upload tizen1.0 source
[kernel/linux-2.6.36.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt61pci
23         Abstract: rt61pci device specific routines.
24         Supported chipsets: RT2561, RT2561s, RT2661.
25  */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/slab.h>
34 #include <linux/pci.h>
35 #include <linux/eeprom_93cx6.h>
36
37 #include "rt2x00.h"
38 #include "rt2x00pci.h"
39 #include "rt61pci.h"
40
41 /*
42  * Allow hardware encryption to be disabled.
43  */
44 static int modparam_nohwcrypt = 0;
45 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
46 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
47
48 /*
49  * Register access.
50  * BBP and RF register require indirect register access,
51  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
52  * These indirect registers work with busy bits,
53  * and we will try maximal REGISTER_BUSY_COUNT times to access
54  * the register while taking a REGISTER_BUSY_DELAY us delay
55  * between each attempt. When the busy bit is still set at that time,
56  * the access attempt is considered to have failed,
57  * and we will print an error.
58  */
59 #define WAIT_FOR_BBP(__dev, __reg) \
60         rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
61 #define WAIT_FOR_RF(__dev, __reg) \
62         rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
63 #define WAIT_FOR_MCU(__dev, __reg) \
64         rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
65                                H2M_MAILBOX_CSR_OWNER, (__reg))
66
67 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68                               const unsigned int word, const u8 value)
69 {
70         u32 reg;
71
72         mutex_lock(&rt2x00dev->csr_mutex);
73
74         /*
75          * Wait until the BBP becomes available, afterwards we
76          * can safely write the new data into the register.
77          */
78         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
79                 reg = 0;
80                 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
81                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
82                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
83                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
84
85                 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
86         }
87
88         mutex_unlock(&rt2x00dev->csr_mutex);
89 }
90
91 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
92                              const unsigned int word, u8 *value)
93 {
94         u32 reg;
95
96         mutex_lock(&rt2x00dev->csr_mutex);
97
98         /*
99          * Wait until the BBP becomes available, afterwards we
100          * can safely write the read request into the register.
101          * After the data has been written, we wait until hardware
102          * returns the correct value, if at any time the register
103          * doesn't become available in time, reg will be 0xffffffff
104          * which means we return 0xff to the caller.
105          */
106         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
107                 reg = 0;
108                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
109                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
110                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
111
112                 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
113
114                 WAIT_FOR_BBP(rt2x00dev, &reg);
115         }
116
117         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
118
119         mutex_unlock(&rt2x00dev->csr_mutex);
120 }
121
122 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
123                              const unsigned int word, const u32 value)
124 {
125         u32 reg;
126
127         mutex_lock(&rt2x00dev->csr_mutex);
128
129         /*
130          * Wait until the RF becomes available, afterwards we
131          * can safely write the new data into the register.
132          */
133         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
134                 reg = 0;
135                 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
136                 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
137                 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
138                 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
139
140                 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
141                 rt2x00_rf_write(rt2x00dev, word, value);
142         }
143
144         mutex_unlock(&rt2x00dev->csr_mutex);
145 }
146
147 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
148                                 const u8 command, const u8 token,
149                                 const u8 arg0, const u8 arg1)
150 {
151         u32 reg;
152
153         mutex_lock(&rt2x00dev->csr_mutex);
154
155         /*
156          * Wait until the MCU becomes available, afterwards we
157          * can safely write the new data into the register.
