led, led_dev);
242         u32 reg;
243
244         rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, &reg);
245         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
246         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
247         rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
248
249         return 0;
250 }
251
252 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
253                              struct rt2x00_led *led,
254                              enum led_type type)
255 {
256         led->rt2x00dev = rt2x00dev;
257         led->type = type;
258         led->led_dev.brightness_set = rt73usb_brightness_set;
259         led->led_dev.blink_set = rt73usb_blink_set;
260         led->flags = LED_INITIALIZED;
261 }
262 #endif /* CONFIG_RT2X00_LIB_LEDS */
263
264 /*
265  * Configuration handlers.
266  */
267 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
268                                      struct rt2x00lib_crypto *crypto,
269                                      struct ieee80211_key_conf *key)
270 {
271         struct hw_key_entry key_entry;
272         struct rt2x00_field32 field;
273         u32 mask;
274         u32 reg;
275
276         if (crypto->cmd == SET_KEY) {
277                 /*
278                  * rt2x00lib can't determine the correct free
279                  * key_idx for shared keys. We have 1 register
280                  * with key valid bits. The goal is simple, read
281                  * the register, if that is full we have no slots
282                  * left.
283                  * Note that each BSS is allowed to have up to 4
284                  * shared keys, so put a mask over the allowed
285                  * entries.
286                  */
287                 mask = (0xf << crypto->bssidx);
288
289                 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
290                 reg &= mask;
291
292                 if (reg && reg == mask)
293                         return -ENOSPC;
294
295                 key->hw_key_idx += reg ? ffz(reg) : 0;
296
297                 /*
298                  * Upload key to hardware
299                  */
300                 memcpy(key_entry.key, crypto->key,
301                        sizeof(key_entry.key));
302                 memcpy(key_entry.tx_mic, crypto->tx_mic,
303                        sizeof(key_entry.tx_mic));
304                 memcpy(key_entry.rx_mic, crypto->rx_mic,
305                        sizeof(key_entry.rx_mic));
306
307                 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
308                 rt2x00usb_register_multiwrite(rt2x00dev, reg,
309                                               &key_entry, sizeof(key_entry));
310
311                 /*
312                  * The cipher types are stored over 2 registers.
313                  * bssidx 0 and 1 keys are stored in SEC_CSR1 and
314                  * bssidx 1 and 2 keys are stored in SEC_CSR5.
315                  * Using the correct defines correctly will cause overhead,
316                  * so just calculate the correct offset.
317                  */
318                 if (key->hw_key_idx < 8) {
319                         field.bit_offset = (3 * key->hw_key_idx);
320                         field.bit_mask = 0x7 << field.bit_offset;
321
322                         rt2x00usb_register_read(rt2x00dev, SEC_CSR1, &reg);
323                         rt2x00_set_field32(&reg, field, crypto->cipher);
324                         rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
325                 } else {
326                         field.bit_offset = (3 * (key->hw_key_idx - 8));
327                         field.bit_mask = 0x7 << field.bit_offset;
328
329                         rt2x00usb_register_read(rt2x00dev, SEC_CSR5, &reg);
330                         rt2x00_set_field32(&reg, field, crypto->cipher);
331                         rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
332                 }
333
334                 /*
335                  * The driver does not support the IV/EIV generation
336                  * in hardware. However it doesn't support the IV/EIV
337                  * inside the ieee80211 frame either, but requires it
338                  * to be provided separately for the descriptor.
339                  * rt2x00lib will cut the IV/EIV data out of all frames
340                  * given to us by mac80211, but we must tell mac80211
341                  * to generate the IV/EIV data.
342                  */
343                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
344         }
345
346         /*
347          * SEC_CSR0 contains only single-bit fields to indicate
348          * a particular key is valid. Because using the FIELD32()
349          * defines directly will cause a lot of overhead we use
350          * a calculation to determine the correct bit directly.
351          */
352         mask = 1 << key->hw_key_idx;
353
354         rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
355         if (crypto->cmd == SET_KEY)
356                 reg |= mask;
357         else if (crypto->cmd == DISABLE_KEY)
358                 reg &= ~mask;
359         rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
360
361         return 0;
362 }
363
364 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
365                                        struct rt2x00lib_crypto *crypto,
366                                        struct ieee80211_key_conf *key)
367 {
368         struct hw_pairwise_ta_entry addr_entry;
369         struct hw_key_entry key_entry;
370         u32 mask;
371         u32 reg;
372
373         if (crypto->cmd == SET_KEY) {
374                 /*
375                  * rt2x00lib can't determine the correct free
376                  * key_idx for pairwise keys. We have 2 registers
377                  * with key valid bits. The goal is simple, read
378                  * the first register, if that is full move to
379                  * the next register.
380                  * When both registers are full, we drop the key,
381                  * otherwise we use the first invalid entry.
382                  */
383                 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
384                 if (reg && reg == ~0) {
385                         key->hw_key_idx = 32;
386                         rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
387                         if (reg && reg == ~0)
388                                 return -ENOSPC;
389                 }
390
391                 key->hw_key_idx += reg ? ffz(reg) : 0;
392
393                 /*
394                  * Upload key to hardware
395                  */
396                 memcpy(key_entry.key, crypto->key,
397                        sizeof(key_entry.key));
398                 memcpy(key_entry.tx_mic, crypto->tx_mic,
399                        sizeof(key_entry.tx_mic));
400                 memcpy(key_entry.rx_mic, crypto->rx_mic,
401                        sizeof(key_entry.rx_mic));
402
403                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
404                 rt2x00usb_register_multiwrite(rt2x00dev, reg,
405                                               &key_entry, sizeof(key_entry));
406
407                 /*
408                  * Send the address and cipher type to the hardware register.
409                  */
410                 memset(&addr_entry, 0, sizeof(addr_entry));
411                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
412                 addr_entry.cipher = crypto->cipher;
413
414                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
415                 rt2x00usb_register_multiwrite(rt2x00dev, reg,
416                                             &addr_entry, sizeof(addr_entry));
417
418                 /*
419                  * Enable pairwise lookup table for given BSS idx,
420                  * without this received frames will not be decrypted
421                  * by the hardware.
422                  */
423                 rt2x00usb_register_read(rt2x00dev, SEC_CSR4, &reg);
424                 reg |= (1 << crypto->bssidx);
425                 rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
426
427                 /*
428                  * The driver does not support the IV/EIV generation
429                  * in hardware. However it doesn't support the IV/EIV
430                  * inside the ieee80211 frame either, but requires it
431                  * to be provided separately for the descriptor.
432                  * rt2x00lib will cut the IV/EIV data out of all frames
433                  * given to us by mac80211, but we must tell mac80211
434                  * to generate the IV/EIV data.
435                  */
436                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
437         }
438
439         /*
440          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
441          * a particular key is valid. Because using the FIELD32()
442          * defines directly will cause a lot of overhead we use
443          * a calculation to determine the correct bit directly.
444          */
445         if (key->hw_key_idx < 32) {
446                 mask = 1 << key->hw_key_idx;
447
448                 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
449                 if (crypto->cmd == SET_KEY)
450                         reg |= mask;
451                 else if (crypto->cmd == DISABLE_KEY)
452                         reg &= ~mask;
453                 rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
454         } else {
455                 mask = 1 << (key->hw_key_idx - 32);
456
457                 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
458                 if (crypto->cmd == SET_KEY)
459                         reg |= mask;
460                 else if (crypto->cmd == DISABLE_KEY)
461                         reg &= ~mask;
462                 rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
463         }
464
465         return 0;
466 }
467
468 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
469                                   const unsigned int filter_flags)
470 {
471         u32 reg;
472
473         /*
474          * Start configuration steps.
475          * Note that the version error will always be dropped
476          * and broadcast frames will always be accepted since
477          * there is no filter for it at this time.