158          */
159         if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
160                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
161                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
162                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
163                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
164                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
165
166                 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
167                 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
168                 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
169                 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
170         }
171
172         mutex_unlock(&rt2x00dev->csr_mutex);
173
174 }
175
176 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
177 {
178         struct rt2x00_dev *rt2x00dev = eeprom->data;
179         u32 reg;
180
181         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
182
183         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
184         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
185         eeprom->reg_data_clock =
186             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
187         eeprom->reg_chip_select =
188             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
189 }
190
191 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
192 {
193         struct rt2x00_dev *rt2x00dev = eeprom->data;
194         u32 reg = 0;
195
196         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
197         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
198         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
199                            !!eeprom->reg_data_clock);
200         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
201                            !!eeprom->reg_chip_select);
202
203         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
204 }
205
206 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
207 static const struct rt2x00debug rt61pci_rt2x00debug = {
208         .owner  = THIS_MODULE,
209         .csr    = {
210                 .read           = rt2x00pci_register_read,
211                 .write          = rt2x00pci_register_write,
212                 .flags          = RT2X00DEBUGFS_OFFSET,
213                 .word_base      = CSR_REG_BASE,
214                 .word_size      = sizeof(u32),
215                 .word_count     = CSR_REG_SIZE / sizeof(u32),
216         },
217         .eeprom = {
218                 .read           = rt2x00_eeprom_read,
219                 .write          = rt2x00_eeprom_write,
220                 .word_base      = EEPROM_BASE,
221                 .word_size      = sizeof(u16),
222                 .word_count     = EEPROM_SIZE / sizeof(u16),
223         },
224         .bbp    = {
225                 .read           = rt61pci_bbp_read,
226                 .write          = rt61pci_bbp_write,
227                 .word_base      = BBP_BASE,
228                 .word_size      = sizeof(u8),
229                 .word_count     = BBP_SIZE / sizeof(u8),
230         },
231         .rf     = {
232                 .read           = rt2x00_rf_read,
233                 .write          = rt61pci_rf_write,
234                 .word_base      = RF_BASE,
235                 .word_size      = sizeof(u32),
236                 .word_count     = RF_SIZE / sizeof(u32),
237         },
238 };
239 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
240
241 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
242 {
243         u32 reg;
244
245         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
246         return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
247 }
248
249 #ifdef CONFIG_RT2X00_LIB_LEDS
250 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
251                                    enum led_brightness brightness)
252 {
253         struct rt2x00_led *led =
254             container_of(led_cdev, struct rt2x00_led, led_dev);
255         unsigned int enabled = brightness != LED_OFF;
256         unsigned int a_mode =
257             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
258         unsigned int bg_mode =
259             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
260
261         if (led->type == LED_TYPE_RADIO) {
262                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
263                                    MCU_LEDCS_RADIO_STATUS, enabled);
264
265                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
266                                     (led->rt2x00dev->led_mcu_reg & 0xff),
267                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
268         } else if (led->type == LED_TYPE_ASSOC) {
269                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
270                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
271                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
272                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
273
274                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
275                                     (led->rt2x00dev->led_mcu_reg & 0xff),
276                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
277         } else if (led->type == LED_TYPE_QUALITY) {
278                 /*
279                  * The brightness is divided into 6 levels (0 - 5),
280                  * this means we need to convert the brightness
281                  * argument into the matching level within that range.
282                  */
283                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
284                                     brightness / (LED_FULL / 6), 0);
285         }
286 }
287
288 static int rt61pci_blink_set(struct led_classdev *led_cdev,
289                              unsigned long *delay_on,
290                              unsigned long *delay_off)
291 {
292         struct rt2x00_led *led =
293             container_of(led_cdev, struct rt2x00_led, led_dev);
294         u32 reg;
295
296         rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
297         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
298         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
299         rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
300
301         return 0;
302 }
303
304 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
305                              struct rt2x00_led *led,
306                              enum led_type type)
307 {
308         led->rt2x00dev = rt2x00dev;
309         led->type = type;
310         led->led_dev.brightness_set = rt61pci_brightness_set;
311         led->led_dev.blink_set = rt61pci_blink_set;
312         led->flags = LED_INITIALIZED;
313 }
314 #endif /* CONFIG_RT2X00_LIB_LEDS */
315
316 /*
317  * Configuration handlers.
318  */
319 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
320                                      struct rt2x00lib_crypto *crypto,
321                                      struct ieee80211_key_conf *key)
322 {
323         struct hw_key_entry key_entry;
324         struct rt2x00_field32 field;
325         u32 mask;
326         u32 reg;
327
328         if (crypto->cmd == SET_KEY) {
329                 /*
330                  * rt2x00lib can't determine the correct free
331                  * key_idx for shared keys. We have 1 register
332                  * with key valid bits. The goal is simple, read
333                  * the register, if that is full we have no slots
334                  * left.
335                  * Note that each BSS is allowed to have up to 4
336                  * shared keys, so put a mask over the allowed
337                  * entries.
338                  */
339                 mask = (0xf << crypto->bssidx);
340
341                 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
342                 reg &= mask;
343
344                 if (reg && reg == mask)
345                         return -ENOSPC;
346
347                 key->hw_key_idx += reg ? ffz(reg) : 0;
348
349                 /*
350                  * Upload key to hardware
351                  */
352                 memcpy(key_entry.key, crypto->key,
353                        sizeof(key_entry.key));
354                 memcpy(key_entry.tx_mic, crypto->tx_mic,
355                        sizeof(key_entry.tx_mic));
356                 memcpy(key_entry.rx_mic, crypto->rx_mic,
357                        sizeof(key_entry.rx_mic));
358
359                 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
360                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
361                                               &key_entry, sizeof(key_entry));
362
363                 /*
364                  * The cipher types are stored over 2 registers.
365                  * bssidx 0 and 1 keys are stored in SEC_CSR1 and
366                  * bssidx 1 and 2 keys are stored in SEC_CSR5.
367                  * Using the correct defines correctly will cause overhead,
368                  * so just calculate the correct offset.
369                  */
370                 if (key->hw_key_idx < 8) {
371                         field.bit_offset = (3 * key->hw_key_idx);
372                         field.bit_mask = 0x7 << field.bit_offset;
373
374                         rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
375                         rt2x00_set_field32(&reg, field, crypto->cipher);
376                         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
377                 } else {
378                         field.bit_offset = (3 * (key->hw_key_idx - 8));
379                         field.bit_mask = 0x7 << field.bit_offset;
380
381                         rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
382                         rt2x00_set_field32(&reg, field, crypto->cipher);
383                         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
384                 }
385
386                 /*
387                  * The driver does not support the IV/EIV generation
388                  * in hardware. However it doesn't support the IV/EIV
389                  * inside the ieee80211 frame either, but requires it
390                  * to be provided separately for the descriptor.
391                  * rt2x00lib will cut the IV/EIV data out of all frames
392                  * given to us by mac80211, but we must tell mac80211
393                  * to generate the IV/EIV data.
394                  */
395                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
396         }
397
398         /*
399          * SEC_CSR0 contains only single-bit fields to indicate
400          * a particular key is valid. Because using the FIELD32()
401          * defines directly will cause a lot of overhead, we use
402          * a calculation to determine the correct bit directly.
403          */
404         mask = 1 << key->hw_key_idx;
405
406         rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
407         if (crypto->cmd == SET_KEY)
408                 reg |= mask;
409         else if (crypto->cmd == DISABLE_KEY)
410                 reg &= ~mask;
411         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
412
413         return 0;
414 }
415
416 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
417                                        struct rt2x00lib_crypto *crypto,
418                                        struct ieee80211_key_conf *key)
419 {
420         struct hw_pairwise_ta_entry addr_entry;
421         struct hw_key_entry key_entry;
422         u32 mask;
423         u32 reg;
424
425         if (crypto->cmd == SET_KEY) {
426                 /*
427                  * rt2x00lib can't determine the correct free
428                  * key_idx for pairwise keys. We have 2 registers
429                  * with key valid bits. The goal is simple: read
430                  * the first register. If that is full, move to
431                  * the next register.
432                  * When both registers are full, we drop the key.
433                  * Otherwise, we use the first invalid entry.
434                  */
435                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
436                 if (reg && reg == ~0) {
437                         key->hw_key_idx = 32;
438                         rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
439                         if (reg && reg == ~0)
440                                 return -ENOSPC;
441                 }
442
443                 key->hw_key_idx += reg ? ffz(reg) : 0;
444
445                 /*
446                  * Upload key to hardware
447                  */
448                 memcpy(key_entry.key, crypto->key,
449                        sizeof(key_entry.key));
450                 memcpy(key_entry.tx_mic, crypto->tx_mic,
451                        sizeof(key_entry.tx_mic));
452                 memcpy(key_entry.rx_mic, crypto->rx_mic,
453                        sizeof(key_entry.rx_mic));
454
455                 memset(&addr_entry, 0, sizeof(addr_entry));
456                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
457                 addr_entry.cipher = crypto->cipher;
458
459                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
460                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
461                                               &key_entry, sizeof(key_entry));
462
463                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
464                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
465                                               &addr_entry, sizeof(addr_entry));
466
467                 /*
468                  * Enable pairwise lookup table for given BSS idx.
469                  * Without this, received frames will not be decrypted
470                  * by the hardware.
471                  */
472                 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
473                 reg |= (1 << crypto->bssidx);
474                 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
475
476                 /*
477                  * The driver does not support the IV/EIV generation
478                  * in hardware. However it doesn't support the IV/EIV
479                  * inside the ieee80211 frame either, but requires it
480                  * to be provided separately for the descriptor.
481                  * rt2x00lib will cut the IV/EIV data out of all frames
482                  * given to us by mac80211, but we must tell mac80211
483                  * to generate the IV/EIV data.
484                  */
485                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
486         }
487
488         /*
489          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
490          * a particular key is valid. Because using the FIELD32()
491          * defines directly will cause a lot of overhead, we use
492          * a calculation to determine the correct bit directly.