478          */
479         rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
480         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
481                            !(filter_flags & FIF_FCSFAIL));
482         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
483                            !(filter_flags & FIF_PLCPFAIL));
484         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
485                            !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
486         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
487                            !(filter_flags & FIF_PROMISC_IN_BSS));
488         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
489                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
490                            !rt2x00dev->intf_ap_count);
491         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
492         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
493                            !(filter_flags & FIF_ALLMULTI));
494         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
495         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
496                            !(filter_flags & FIF_CONTROL));
497         rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
498 }
499
500 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
501                                 struct rt2x00_intf *intf,
502                                 struct rt2x00intf_conf *conf,
503                                 const unsigned int flags)
504 {
505         unsigned int beacon_base;
506         u32 reg;
507
508         if (flags & CONFIG_UPDATE_TYPE) {
509                 /*
510                  * Clear current synchronisation setup.
511                  * For the Beacon base registers we only need to clear
512                  * the first byte since that byte contains the VALID and OWNER
513                  * bits which (when set to 0) will invalidate the entire beacon.
514                  */
515                 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
516                 rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
517
518                 /*
519                  * Enable synchronisation.
520                  */
521                 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
522                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
523                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
524                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
525                 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
526         }
527
528         if (flags & CONFIG_UPDATE_MAC) {
529                 reg = le32_to_cpu(conf->mac[1]);
530                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
531                 conf->mac[1] = cpu_to_le32(reg);
532
533                 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
534                                             conf->mac, sizeof(conf->mac));
535         }
536
537         if (flags & CONFIG_UPDATE_BSSID) {
538                 reg = le32_to_cpu(conf->bssid[1]);
539                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
540                 conf->bssid[1] = cpu_to_le32(reg);
541
542                 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
543                                             conf->bssid, sizeof(conf->bssid));
544         }
545 }
546
547 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
548                                struct rt2x00lib_erp *erp)
549 {
550         u32 reg;
551
552         rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
553         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
554         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
555         rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
556
557         rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
558         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
559         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
560                            !!erp->short_preamble);
561         rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
562
563         rt2x00usb_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
564
565         rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
566         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
567                            erp->beacon_int * 16);
568         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
569
570         rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
571         rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
572         rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
573
574         rt2x00usb_register_read(rt2x00dev, MAC_CSR8, &reg);
575         rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
576         rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
577         rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
578         rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
579 }
580
581 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
582                                       struct antenna_setup *ant)
583 {
584         u8 r3;
585         u8 r4;
586         u8 r77;
587         u8 temp;
588
589         rt73usb_bbp_read(rt2x00dev, 3, &r3);
590         rt73usb_bbp_read(rt2x00dev, 4, &r4);
591         rt73usb_bbp_read(rt2x00dev, 77, &r77);
592
593         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
594
595         /*
596          * Configure the RX antenna.
597          */
598         switch (ant->rx) {
599         case ANTENNA_HW_DIVERSITY:
600                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
601                 temp = !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags)
602                        && (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
603                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
604                 break;
605         case ANTENNA_A:
606                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
607                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
608                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
609                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
610                 else
611                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
612                 break;
613         case ANTENNA_B:
614         default:
615                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
616                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
617                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
618                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
619                 else
620                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
621                 break;
622         }
623
624         rt73usb_bbp_write(rt2x00dev, 77, r77);
625         rt73usb_bbp_write(rt2x00dev, 3, r3);
626         rt73usb_bbp_write(rt2x00dev, 4, r4);
627 }
628
629 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
630                                       struct antenna_setup *ant)
631 {
632         u8 r3;
633         u8 r4;
634         u8 r77;
635
636         rt73usb_bbp_read(rt2x00dev, 3, &r3);
637         rt73usb_bbp_read(rt2x00dev, 4, &r4);
638         rt73usb_bbp_read(rt2x00dev, 77, &r77);
639
640         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
641         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
642                           !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
643
644         /*
645          * Configure the RX antenna.
646          */
647         switch (ant->rx) {
648         case ANTENNA_HW_DIVERSITY:
649                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
650                 break;
651         case ANTENNA_A:
652                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
653                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
654                 break;
655         case ANTENNA_B:
656         default:
657                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
658                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
659                 break;
660         }
661
662         rt73usb_bbp_write(rt2x00dev, 77, r77);
663         rt73usb_bbp_write(rt2x00dev, 3, r3);
664         rt73usb_bbp_write(rt2x00dev, 4, r4);
665 }
666
667 struct antenna_sel {
668         u8 word;
669         /*
670          * value[0] -> non-LNA
671          * value[1] -> LNA
672          */
673         u8 value[2];
674 };
675
676 static const struct antenna_sel antenna_sel_a[] = {
677         { 96,  { 0x58, 0x78 } },
678         { 104, { 0x38, 0x48 } },
679         { 75,  { 0xfe, 0x80 } },
680         { 86,  { 0xfe, 0x80 } },
681         { 88,  { 0xfe, 0x80 } },
682         { 35,  { 0x60, 0x60 } },
683         { 97,  { 0x58, 0x58 } },
684         { 98,  { 0x58, 0x58 } },
685 };
686
687 static const struct antenna_sel antenna_sel_bg[] = {
688         { 96,  { 0x48, 0x68 } },
689         { 104, { 0x2c, 0x3c } },
690         { 75,  { 0xfe, 0x80 } },
691         { 86,  { 0xfe, 0x80 } },
692         { 88,  { 0xfe, 0x80 } },
693         { 35,  { 0x50, 0x50 } },
694         { 97,  { 0x48, 0x48 } },
695         { 98,  { 0x48, 0x48 } },
696 };
697
698 static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
699                                struct antenna_setup *ant)
700 {
701         const struct antenna_sel *sel;
702         unsigned int lna;
703         unsigned int i;
704         u32 reg;
705
706         /*
707          * We should never come here because rt2x00lib is supposed
708          * to catch this and send us the correct antenna explicitely.
709          */
710         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
711                ant->tx == ANTENNA_SW_DIVERSITY);
712
713         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
714                 sel = antenna_sel_a;
715                 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
716         } else {
717                 sel = antenna_sel_bg;
718                 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
719         }
720
721         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
722                 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
723
724         rt2x00usb_register_read(rt2x00dev, PHY_CSR0, &reg);
725
726         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
727                            (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
728         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
729                            (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
730
731         rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
732
733         if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225))
734                 rt73usb_config_antenna_5x(rt2x00dev, ant);
735         else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527))
736                 rt73usb_config_antenna_2x(rt2x00dev, ant);
737 }
738
739 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
740                                     struct rt2x00lib_conf *libconf)
741 {
742         u16 eeprom;
743         short lna_gain = 0;
744
745         if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
746                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
747                         lna_gain += 14;
748
749                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
750                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
751         } else {
752                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
753                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
754         }
755
756         rt2x00dev->lna_gain = lna_gain;
757 }
758
759 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
760                                    struct rf_channel *rf, const int txpower)
761 {
762         u8 r3;
763         u8 r94;
764         u8 smart;
765
766         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
767         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
768
769         smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
770
771         rt73usb_bbp_read(rt2x00dev, 3, &r3);
772         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
773         rt73usb_bbp_write(rt2x00dev, 3, r3);
774
775         r94 = 6;
776         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
777                 r94 += txpower - MAX_TXPOWER;
778         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
779                 r94 += txpower;
780         rt73usb_bbp_write(rt2x00dev, 94, r94);
781
782         rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
783         rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
784         rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
785         rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
786
787         rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
788         rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
789         rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
790         rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
791
792         rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
793         rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
794         rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
795         rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
796
797         udelay(10);
798 }
799
800 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
801                                    const int txpower)
802 {
803         struct rf_channel rf;
804
805         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
806         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
807         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
808         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
809
810         rt73usb_config_channel(rt2x00dev, &rf, txpower);
811 }
812
813 static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
814                                        struct rt2x00lib_conf *libconf)
815 {
816         u32 reg;
817
818         rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
819         rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
820         rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
821         rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
822         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
823                            libconf->conf->long_frame_max_tx_count);
824         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
825                            libconf->conf->short_frame_max_tx_count);
826         rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
827 }
828
829 static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
830                                 struct rt2x00lib_conf *libconf)
831 {
832         enum dev_state state =
833             (libconf->conf->flags & IEEE80211_CONF_PS) ?