493          */
494         if (key->hw_key_idx < 32) {
495                 mask = 1 << key->hw_key_idx;
496
497                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
498                 if (crypto->cmd == SET_KEY)
499                         reg |= mask;
500                 else if (crypto->cmd == DISABLE_KEY)
501                         reg &= ~mask;
502                 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
503         } else {
504                 mask = 1 << (key->hw_key_idx - 32);
505
506                 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
507                 if (crypto->cmd == SET_KEY)
508                         reg |= mask;
509                 else if (crypto->cmd == DISABLE_KEY)
510                         reg &= ~mask;
511                 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
512         }
513
514         return 0;
515 }
516
517 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
518                                   const unsigned int filter_flags)
519 {
520         u32 reg;
521
522         /*
523          * Start configuration steps.
524          * Note that the version error will always be dropped
525          * and broadcast frames will always be accepted since
526          * there is no filter for it at this time.
527          */
528         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
529         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
530                            !(filter_flags & FIF_FCSFAIL));
531         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
532                            !(filter_flags & FIF_PLCPFAIL));
533         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
534                            !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
535         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
536                            !(filter_flags & FIF_PROMISC_IN_BSS));
537         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
538                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
539                            !rt2x00dev->intf_ap_count);
540         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
541         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
542                            !(filter_flags & FIF_ALLMULTI));
543         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
544         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
545                            !(filter_flags & FIF_CONTROL));
546         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
547 }
548
549 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
550                                 struct rt2x00_intf *intf,
551                                 struct rt2x00intf_conf *conf,
552                                 const unsigned int flags)
553 {
554         unsigned int beacon_base;
555         u32 reg;
556
557         if (flags & CONFIG_UPDATE_TYPE) {
558                 /*
559                  * Clear current synchronisation setup.
560                  * For the Beacon base registers, we only need to clear
561                  * the first byte since that byte contains the VALID and OWNER
562                  * bits which (when set to 0) will invalidate the entire beacon.
563                  */
564                 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
565                 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
566
567                 /*
568                  * Enable synchronisation.
569                  */
570                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
571                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
572                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
573                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
574                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
575         }
576
577         if (flags & CONFIG_UPDATE_MAC) {
578                 reg = le32_to_cpu(conf->mac[1]);
579                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
580                 conf->mac[1] = cpu_to_le32(reg);
581
582                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
583                                               conf->mac, sizeof(conf->mac));
584         }
585
586         if (flags & CONFIG_UPDATE_BSSID) {
587                 reg = le32_to_cpu(conf->bssid[1]);
588                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
589                 conf->bssid[1] = cpu_to_le32(reg);
590
591                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
592                                               conf->bssid, sizeof(conf->bssid));
593         }
594 }
595
596 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
597                                struct rt2x00lib_erp *erp)
598 {
599         u32 reg;
600
601         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
602         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
603         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
604         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
605
606         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
607         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
608         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
609                            !!erp->short_preamble);
610         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
611
612         rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
613
614         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
615         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
616                            erp->beacon_int * 16);
617         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
618
619         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
620         rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
621         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
622
623         rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
624         rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
625         rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
626         rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
627         rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
628 }
629
630 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
631                                       struct antenna_setup *ant)
632 {
633         u8 r3;
634         u8 r4;
635         u8 r77;
636
637         rt61pci_bbp_read(rt2x00dev, 3, &r3);
638         rt61pci_bbp_read(rt2x00dev, 4, &r4);
639         rt61pci_bbp_read(rt2x00dev, 77, &r77);
640
641         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
642
643         /*
644          * Configure the RX antenna.
645          */
646         switch (ant->rx) {
647         case ANTENNA_HW_DIVERSITY:
648                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
649                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
650                                   (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
651                 break;
652         case ANTENNA_A:
653                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
654                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
655                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
656                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
657                 else
658                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
659                 break;
660         case ANTENNA_B:
661         default:
662                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
663                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
664                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
665                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
666                 else
667                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
668                 break;
669         }
670
671         rt61pci_bbp_write(rt2x00dev, 77, r77);
672         rt61pci_bbp_write(rt2x00dev, 3, r3);
673         rt61pci_bbp_write(rt2x00dev, 4, r4);
674 }
675
676 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
677                                       struct antenna_setup *ant)
678 {
679         u8 r3;
680         u8 r4;
681         u8 r77;
682
683         rt61pci_bbp_read(rt2x00dev, 3, &r3);
684         rt61pci_bbp_read(rt2x00dev, 4, &r4);
685         rt61pci_bbp_read(rt2x00dev, 77, &r77);
686
687         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
688         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
689                           !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
690
691         /*
692          * Configure the RX antenna.
693          */
694         switch (ant->rx) {
695         case ANTENNA_HW_DIVERSITY:
696                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
697                 break;
698         case ANTENNA_A:
699                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
700                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
701                 break;
702         case ANTENNA_B:
703         default:
704                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
705                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
706                 break;
707         }
708
709         rt61pci_bbp_write(rt2x00dev, 77, r77);
710         rt61pci_bbp_write(rt2x00dev, 3, r3);
711         rt61pci_bbp_write(rt2x00dev, 4, r4);
712 }
713
714 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
715                                            const int p1, const int p2)
716 {
717         u32 reg;
718
719         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
720
721         rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
722         rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
723
724         rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
725         rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
726
727         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
728 }
729
730 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
731                                         struct antenna_setup *ant)
732 {
733         u8 r3;
734         u8 r4;
735         u8 r77;
736
737         rt61pci_bbp_read(rt2x00dev, 3, &r3);
738         rt61pci_bbp_read(rt2x00dev, 4, &r4);
739         rt61pci_bbp_read(rt2x00dev, 77, &r77);
740
741         /*
742          * Configure the RX antenna.
743          */
744         switch (ant->rx) {
745         case ANTENNA_A:
746                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
747                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
748                 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
749                 break;
750         case ANTENNA_HW_DIVERSITY:
751                 /*
752                  * FIXME: Antenna selection for the rf 2529 is very confusing
753                  * in the legacy driver. Just default to antenna B until the
754                  * legacy code can be properly translated into rt2x00 code.
755                  */
756         case ANTENNA_B:
757         default:
758                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
759                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
760                 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
761                 break;
762         }
763
764         rt61pci_bbp_write(rt2x00dev, 77, r77);
765         rt61pci_bbp_write(rt2x00dev, 3, r3);
766         rt61pci_bbp_write(rt2x00dev, 4, r4);
767 }
768
769 struct antenna_sel {
770         u8 word;
771         /*
772          * value[0] -> non-LNA
773          * value[1] -> LNA
774          */
775         u8 value[2];
776 };
777
778 static const struct antenna_sel antenna_sel_a[] = {
779         { 96,  { 0x58, 0x78 } },
780         { 104, { 0x38, 0x48 } },
781         { 75,  { 0xfe, 0x80 } },
782         { 86,  { 0xfe, 0x80 } },
783         { 88,  { 0xfe, 0x80 } },
784         { 35,  { 0x60, 0x60 } },
785         { 97,  { 0x58, 0x58 } },
786         { 98,  { 0x58, 0x58 } },
787 };
788
789 static const struct antenna_sel antenna_sel_bg[] = {
790         { 96,  { 0x48, 0x68 } },
791         { 104, { 0x2c, 0x3c } },
792         { 75,  { 0xfe, 0x80 } },
793         { 86,  { 0xfe, 0x80 } },
794         { 88,  { 0xfe, 0x80 } },
795         { 35,  { 0x50, 0x50 } },
796         { 97,  { 0x48, 0x48 } },
797         { 98,  { 0x48, 0x48 } },
798 };
799
800 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
801                                struct antenna_setup *ant)
802 {
803         const struct antenna_sel *sel;
804         unsigned int lna;
805         unsigned int i;
806         u32 reg;
807
808         /*
809          * We should never come here because rt2x00lib is supposed
810          * to catch this and send us the correct antenna explicitely.