834                 STATE_SLEEP : STATE_AWAKE;
835         u32 reg;
836
837         if (state == STATE_SLEEP) {
838                 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
839                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
840                                    rt2x00dev->beacon_int - 10);
841                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
842                                    libconf->conf->listen_interval - 1);
843                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
844
845                 /* We must first disable autowake before it can be enabled */
846                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
847                 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
848
849                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
850                 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
851
852                 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
853                                             USB_MODE_SLEEP, REGISTER_TIMEOUT);
854         } else {
855                 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
856                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
857                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
858                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
859                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
860                 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
861
862                 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
863                                             USB_MODE_WAKEUP, REGISTER_TIMEOUT);
864         }
865 }
866
867 static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
868                            struct rt2x00lib_conf *libconf,
869                            const unsigned int flags)
870 {
871         /* Always recalculate LNA gain before changing configuration */
872         rt73usb_config_lna_gain(rt2x00dev, libconf);
873
874         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
875                 rt73usb_config_channel(rt2x00dev, &libconf->rf,
876                                        libconf->conf->power_level);
877         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
878             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
879                 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
880         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
881                 rt73usb_config_retry_limit(rt2x00dev, libconf);
882         if (flags & IEEE80211_CONF_CHANGE_PS)
883                 rt73usb_config_ps(rt2x00dev, libconf);
884 }
885
886 /*
887  * Link tuning
888  */
889 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
890                                struct link_qual *qual)
891 {
892         u32 reg;
893
894         /*
895          * Update FCS error count from register.
896          */
897         rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
898         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
899
900         /*
901          * Update False CCA count from register.
902          */
903         rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
904         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
905 }
906
907 static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
908                                    struct link_qual *qual, u8 vgc_level)
909 {
910         if (qual->vgc_level != vgc_level) {
911                 rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
912                 qual->vgc_level = vgc_level;
913                 qual->vgc_level_reg = vgc_level;
914         }
915 }
916
917 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
918                                 struct link_qual *qual)
919 {
920         rt73usb_set_vgc(rt2x00dev, qual, 0x20);
921 }
922
923 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
924                                struct link_qual *qual, const u32 count)
925 {
926         u8 up_bound;
927         u8 low_bound;
928
929         /*
930          * Determine r17 bounds.
931          */
932         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
933                 low_bound = 0x28;
934                 up_bound = 0x48;
935
936                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
937                         low_bound += 0x10;
938                         up_bound += 0x10;
939                 }
940         } else {
941                 if (qual->rssi > -82) {
942                         low_bound = 0x1c;
943                         up_bound = 0x40;
944                 } else if (qual->rssi > -84) {
945                         low_bound = 0x1c;
946                         up_bound = 0x20;
947                 } else {
948                         low_bound = 0x1c;
949                         up_bound = 0x1c;
950                 }
951
952                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
953                         low_bound += 0x14;
954                         up_bound += 0x10;
955                 }
956         }
957
958         /*
959          * If we are not associated, we should go straight to the
960          * dynamic CCA tuning.
961          */
962         if (!rt2x00dev->intf_associated)
963                 goto dynamic_cca_tune;
964
965         /*
966          * Special big-R17 for very short distance
967          */
968         if (qual->rssi > -35) {
969                 rt73usb_set_vgc(rt2x00dev, qual, 0x60);
970                 return;
971         }
972
973         /*
974          * Special big-R17 for short distance
975          */
976         if (qual->rssi >= -58) {
977                 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
978                 return;
979         }
980
981         /*
982          * Special big-R17 for middle-short distance
983          */
984         if (qual->rssi >= -66) {
985                 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
986                 return;
987         }
988
989         /*
990          * Special mid-R17 for middle distance
991          */
992         if (qual->rssi >= -74) {
993                 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
994                 return;
995         }
996
997         /*
998          * Special case: Change up_bound based on the rssi.
999          * Lower up_bound when rssi is weaker then -74 dBm.
1000          */
1001         up_bound -= 2 * (-74 - qual->rssi);
1002         if (low_bound > up_bound)
1003                 up_bound = low_bound;
1004
1005         if (qual->vgc_level > up_bound) {
1006                 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
1007                 return;
1008         }
1009
1010 dynamic_cca_tune:
1011
1012         /*
1013          * r17 does not yet exceed upper limit, continue and base
1014          * the r17 tuning on the false CCA count.
1015          */
1016         if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1017                 rt73usb_set_vgc(rt2x00dev, qual,
1018                                 min_t(u8, qual->vgc_level + 4, up_bound));
1019         else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1020                 rt73usb_set_vgc(rt2x00dev, qual,
1021                                 max_t(u8, qual->vgc_level - 4, low_bound));
1022 }
1023
1024 /*
1025  * Firmware functions
1026  */
1027 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1028 {
1029         return FIRMWARE_RT2571;
1030 }
1031
1032 static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev,
1033                                   const u8 *data, const size_t len)
1034 {
1035         u16 fw_crc;
1036         u16 crc;
1037
1038         /*
1039          * Only support 2kb firmware files.
1040          */
1041         if (len != 2048)
1042                 return FW_BAD_LENGTH;
1043
1044         /*
1045          * The last 2 bytes in the firmware array are the crc checksum itself,
1046          * this means that we should never pass those 2 bytes to the crc
1047          * algorithm.
1048          */
1049         fw_crc = (data[len - 2] << 8 | data[len - 1]);
1050
1051         /*
1052          * Use the crc itu-t algorithm.
1053          */
1054         crc = crc_itu_t(0, data, len - 2);
1055         crc = crc_itu_t_byte(crc, 0);
1056         crc = crc_itu_t_byte(crc, 0);
1057
1058         return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1059 }
1060
1061 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev,
1062                                  const u8 *data, const size_t len)
1063 {
1064         unsigned int i;
1065         int status;
1066         u32 reg;
1067
1068         /*
1069          * Wait for stable hardware.
1070          */
1071         for (i = 0; i < 100; i++) {
1072                 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1073                 if (reg)
1074                         break;
1075                 msleep(1);
1076         }
1077
1078         if (!reg) {
1079                 ERROR(rt2x00dev, "Unstable hardware.\n");
1080                 return -EBUSY;
1081         }
1082
1083         /*
1084          * Write firmware to device.
1085          */
1086         rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len);
1087
1088         /*
1089          * Send firmware request to device to load firmware,
1090          * we need to specify a long timeout time.
1091          */
1092         status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1093                                              0, USB_MODE_FIRMWARE,
1094                                              REGISTER_TIMEOUT_FIRMWARE);
1095         if (status < 0) {
1096                 ERROR(rt2x00dev, "Failed to write Firmware to device.\n");
1097                 return status;
1098         }
1099
1100         return 0;
1101 }
1102
1103 /*
1104  * Initialization functions.
1105  */
1106 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1107 {
1108         u32 reg;
1109
1110         rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1111         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1112         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1113         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1114         rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1115
1116         rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
1117         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1118         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1119         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1120         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1121         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1122         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1123         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1124         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1125         rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1126
1127         /*
1128          * CCK TXD BBP registers
1129          */
1130         rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1131         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1132         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1133         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1134         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1135         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1136         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1137         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1138         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1139         rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1140
1141         /*
1142          * OFDM TXD BBP registers
1143          */
1144         rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, &reg);
1145         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1146         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1147         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1148         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1149         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1150         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1151         rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1152
1153         rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
1154         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1155         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1156         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1157         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1158         rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1159
1160         rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
1161         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1162         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1163         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1164         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1165         rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1166
1167         rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1168         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1169         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1170         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1171         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1172         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1173         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1174         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1175
1176         rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1177
1178         rt2x00usb_register_read(rt2x00dev, MAC_CSR6, &reg);
1179         rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1180         rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
1181
1182         rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1183
1184         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1185                 return -EBUSY;
1186
1187         rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1188
1189         /*
1190          * Invalidate all Shared Keys (SEC_CSR0),
1191          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1192          */
1193         rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1194         rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1195         rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1196
1197         reg = 0x000023b0;
1198         if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527))
1199                 rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1200         rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
1201
1202         rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1203         rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1204         rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1205
1206         rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
1207         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1208         rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
1209
1210         /*
1211          * Clear all beacons
1212          * For the Beacon base registers we only need to clear
1213          * the first byte since that byte contains the VALID and OWNER
1214          * bits which (when set to 0) will invalidate the entire beacon.