811          */
812         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
813                ant->tx == ANTENNA_SW_DIVERSITY);
814
815         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
816                 sel = antenna_sel_a;
817                 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
818         } else {
819                 sel = antenna_sel_bg;
820                 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
821         }
822
823         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
824                 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
825
826         rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
827
828         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
829                            rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
830         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
831                            rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
832
833         rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
834
835         if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
836                 rt61pci_config_antenna_5x(rt2x00dev, ant);
837         else if (rt2x00_rf(rt2x00dev, RF2527))
838                 rt61pci_config_antenna_2x(rt2x00dev, ant);
839         else if (rt2x00_rf(rt2x00dev, RF2529)) {
840                 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
841                         rt61pci_config_antenna_2x(rt2x00dev, ant);
842                 else
843                         rt61pci_config_antenna_2529(rt2x00dev, ant);
844         }
845 }
846
847 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
848                                     struct rt2x00lib_conf *libconf)
849 {
850         u16 eeprom;
851         short lna_gain = 0;
852
853         if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
854                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
855                         lna_gain += 14;
856
857                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
858                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
859         } else {
860                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
861                         lna_gain += 14;
862
863                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
864                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
865         }
866
867         rt2x00dev->lna_gain = lna_gain;
868 }
869
870 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
871                                    struct rf_channel *rf, const int txpower)
872 {
873         u8 r3;
874         u8 r94;
875         u8 smart;
876
877         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
878         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
879
880         smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
881
882         rt61pci_bbp_read(rt2x00dev, 3, &r3);
883         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
884         rt61pci_bbp_write(rt2x00dev, 3, r3);
885
886         r94 = 6;
887         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
888                 r94 += txpower - MAX_TXPOWER;
889         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
890                 r94 += txpower;
891         rt61pci_bbp_write(rt2x00dev, 94, r94);
892
893         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
894         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
895         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
896         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
897
898         udelay(200);
899
900         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
901         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
902         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
903         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
904
905         udelay(200);
906
907         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
908         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
909         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
910         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
911
912         msleep(1);
913 }
914
915 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
916                                    const int txpower)
917 {
918         struct rf_channel rf;
919
920         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
921         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
922         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
923         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
924
925         rt61pci_config_channel(rt2x00dev, &rf, txpower);
926 }
927
928 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
929                                     struct rt2x00lib_conf *libconf)
930 {
931         u32 reg;
932
933         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
934         rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
935         rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
936         rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
937         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
938                            libconf->conf->long_frame_max_tx_count);
939         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
940                            libconf->conf->short_frame_max_tx_count);
941         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
942 }
943
944 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
945                                 struct rt2x00lib_conf *libconf)
946 {
947         enum dev_state state =
948             (libconf->conf->flags & IEEE80211_CONF_PS) ?
949                 STATE_SLEEP : STATE_AWAKE;
950         u32 reg;
951
952         if (state == STATE_SLEEP) {
953                 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
954                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
955                                    rt2x00dev->beacon_int - 10);
956                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
957                                    libconf->conf->listen_interval - 1);
958                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
959
960                 /* We must first disable autowake before it can be enabled */
961                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
962                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
963
964                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
965                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
966
967                 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
968                 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
969                 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
970
971                 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
972         } else {
973                 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
974                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
975                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
976                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
977                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
978                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
979
980                 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
981                 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
982                 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
983
984                 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
985         }
986 }
987
988 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
989                            struct rt2x00lib_conf *libconf,
990                            const unsigned int flags)
991 {
992         /* Always recalculate LNA gain before changing configuration */
993         rt61pci_config_lna_gain(rt2x00dev, libconf);
994
995         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
996                 rt61pci_config_channel(rt2x00dev, &libconf->rf,
997                                        libconf->conf->power_level);
998         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
999             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
1000                 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1001         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1002                 rt61pci_config_retry_limit(rt2x00dev, libconf);
1003         if (flags & IEEE80211_CONF_CHANGE_PS)
1004                 rt61pci_config_ps(rt2x00dev, libconf);
1005 }
1006
1007 /*
1008  * Link tuning
1009  */
1010 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1011                                struct link_qual *qual)
1012 {
1013         u32 reg;
1014
1015         /*
1016          * Update FCS error count from register.
1017          */
1018         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1019         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1020
1021         /*
1022          * Update False CCA count from register.
1023          */
1024         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1025         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1026 }
1027
1028 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1029                                    struct link_qual *qual, u8 vgc_level)
1030 {
1031         if (qual->vgc_level != vgc_level) {
1032                 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1033                 qual->vgc_level = vgc_level;
1034                 qual->vgc_level_reg = vgc_level;
1035         }
1036 }
1037
1038 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1039                                 struct link_qual *qual)
1040 {
1041         rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1042 }
1043
1044 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1045                                struct link_qual *qual, const u32 count)
1046 {
1047         u8 up_bound;
1048         u8 low_bound;
1049
1050         /*
1051          * Determine r17 bounds.
1052          */
1053         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1054                 low_bound = 0x28;
1055                 up_bound = 0x48;
1056                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1057                         low_bound += 0x10;
1058                         up_bound += 0x10;
1059                 }
1060         } else {
1061                 low_bound = 0x20;
1062                 up_bound = 0x40;
1063                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1064                         low_bound += 0x10;
1065                         up_bound += 0x10;
1066                 }
1067         }
1068
1069         /*
1070          * If we are not associated, we should go straight to the
1071          * dynamic CCA tuning.