1215          */
1216         rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1217         rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1218         rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1219         rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1220
1221         /*
1222          * We must clear the error counters.
1223          * These registers are cleared on read,
1224          * so we may pass a useless variable to store the value.
1225          */
1226         rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
1227         rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
1228         rt2x00usb_register_read(rt2x00dev, STA_CSR2, &reg);
1229
1230         /*
1231          * Reset MAC and BBP registers.
1232          */
1233         rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1234         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1235         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1236         rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1237
1238         rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1239         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1240         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1241         rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1242
1243         rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1244         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1245         rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1246
1247         return 0;
1248 }
1249
1250 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1251 {
1252         unsigned int i;
1253         u8 value;
1254
1255         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1256                 rt73usb_bbp_read(rt2x00dev, 0, &value);
1257                 if ((value != 0xff) && (value != 0x00))
1258                         return 0;
1259                 udelay(REGISTER_BUSY_DELAY);
1260         }
1261
1262         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1263         return -EACCES;
1264 }
1265
1266 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1267 {
1268         unsigned int i;
1269         u16 eeprom;
1270         u8 reg_id;
1271         u8 value;
1272
1273         if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1274                 return -EACCES;
1275
1276         rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1277         rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1278         rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1279         rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1280         rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1281         rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1282         rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1283         rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1284         rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1285         rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1286         rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1287         rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1288         rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1289         rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1290         rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1291         rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1292         rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1293         rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1294         rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1295         rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1296         rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1297         rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1298         rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1299         rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1300         rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1301
1302         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1303                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1304
1305                 if (eeprom != 0xffff && eeprom != 0x0000) {
1306                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1307                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1308                         rt73usb_bbp_write(rt2x00dev, reg_id, value);
1309                 }
1310         }
1311
1312         return 0;
1313 }
1314
1315 /*
1316  * Device state switch handlers.
1317  */
1318 static void rt73usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
1319                               enum dev_state state)
1320 {
1321         u32 reg;
1322
1323         rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1324         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1325                            (state == STATE_RADIO_RX_OFF) ||
1326                            (state == STATE_RADIO_RX_OFF_LINK));
1327         rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1328 }
1329
1330 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1331 {
1332         /*
1333          * Initialize all registers.
1334          */
1335         if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1336                      rt73usb_init_bbp(rt2x00dev)))
1337                 return -EIO;
1338
1339         return 0;
1340 }
1341
1342 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1343 {
1344         rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1345
1346         /*
1347          * Disable synchronisation.
1348          */
1349         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1350
1351         rt2x00usb_disable_radio(rt2x00dev);
1352 }
1353
1354 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1355 {
1356         u32 reg, reg2;
1357         unsigned int i;
1358         char put_to_sleep;
1359
1360         put_to_sleep = (state != STATE_AWAKE);
1361
1362         rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1363         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1364         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1365         rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1366
1367         /*
1368          * Device is not guaranteed to be in the requested state yet.
1369          * We must wait until the register indicates that the
1370          * device has entered the correct state.
1371          */
1372         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1373                 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg2);
1374                 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1375                 if (state == !put_to_sleep)
1376                         return 0;
1377                 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1378                 msleep(10);
1379         }
1380
1381         return -EBUSY;
1382 }
1383
1384 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1385                                     enum dev_state state)
1386 {
1387         int retval = 0;
1388
1389         switch (state) {
1390         case STATE_RADIO_ON:
1391                 retval = rt73usb_enable_radio(rt2x00dev);
1392                 break;
1393         case STATE_RADIO_OFF:
1394                 rt73usb_disable_radio(rt2x00dev);
1395                 break;
1396         case STATE_RADIO_RX_ON:
1397         case STATE_RADIO_RX_ON_LINK:
1398         case STATE_RADIO_RX_OFF:
1399         case STATE_RADIO_RX_OFF_LINK:
1400                 rt73usb_toggle_rx(rt2x00dev, state);
1401                 break;
1402         case STATE_RADIO_IRQ_ON:
1403         case STATE_RADIO_IRQ_ON_ISR:
1404         case STATE_RADIO_IRQ_OFF:
1405         case STATE_RADIO_IRQ_OFF_ISR:
1406                 /* No support, but no error either */
1407                 break;
1408         case STATE_DEEP_SLEEP:
1409         case STATE_SLEEP:
1410         case STATE_STANDBY:
1411         case STATE_AWAKE:
1412                 retval = rt73usb_set_state(rt2x00dev, state);
1413                 break;
1414         default:
1415                 retval = -ENOTSUPP;
1416                 break;
1417         }
1418
1419         if (unlikely(retval))
1420                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1421                       state, retval);
1422
1423         return retval;
1424 }
1425
1426 /*
1427  * TX descriptor initialization
1428  */
1429 static void rt73usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1430                                   struct sk_buff *skb,
1431                                   struct txentry_desc *txdesc)
1432 {
1433         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1434         __le32 *txd = (__le32 *) skb->data;
1435         u32 word;
1436
1437         /*
1438          * Start writing the descriptor words.
1439          */
1440         rt2x00_desc_read(txd, 0, &word);
1441         rt2x00_set_field32(&word, TXD_W0_BURST,
1442                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1443         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1444         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1445                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1446         rt2x00_set_field32(&word, TXD_W0_ACK,
1447                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1448         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1449                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1450         rt2x00_set_field32(&word, TXD_W0_OFDM,
1451                            (txdesc->rate_mode == RATE_MODE_OFDM));
1452         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1453         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1454                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1455         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1456                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1457         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1458                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1459         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1460         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1461         rt2x00_set_field32(&word, TXD_W0_BURST2,
1462                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1463         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1464         rt2x00_desc_write(txd, 0, word);
1465
1466         rt2x00_desc_read(txd, 1, &word);
1467         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1468         rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1469         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1470         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1471         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1472         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1473                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1474         rt2x00_desc_write(txd, 1, word);
1475
1476         rt2x00_desc_read(txd, 2, &word);
1477         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1478         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1479         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1480         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1481         rt2x00_desc_write(txd, 2, word);
1482
1483         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1484                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1485                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1486         }
1487
1488         rt2x00_desc_read(txd, 5, &word);
1489         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1490                            TXPOWER_TO_DEV(rt2x00dev->tx_power));
1491         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1492         rt2x00_desc_write(txd, 5, word);
1493
1494         /*
1495          * Register descriptor details in skb frame descriptor.
1496          */
1497         skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1498         skbdesc->desc = txd;
1499         skbdesc->desc_len = TXD_DESC_SIZE;
1500 }
1501
1502 /*
1503  * TX data initialization
1504  */
1505 static void rt73usb_write_beacon(struct queue_entry *entry,
1506                                  struct txentry_desc *txdesc)
1507 {
1508         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1509         unsigned int beacon_base;
1510         u32 reg;
1511
1512         /*
1513          * Disable beaconing while we are reloading the beacon data,
1514          * otherwise we might be sending out invalid data.
1515          */
1516         rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1517         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1518         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1519
1520         /*
1521          * Add space for the descriptor in front of the skb.