1072          */
1073         if (!rt2x00dev->intf_associated)
1074                 goto dynamic_cca_tune;
1075
1076         /*
1077          * Special big-R17 for very short distance
1078          */
1079         if (qual->rssi >= -35) {
1080                 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1081                 return;
1082         }
1083
1084         /*
1085          * Special big-R17 for short distance
1086          */
1087         if (qual->rssi >= -58) {
1088                 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1089                 return;
1090         }
1091
1092         /*
1093          * Special big-R17 for middle-short distance
1094          */
1095         if (qual->rssi >= -66) {
1096                 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1097                 return;
1098         }
1099
1100         /*
1101          * Special mid-R17 for middle distance
1102          */
1103         if (qual->rssi >= -74) {
1104                 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1105                 return;
1106         }
1107
1108         /*
1109          * Special case: Change up_bound based on the rssi.
1110          * Lower up_bound when rssi is weaker then -74 dBm.
1111          */
1112         up_bound -= 2 * (-74 - qual->rssi);
1113         if (low_bound > up_bound)
1114                 up_bound = low_bound;
1115
1116         if (qual->vgc_level > up_bound) {
1117                 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1118                 return;
1119         }
1120
1121 dynamic_cca_tune:
1122
1123         /*
1124          * r17 does not yet exceed upper limit, continue and base
1125          * the r17 tuning on the false CCA count.
1126          */
1127         if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1128                 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1129         else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1130                 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1131 }
1132
1133 /*
1134  * Firmware functions
1135  */
1136 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1137 {
1138         u16 chip;
1139         char *fw_name;
1140
1141         pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1142         switch (chip) {
1143         case RT2561_PCI_ID:
1144                 fw_name = FIRMWARE_RT2561;
1145                 break;
1146         case RT2561s_PCI_ID:
1147                 fw_name = FIRMWARE_RT2561s;
1148                 break;
1149         case RT2661_PCI_ID:
1150                 fw_name = FIRMWARE_RT2661;
1151                 break;
1152         default:
1153                 fw_name = NULL;
1154                 break;
1155         }
1156
1157         return fw_name;
1158 }
1159
1160 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1161                                   const u8 *data, const size_t len)
1162 {
1163         u16 fw_crc;
1164         u16 crc;
1165
1166         /*
1167          * Only support 8kb firmware files.
1168          */
1169         if (len != 8192)
1170                 return FW_BAD_LENGTH;
1171
1172         /*
1173          * The last 2 bytes in the firmware array are the crc checksum itself.
1174          * This means that we should never pass those 2 bytes to the crc
1175          * algorithm.
1176          */
1177         fw_crc = (data[len - 2] << 8 | data[len - 1]);
1178
1179         /*
1180          * Use the crc itu-t algorithm.
1181          */
1182         crc = crc_itu_t(0, data, len - 2);
1183         crc = crc_itu_t_byte(crc, 0);
1184         crc = crc_itu_t_byte(crc, 0);
1185
1186         return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1187 }
1188
1189 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1190                                  const u8 *data, const size_t len)
1191 {
1192         int i;
1193         u32 reg;
1194
1195         /*
1196          * Wait for stable hardware.
1197          */
1198         for (i = 0; i < 100; i++) {
1199                 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1200                 if (reg)
1201                         break;
1202                 msleep(1);
1203         }
1204
1205         if (!reg) {
1206                 ERROR(rt2x00dev, "Unstable hardware.\n");
1207                 return -EBUSY;
1208         }
1209
1210         /*
1211          * Prepare MCU and mailbox for firmware loading.
1212          */
1213         reg = 0;
1214         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1215         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1216         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1217         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1218         rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1219
1220         /*
1221          * Write firmware to device.
1222          */
1223         reg = 0;
1224         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1225         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1226         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1227
1228         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1229                                       data, len);
1230
1231         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1232         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1233
1234         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1235         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1236
1237         for (i = 0; i < 100; i++) {
1238                 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1239                 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1240                         break;
1241                 msleep(1);
1242         }
1243
1244         if (i == 100) {
1245                 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1246                 return -EBUSY;
1247         }
1248
1249         /*
1250          * Hardware needs another millisecond before it is ready.
1251          */
1252         msleep(1);
1253
1254         /*
1255          * Reset MAC and BBP registers.
1256          */
1257         reg = 0;
1258         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1259         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1260         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1261
1262         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1263         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1264         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1265         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1266
1267         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1268         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1269         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1270
1271         return 0;
1272 }
1273
1274 /*
1275  * Initialization functions.