1522          */
1523         skb_push(entry->skb, TXD_DESC_SIZE);
1524         memset(entry->skb->data, 0, TXD_DESC_SIZE);
1525
1526         /*
1527          * Write the TX descriptor for the beacon.
1528          */
1529         rt73usb_write_tx_desc(rt2x00dev, entry->skb, txdesc);
1530
1531         /*
1532          * Dump beacon to userspace through debugfs.
1533          */
1534         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1535
1536         /*
1537          * Write entire beacon with descriptor to register.
1538          */
1539         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1540         rt2x00usb_register_multiwrite(rt2x00dev, beacon_base,
1541                                       entry->skb->data, entry->skb->len);
1542
1543         /*
1544          * Enable beaconing again.
1545          *
1546          * For Wi-Fi faily generated beacons between participating stations.
1547          * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1548          */
1549         rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1550
1551         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1552         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1553         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1554         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1555
1556         /*
1557          * Clean up the beacon skb.
1558          */
1559         dev_kfree_skb(entry->skb);
1560         entry->skb = NULL;
1561 }
1562
1563 static int rt73usb_get_tx_data_len(struct queue_entry *entry)
1564 {
1565         int length;
1566
1567         /*
1568          * The length _must_ be a multiple of 4,
1569          * but it must _not_ be a multiple of the USB packet size.
1570          */
1571         length = roundup(entry->skb->len, 4);
1572         length += (4 * !(length % entry->queue->usb_maxpacket));
1573
1574         return length;
1575 }
1576
1577 /*
1578  * RX control handlers
1579  */
1580 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1581 {
1582         u8 offset = rt2x00dev->lna_gain;
1583         u8 lna;
1584
1585         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1586         switch (lna) {
1587         case 3:
1588                 offset += 90;
1589                 break;
1590         case 2:
1591                 offset += 74;
1592                 break;
1593         case 1:
1594                 offset += 64;
1595                 break;
1596         default:
1597                 return 0;
1598         }
1599
1600         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1601                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1602                         if (lna == 3 || lna == 2)
1603                                 offset += 10;
1604                 } else {
1605                         if (lna == 3)
1606                                 offset += 6;
1607                         else if (lna == 2)
1608                                 offset += 8;
1609                 }
1610         }
1611
1612         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1613 }
1614
1615 static void rt73usb_fill_rxdone(struct queue_entry *entry,
1616                                 struct rxdone_entry_desc *rxdesc)
1617 {
1618         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1619         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1620         __le32 *rxd = (__le32 *)entry->skb->data;
1621         u32 word0;
1622         u32 word1;
1623
1624         /*
1625          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1626          * frame data in rt2x00usb.
1627          */
1628         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1629         rxd = (__le32 *)skbdesc->desc;
1630
1631         /*
1632          * It is now safe to read the descriptor on all architectures.
1633          */
1634         rt2x00_desc_read(rxd, 0, &word0);
1635         rt2x00_desc_read(rxd, 1, &word1);
1636
1637         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1638                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1639
1640         rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1641         rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1642
1643         if (rxdesc->cipher != CIPHER_NONE) {
1644                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1645                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1646                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1647
1648                 _rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1649                 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1650
1651                 /*
1652                  * Hardware has stripped IV/EIV data from 802.11 frame during
1653                  * decryption. It has provided the data separately but rt2x00lib
1654                  * should decide if it should be reinserted.
1655                  */
1656                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1657
1658                 /*
1659                  * FIXME: Legacy driver indicates that the frame does
1660                  * contain the Michael Mic. Unfortunately, in rt2x00
1661                  * the MIC seems to be missing completely...
1662                  */
1663                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1664
1665                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1666                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1667                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1668                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1669         }
1670
1671         /*
1672          * Obtain the status about this packet.
1673          * When frame was received with an OFDM bitrate,
1674          * the signal is the PLCP value. If it was received with
1675          * a CCK bitrate the signal is the rate in 100kbit/s.
1676          */
1677         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1678         rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1679         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1680
1681         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1682                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1683         else
1684                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1685         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1686                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1687
1688         /*
1689          * Set skb pointers, and update frame information.
1690          */
1691         skb_pull(entry->skb, entry->queue->desc_size);
1692         skb_trim(entry->skb, rxdesc->size);
1693 }
1694
1695 /*
1696  * Device probe functions.
1697  */
1698 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1699 {
1700         u16 word;
1701         u8 *mac;
1702         s8 value;
1703
1704         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1705
1706         /*
1707          * Start validation of the data that has been read.
1708          */
1709         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1710         if (!is_valid_ether_addr(mac)) {
1711                 random_ether_addr(mac);
1712                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1713         }
1714
1715         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1716         if (word == 0xffff) {
1717                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1718                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1719                                    ANTENNA_B);
1720                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1721                                    ANTENNA_B);
1722                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1723                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1724                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1725                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1726                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1727                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1728         }
1729
1730         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1731         if (word == 0xffff) {
1732                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1733                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1734                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1735         }
1736
1737         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1738         if (word == 0xffff) {
1739                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1740                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1741                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1742                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1743                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1744                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1745                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1746                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1747                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1748                                    LED_MODE_DEFAULT);
1749                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1750                 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1751         }
1752
1753         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1754         if (word == 0xffff) {
1755                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1756                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1757                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1758                 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1759         }
1760
1761         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1762         if (word == 0xffff) {
1763                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1764                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1765                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1766                 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1767         } else {
1768                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1769                 if (value < -10 || value > 10)
1770                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1771                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1772                 if (value < -10 || value > 10)
1773                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1774                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1775         }
1776
1777         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1778         if (word == 0xffff) {
1779                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1780                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1781                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1782                 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1783         } else {
1784                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1785                 if (value < -10 || value > 10)
1786                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1787                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1788                 if (value < -10 || value > 10)
1789                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1790                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1791         }
1792
1793         return 0;
1794 }
1795
1796 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1797 {
1798         u32 reg;
1799         u16 value;
1800         u16 eeprom;
1801
1802         /*
1803          * Read EEPROM word for configuration.
1804          */
1805         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1806
1807         /*
1808          * Identify RF chipset.
1809          */
1810         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1811         rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1812         rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
1813                         value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
1814
1815         if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) {
1816                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1817                 return -ENODEV;
1818         }
1819
1820         if (!rt2x00_rf(rt2x00dev, RF5226) &&
1821             !rt2x00_rf(rt2x00dev, RF2528) &&
1822             !rt2x00_rf(rt2x00dev, RF5225) &&
1823             !rt2x00_rf(rt2x00dev, RF2527)) {
1824                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1825                 return -ENODEV;
1826         }
1827
1828         /*
1829          * Identify default antenna configuration.
1830          */
1831         rt2x00dev->default_ant.tx =
1832             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1833         rt2x00dev->default_ant.rx =
1834             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1835
1836         /*
1837          * Read the Frame type.
1838          */
1839         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1840                 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
1841
1842         /*
1843          * Detect if this device has an hardware controlled radio.
1844          */
1845         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1846                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1847
1848         /*
1849          * Read frequency offset.
1850          */
1851         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1852         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1853
1854         /*
1855          * Read external LNA informations.
1856          */
1857         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1858
1859         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1860                 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
1861                 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
1862         }
1863
1864         /*
1865          * Store led settings, for correct led behaviour.
1866          */
1867 #ifdef CONFIG_RT2X00_LIB_LEDS
1868         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1869
1870         rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1871         rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1872         if (value == LED_MODE_SIGNAL_STRENGTH)
1873                 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1874                                  LED_TYPE_QUALITY);
1875
1876         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1877         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1878                            rt2x00_get_field16(eeprom,
1879                                               EEPROM_LED_POLARITY_GPIO_0));
1880         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1881                            rt2x00_get_field16(eeprom,
1882                                               EEPROM_LED_POLARITY_GPIO_1));
1883         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1884                            rt2x00_get_field16(eeprom,
1885                                               EEPROM_LED_POLARITY_GPIO_2));
1886         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1887                            rt2x00_get_field16(eeprom,
1888                                               EEPROM_LED_POLARITY_GPIO_3));
1889         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1890                            rt2x00_get_field16(eeprom,
1891                                               EEPROM_LED_POLARITY_GPIO_4));
1892         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1893                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1894         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1895                            rt2x00_get_field16(eeprom,
1896                                               EEPROM_LED_POLARITY_RDY_G));
1897         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1898                            rt2x00_get_field16(eeprom,
1899                                               EEPROM_LED_POLARITY_RDY_A));
1900 #endif /* CONFIG_RT2X00_LIB_LEDS */
1901
1902         return 0;
1903 }
1904
1905 /*
1906  * RF value list for RF2528
1907  * Supports: 2.4 GHz
1908  */
1909 static const struct rf_channel rf_vals_bg_2528[] = {
1910         { 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1911         { 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1912         { 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1913         { 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1914         { 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1915         { 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1916         { 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1917         { 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1918         { 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1919         { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1920         { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1921         { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1922         { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1923         { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1924 };
1925
1926 /*
1927  * RF value list for RF5226
1928  * Supports: 2.4 GHz & 5.2 GHz
1929  */
1930 static const struct rf_channel rf_vals_5226[] = {
1931         { 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1932         { 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1933         { 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1934         { 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1935         { 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1936         { 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1937         { 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1938         { 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1939         { 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1940         { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1941         { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1942         { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1943         { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1944         { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1945
1946         /* 802.11 UNI / HyperLan 2 */
1947         { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
1948         { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
1949         { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
1950         { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
1951         { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
1952         { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
1953         { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
1954         { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
1955
1956         /* 802.11 HyperLan 2 */
1957         { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
1958         { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
1959         { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
1960         { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
1961         { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
1962         { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
1963         { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
1964         { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
1965         { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
1966         { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
1967
1968         /* 802.11 UNII */
1969         { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
1970         { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
1971         { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
1972         { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
1973         { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
1974         { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
1975
1976         /* MMAC(Japan)J52 ch 34,38,42,46 */
1977         { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
1978         { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
1979         { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
1980         { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
1981 };
1982
1983 /*
1984  * RF value list for RF5225 & RF2527
1985  * Supports: 2.4 GHz & 5.2 GHz
1986  */
1987 static const struct rf_channel rf_vals_5225_2527[] = {
1988         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
1989         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
1990         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
1991         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
1992         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
1993         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
1994         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
1995         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
1996         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
1997         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
1998         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
1999         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2000         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2001         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2002
2003         /* 802.11 UNI / HyperLan 2 */
2004         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2005         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2006         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2007         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2008         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2009         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2010         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2011         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2012
2013         /* 802.11 HyperLan 2 */
2014         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2015         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2016         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2017         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2018         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2019         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2020         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2021         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2022         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2023         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2024
2025         /* 802.11 UNII */
2026         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2027         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2028         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2029         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2030         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2031         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2032
2033         /* MMAC(Japan)J52 ch 34,38,42,46 */
2034         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2035         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2036         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2037         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2038 };
2039
2040
2041 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2042 {
2043         struct hw_mode_spec *spec = &rt2x00dev->spec;
2044         struct channel_info *info;
2045         char *tx_power;
2046         unsigned int i;
2047
2048         /*
2049          * Initialize all hw fields.
2050          */
2051         rt2x00dev->hw->flags =
2052             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2053             IEEE80211_HW_SIGNAL_DBM |
2054             IEEE80211_HW_SUPPORTS_PS |
2055             IEEE80211_HW_PS_NULLFUNC_STACK;
2056
2057         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2058         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2059                                 rt2x00_eeprom_addr(rt2x00dev,
2060                                                    EEPROM_MAC_ADDR_0));
2061
2062         /*
2063          * Initialize hw_mode information.
2064          */
2065         spec->supported_bands = SUPPORT_BAND_2GHZ;
2066         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2067
2068         if (rt2x00_rf(rt2x00dev, RF2528)) {
2069                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2070                 spec->channels = rf_vals_bg_2528;
2071         } else if (rt2x00_rf(rt2x00dev, RF5226)) {
2072                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2073                 spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2074                 spec->channels = rf_vals_5226;
2075         } else if (rt2x00_rf(rt2x00dev, RF2527)) {
2076                 spec->num_channels = 14;
2077                 spec->channels = rf_vals_5225_2527;
2078         } else if (rt2x00_rf(rt2x00dev, RF5225)) {
2079                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2080                 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2081                 spec->channels = rf_vals_5225_2527;
2082         }
2083
2084         /*
2085          * Create channel information array
2086          */
2087         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2088         if (!info)
2089                 return -ENOMEM;
2090
2091         spec->channels_info = info;
2092
2093         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2094         for (i = 0; i < 14; i++) {
2095                 info[i].max_power = MAX_TXPOWER;
2096                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2097         }
2098
2099         if (spec->num_channels > 14) {
2100                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2101                 for (i = 14; i < spec->num_channels; i++) {
2102                         info[i].max_power = MAX_TXPOWER;
2103                         info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2104                 }
2105         }
2106
2107         return 0;
2108 }
2109
2110 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2111 {
2112         int retval;
2113
2114         /*
2115          * Allocate eeprom data.
2116          */
2117         retval = rt73usb_validate_eeprom(rt2x00dev);
2118         if (retval)
2119                 return retval;
2120
2121         retval = rt73usb_init_eeprom(rt2x00dev);
2122         if (retval)
2123                 return retval;
2124
2125         /*
2126          * Initialize hw specifications.
2127          */
2128         retval = rt73usb_probe_hw_mode(rt2x00dev);
2129         if (retval)
2130                 return retval;
2131
2132         /*
2133          * This device has multiple filters for control frames,
2134          * but has no a separate filter for PS Poll frames.
2135          */
2136         __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
2137
2138         /*
2139          * This device requires firmware.
2140          */
2141         __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2142         if (!modparam_nohwcrypt)
2143                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2144         __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
2145         __set_bit(DRIVER_SUPPORT_WATCHDOG, &rt2x00dev->flags);
2146
2147         /*
2148          * Set the rssi offset.
2149          */
2150         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2151
2152         return 0;
2153 }
2154
2155 /*
2156  * IEEE80211 stack callback functions.
2157  */
2158 static int rt73usb_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2159                            const struct ieee80211_tx_queue_params *params)
2160 {
2161         struct rt2x00_dev *rt2x00dev = hw->priv;
2162         struct data_queue *queue;
2163         struct rt2x00_field32 field;
2164         int retval;
2165         u32 reg;
2166         u32 offset;
2167
2168         /*
2169          * First pass the configuration through rt2x00lib, that will
2170          * update the queue settings and validate the input. After that
2171          * we are free to update the registers based on the value
2172          * in the queue parameter.
2173          */
2174         retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2175         if (retval)
2176                 return retval;
2177
2178         /*
2179          * We only need to perform additional register initialization
2180          * for WMM queues/
2181          */
2182         if (queue_idx >= 4)
2183                 return 0;
2184
2185         queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2186
2187         /* Update WMM TXOP register */
2188         offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2189         field.bit_offset = (queue_idx & 1) * 16;
2190         field.bit_mask = 0xffff << field.bit_offset;
2191
2192         rt2x00usb_register_read(rt2x00dev, offset, &reg);
2193         rt2x00_set_field32(&reg, field, queue->txop);
2194         rt2x00usb_register_write(rt2x00dev, offset, reg);
2195
2196         /* Update WMM registers */
2197         field.bit_offset = queue_idx * 4;
2198         field.bit_mask = 0xf << field.bit_offset;
2199
2200         rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, &reg);
2201         rt2x00_set_field32(&reg, field, queue->aifs);
2202         rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2203
2204         rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, &reg);
2205         rt2x00_set_field32(&reg, field, queue->cw_min);
2206         rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2207
2208         rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, &reg);
2209         rt2x00_set_field32(&reg, field, queue->cw_max);
2210         rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2211
2212         return 0;
2213 }
2214
2215 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw)
2216 {
2217         struct rt2x00_dev *rt2x00dev = hw->priv;
2218         u64 tsf;
2219         u32 reg;
2220
2221         rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, &reg);
2222         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2223         rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, &reg);
2224         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2225
2226         return tsf;
2227 }
2228
2229 static const struct ieee80211_ops rt73usb_mac80211_ops = {
2230         .tx                     = rt2x00mac_tx,
2231         .start                  = rt2x00mac_start,
2232         .stop                   = rt2x00mac_stop,
2233         .add_interface          = rt2x00mac_add_interface,
2234         .remove_interface       = rt2x00mac_remove_interface,
2235         .config                 = rt2x00mac_config,
2236         .configure_filter       = rt2x00mac_configure_filter,
2237         .set_tim                = rt2x00mac_set_tim,
2238         .set_key                = rt2x00mac_set_key,
2239         .sw_scan_start          = rt2x00mac_sw_scan_start,
2240         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
2241         .get_stats              = rt2x00mac_get_stats,
2242         .bss_info_changed       = rt2x00mac_bss_info_changed,
2243         .conf_tx                = rt73usb_conf_tx,
2244         .get_tsf                = rt73usb_get_tsf,
2245         .rfkill_poll            = rt2x00mac_rfkill_poll,
2246 };
2247
2248 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2249         .probe_hw               = rt73usb_probe_hw,
2250         .get_firmware_name      = rt73usb_get_firmware_name,
2251         .check_firmware         = rt73usb_check_firmware,
2252         .load_firmware          = rt73usb_load_firmware,
2253         .initialize             = rt2x00usb_initialize,
2254         .uninitialize           = rt2x00usb_uninitialize,
2255         .clear_entry            = rt2x00usb_clear_entry,
2256         .set_device_state       = rt73usb_set_device_state,
2257         .rfkill_poll            = rt73usb_rfkill_poll,
2258         .link_stats             = rt73usb_link_stats,
2259         .reset_tuner            = rt73usb_reset_tuner,
2260         .link_tuner             = rt73usb_link_tuner,
2261         .watchdog               = rt2x00usb_watchdog,
2262         .write_tx_desc          = rt73usb_write_tx_desc,
2263         .write_beacon           = rt73usb_write_beacon,
2264         .get_tx_data_len        = rt73usb_get_tx_data_len,
2265         .kick_tx_queue          = rt2x00usb_kick_tx_queue,
2266         .kill_tx_queue          = rt2x00usb_kill_tx_queue,
2267         .fill_rxdone            = rt73usb_fill_rxdone,
2268         .config_shared_key      = rt73usb_config_shared_key,
2269         .config_pairwise_key    = rt73usb_config_pairwise_key,
2270         .config_filter          = rt73usb_config_filter,
2271         .config_intf            = rt73usb_config_intf,
2272         .config_erp             = rt73usb_config_erp,
2273         .config_ant             = rt73usb_config_ant,
2274         .config                 = rt73usb_config,
2275 };
2276
2277 static const struct data_queue_desc rt73usb_queue_rx = {
2278         .entry_num              = RX_ENTRIES,
2279         .data_size              = DATA_FRAME_SIZE,
2280         .desc_size              = RXD_DESC_SIZE,
2281         .priv_size              = sizeof(struct queue_entry_priv_usb),
2282 };
2283
2284 static const struct data_queue_desc rt73usb_queue_tx = {
2285         .entry_num              = TX_ENTRIES,
2286         .data_size              = DATA_FRAME_SIZE,
2287         .desc_size              = TXD_DESC_SIZE,
2288         .priv_size              = sizeof(struct queue_entry_priv_usb),
2289 };
2290
2291 static const struct data_queue_desc rt73usb_queue_bcn = {
2292         .entry_num              = 4 * BEACON_ENTRIES,
2293         .data_size              = MGMT_FRAME_SIZE,
2294         .desc_size              = TXINFO_SIZE,
2295         .priv_size              = sizeof(struct queue_entry_priv_usb),
2296 };
2297
2298 static const struct rt2x00_ops rt73usb_ops = {
2299         .name                   = KBUILD_MODNAME,
2300         .max_sta_intf           = 1,
2301         .max_ap_intf            = 4,
2302         .eeprom_size            = EEPROM_SIZE,
2303         .rf_size                = RF_SIZE,
2304         .tx_queues              = NUM_TX_QUEUES,
2305         .extra_tx_headroom      = TXD_DESC_SIZE,
2306         .rx                     = &rt73usb_queue_rx,
2307         .tx                     = &rt73usb_queue_tx,
2308         .bcn                    = &rt73usb_queue_bcn,
2309         .lib                    = &rt73usb_rt2x00_ops,
2310         .hw                     = &rt73usb_mac80211_ops,
2311 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2312         .debugfs                = &rt73usb_rt2x00debug,
2313 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2314 };
2315
2316 /*
2317  * rt73usb module information.
2318  */
2319 static struct usb_device_id rt73usb_device_table[] = {
2320         /* AboCom */
2321         { USB_DEVICE(0x07b8, 0xb21b), USB_DEVICE_DATA(&rt73usb_ops) },
2322         { USB_DEVICE(0x07b8, 0xb21c), USB_DEVICE_DATA(&rt73usb_ops) },
2323         { USB_DEVICE(0x07b8, 0xb21d), USB_DEVICE_DATA(&rt73usb_ops) },
2324         { USB_DEVICE(0x07b8, 0xb21e), USB_DEVICE_DATA(&rt73usb_ops) },
2325         { USB_DEVICE(0x07b8, 0xb21f), USB_DEVICE_DATA(&rt73usb_ops) },
2326         /* AL */
2327         { USB_DEVICE(0x14b2, 0x3c10), USB_DEVICE_DATA(&rt73usb_ops) },
2328         /* Amigo */
2329         { USB_DEVICE(0x148f, 0x9021), USB_DEVICE_DATA(&rt73usb_ops) },
2330         { USB_DEVICE(0x0eb0, 0x9021), USB_DEVICE_DATA(&rt73usb_ops) },
2331         /* AMIT  */
2332         { USB_DEVICE(0x18c5, 0x0002), USB_DEVICE_DATA(&rt73usb_ops) },
2333         /* Askey */
2334         { USB_DEVICE(0x1690, 0x0722), USB_DEVICE_DATA(&rt73usb_ops) },
2335         /* ASUS */
2336         { USB_DEVICE(0x0b05, 0x1723), USB_DEVICE_DATA(&rt73usb_ops) },
2337         { USB_DEVICE(0x0b05, 0x1724), USB_DEVICE_DATA(&rt73usb_ops) },
2338         /* Belkin */
2339         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt73usb_ops) },
2340         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt73usb_ops) },
2341         { USB_DEVICE(0x050d, 0x905b), USB_DEVICE_DATA(&rt73usb_ops) },
2342         { USB_DEVICE(0x050d, 0x905c), USB_DEVICE_DATA(&rt73usb_ops) },
2343         /* Billionton */
2344         { USB_DEVICE(0x1631, 0xc019), USB_DEVICE_DATA(&rt73usb_ops) },
2345         { USB_DEVICE(0x08dd, 0x0120), USB_DEVICE_DATA(&rt73usb_ops) },
2346         /* Buffalo */
2347         { USB_DEVICE(0x0411, 0x00d8), USB_DEVICE_DATA(&rt73usb_ops) },
2348         { USB_DEVICE(0x0411, 0x00d9), USB_DEVICE_DATA(&rt73usb_ops) },
2349         { USB_DEVICE(0x0411, 0x00f4), USB_DEVICE_DATA(&rt73usb_ops) },
2350         { USB_DEVICE(0x0411, 0x0116), USB_DEVICE_DATA(&rt73usb_ops) },
2351         { USB_DEVICE(0x0411, 0x0119), USB_DEVICE_DATA(&rt73usb_ops) },
2352         /* CEIVA */
2353         { USB_DEVICE(0x178d, 0x02be), USB_DEVICE_DATA(&rt73usb_ops) },
2354         /* CNet */
2355         { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt73usb_ops) },
2356         { USB_DEVICE(0x1371, 0x9032), USB_DEVICE_DATA(&rt73usb_ops) },
2357         /* Conceptronic */
2358         { USB_DEVICE(0x14b2, 0x3c22), USB_DEVICE_DATA(&rt73usb_ops) },
2359         /* Corega */
2360         { USB_DEVICE(0x07aa, 0x002e), USB_DEVICE_DATA(&rt73usb_ops) },
2361         /* D-Link */
2362         { USB_DEVICE(0x07d1, 0x3c03), USB_DEVICE_DATA(&rt73usb_ops) },
2363         { USB_DEVICE(0x07d1, 0x3c04), USB_DEVICE_DATA(&rt73usb_ops) },
2364         { USB_DEVICE(0x07d1, 0x3c06), USB_DEVICE_DATA(&rt73usb_ops) },
2365         { USB_DEVICE(0x07d1, 0x3c07), USB_DEVICE_DATA(&rt73usb_ops) },
2366         /* Edimax */
2367         { USB_DEVICE(0x7392, 0x7318), USB_DEVICE_DATA(&rt73usb_ops) },
2368         { USB_DEVICE(0x7392, 0x7618), USB_DEVICE_DATA(&rt73usb_ops) },
2369         /* EnGenius */
2370         { USB_DEVICE(0x1740, 0x3701), USB_DEVICE_DATA(&rt73usb_ops) },
2371         /* Gemtek */
2372         { USB_DEVICE(0x15a9, 0x0004), USB_DEVICE_DATA(&rt73usb_ops) },
2373         /* Gigabyte */
2374         { USB_DEVICE(0x1044, 0x8008), USB_DEVICE_DATA(&rt73usb_ops) },
2375         { USB_DEVICE(0x1044, 0x800a), USB_DEVICE_DATA(&rt73usb_ops) },
2376         /* Huawei-3Com */
2377         { USB_DEVICE(0x1472, 0x0009), USB_DEVICE_DATA(&rt73usb_ops) },
2378         /* Hercules */
2379         { USB_DEVICE(0x06f8, 0xe002), USB_DEVICE_DATA(&rt73usb_ops) },
2380         { USB_DEVICE(0x06f8, 0xe010), USB_DEVICE_DATA(&rt73usb_ops) },
2381         { USB_DEVICE(0x06f8, 0xe020), USB_DEVICE_DATA(&rt73usb_ops) },
2382         /* Linksys */
2383         { USB_DEVICE(0x13b1, 0x0020), USB_DEVICE_DATA(&rt73usb_ops) },
2384         { USB_DEVICE(0x13b1, 0x0023), USB_DEVICE_DATA(&rt73usb_ops) },
2385         { USB_DEVICE(0x13b1, 0x0028), USB_DEVICE_DATA(&rt73usb_ops) },
2386         /* MSI */
2387         { USB_DEVICE(0x0db0, 0x4600), USB_DEVICE_DATA(&rt73usb_ops) },
2388         { USB_DEVICE(0x0db0, 0x6877), USB_DEVICE_DATA(&rt73usb_ops) },
2389         { USB_DEVICE(0x0db0, 0x6874), USB_DEVICE_DATA(&rt73usb_ops) },
2390         { USB_DEVICE(0x0db0, 0xa861), USB_DEVICE_DATA(&rt73usb_ops) },
2391         { USB_DEVICE(0x0db0, 0xa874), USB_DEVICE_DATA(&rt73usb_ops) },
2392         /* Ovislink */
2393         { USB_DEVICE(0x1b75, 0x7318), USB_DEVICE_DATA(&rt73usb_ops) },
2394         /* Ralink */
2395         { USB_DEVICE(0x04bb, 0x093d), USB_DEVICE_DATA(&rt73usb_ops) },
2396         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt73usb_ops) },
2397         { USB_DEVICE(0x148f, 0x2671), USB_DEVICE_DATA(&rt73usb_ops) },
2398         { USB_DEVICE(0x0812, 0x3101), USB_DEVICE_DATA(&rt73usb_ops) },
2399         /* Qcom */
2400         { USB_DEVICE(0x18e8, 0x6196), USB_DEVICE_DATA(&rt73usb_ops) },
2401         { USB_DEVICE(0x18e8, 0x6229), USB_DEVICE_DATA(&rt73usb_ops) },
2402         { USB_DEVICE(0x18e8, 0x6238), USB_DEVICE_DATA(&rt73usb_ops) },
2403         /* Samsung */
2404         { USB_DEVICE(0x04e8, 0x4471), USB_DEVICE_DATA(&rt73usb_ops) },
2405         /* Senao */
2406         { USB_DEVICE(0x1740, 0x7100), USB_DEVICE_DATA(&rt73usb_ops) },
2407         /* Sitecom */
2408         { USB_DEVICE(0x0df6, 0x0024), USB_DEVICE_DATA(&rt73usb_ops) },
2409         { USB_DEVICE(0x0df6, 0x0027), USB_DEVICE_DATA(&rt73usb_ops) },
2410         { USB_DEVICE(0x0df6, 0x002f), USB_DEVICE_DATA(&rt73usb_ops) },
2411         { USB_DEVICE(0x0df6, 0x90ac), USB_DEVICE_DATA(&rt73usb_ops) },
2412         { USB_DEVICE(0x0df6, 0x9712), USB_DEVICE_DATA(&rt73usb_ops) },
2413         /* Surecom */
2414         { USB_DEVICE(0x0769, 0x31f3), USB_DEVICE_DATA(&rt73usb_ops) },
2415         /* Tilgin */
2416         { USB_DEVICE(0x6933, 0x5001), USB_DEVICE_DATA(&rt73usb_ops) },
2417         /* Philips */
2418         { USB_DEVICE(0x0471, 0x200a), USB_DEVICE_DATA(&rt73usb_ops) },
2419         /* Planex */
2420         { USB_DEVICE(0x2019, 0xab01), USB_DEVICE_DATA(&rt73usb_ops) },
2421         { USB_DEVICE(0x2019, 0xab50), USB_DEVICE_DATA(&rt73usb_ops) },
2422         /* WideTell */
2423         { USB_DEVICE(0x7167, 0x3840), USB_DEVICE_DATA(&rt73usb_ops) },
2424         /* Zcom */
2425         { USB_DEVICE(0x0cde, 0x001c), USB_DEVICE_DATA(&rt73usb_ops) },
2426         /* ZyXEL */
2427         { USB_DEVICE(0x0586, 0x3415), USB_DEVICE_DATA(&rt73usb_ops) },
2428         { 0, }
2429 };
2430
2431 MODULE_AUTHOR(DRV_PROJECT);
2432 MODULE_VERSION(DRV_VERSION);
2433 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2434 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2435 MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2436 MODULE_FIRMWARE(FIRMWARE_RT2571);
2437 MODULE_LICENSE("GPL");
2438
2439 static struct usb_driver rt73usb_driver = {
2440         .name           = KBUILD_MODNAME,
2441         .id_table       = rt73usb_device_table,
2442         .probe          = rt2x00usb_probe,
2443         .disconnect     = rt2x00usb_disconnect,
2444         .suspend        = rt2x00usb_suspend,
2445         .resume         = rt2x00usb_resume,
2446 };
2447
2448 static int __init rt73usb_init(void)
2449 {
2450         return usb_register(&rt73usb_driver);
2451 }
2452
2453 static void __exit rt73usb_exit(void)
2454 {
2455         usb_deregister(&rt73usb_driver);
2456 }
2457
2458 module_init(rt73usb_init);
2459 module_exit(rt73usb_exit);