1276  */
1277 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1278 {
1279         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1280         u32 word;
1281
1282         if (entry->queue->qid == QID_RX) {
1283                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1284
1285                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1286         } else {
1287                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1288
1289                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1290                         rt2x00_get_field32(word, TXD_W0_VALID));
1291         }
1292 }
1293
1294 static void rt61pci_clear_entry(struct queue_entry *entry)
1295 {
1296         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1297         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1298         u32 word;
1299
1300         if (entry->queue->qid == QID_RX) {
1301                 rt2x00_desc_read(entry_priv->desc, 5, &word);
1302                 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1303                                    skbdesc->skb_dma);
1304                 rt2x00_desc_write(entry_priv->desc, 5, word);
1305
1306                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1307                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1308                 rt2x00_desc_write(entry_priv->desc, 0, word);
1309         } else {
1310                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1311                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1312                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1313                 rt2x00_desc_write(entry_priv->desc, 0, word);
1314         }
1315 }
1316
1317 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1318 {
1319         struct queue_entry_priv_pci *entry_priv;
1320         u32 reg;
1321
1322         /*
1323          * Initialize registers.
1324          */
1325         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1326         rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1327                            rt2x00dev->tx[0].limit);
1328         rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1329                            rt2x00dev->tx[1].limit);
1330         rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1331                            rt2x00dev->tx[2].limit);
1332         rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1333                            rt2x00dev->tx[3].limit);
1334         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1335
1336         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1337         rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1338                            rt2x00dev->tx[0].desc_size / 4);
1339         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1340
1341         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1342         rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1343         rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1344                            entry_priv->desc_dma);
1345         rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1346
1347         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1348         rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1349         rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1350                            entry_priv->desc_dma);
1351         rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1352
1353         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1354         rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1355         rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1356                            entry_priv->desc_dma);
1357         rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1358
1359         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1360         rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1361         rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1362                            entry_priv->desc_dma);
1363         rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1364
1365         rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1366         rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1367         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1368                            rt2x00dev->rx->desc_size / 4);
1369         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1370         rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1371
1372         entry_priv = rt2x00dev->rx->entries[0].priv_data;
1373         rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1374         rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1375                            entry_priv->desc_dma);
1376         rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1377
1378         rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1379         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1380         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1381         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1382         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1383         rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1384
1385         rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1386         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1387         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1388         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1389         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1390         rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1391
1392         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1393         rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1394         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1395
1396         return 0;
1397 }
1398
1399 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1400 {
1401         u32 reg;
1402
1403         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1404         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1405         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1406         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1407         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1408
1409         rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1410         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1411         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1412         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1413         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1414         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1415         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1416         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1417         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1418         rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1419
1420         /*
1421          * CCK TXD BBP registers
1422          */
1423         rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1424         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1425         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1426         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1427         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1428         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1429         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1430         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1431         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1432         rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1433
1434         /*
1435          * OFDM TXD BBP registers
1436          */
1437         rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1438         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1439         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1440         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1441         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1442         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1443         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1444         rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1445
1446         rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1447         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1448         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1449         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1450         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1451         rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1452
1453         rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1454         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1455         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1456         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1457         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1458         rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1459
1460         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1461         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1462         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1463         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1464         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1465         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1466         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1467         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1468
1469         rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1470
1471         rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1472
1473         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1474         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1475         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1476
1477         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1478
1479         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1480                 return -EBUSY;
1481
1482         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1483
1484         /*
1485          * Invalidate all Shared Keys (SEC_CSR0),
1486          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1487          */
1488         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1489         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1490         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1491
1492         rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1493         rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1494         rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1495         rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1496
1497         rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1498
1499         rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1500
1501         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1502
1503         /*
1504          * Clear all beacons
1505          * For the Beacon base registers we only need to clear
1506          * the first byte since that byte contains the VALID and OWNER
1507          * bits which (when set to 0) will invalidate the entire beacon.
1508          */
1509         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1510         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1511         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1512         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1513
1514         /*
1515          * We must clear the error counters.
1516          * These registers are cleared on read,
1517          * so we may pass a useless variable to store the value.
1518          */
1519         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1520         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1521         rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1522
1523         /*
1524          * Reset MAC and BBP registers.
1525          */
1526         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1527         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1528         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1529         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1530
1531         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1532         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1533         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1534         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1535
1536         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1537         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1538         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1539
1540         return 0;
1541 }
1542
1543 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1544 {
1545         unsigned int i;
1546         u8 value;
1547
1548         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1549                 rt61pci_bbp_read(rt2x00dev, 0, &value);
1550                 if ((value != 0xff) && (value != 0x00))
1551                         return 0;
1552                 udelay(REGISTER_BUSY_DELAY);
1553         }
1554
1555         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1556         return -EACCES;
1557 }
1558
1559 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1560 {
1561         unsigned int i;
1562         u16 eeprom;
1563         u8 reg_id;
1564         u8 value;
1565
1566         if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1567                 return -EACCES;
1568
1569         rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1570         rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1571         rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1572         rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1573         rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1574         rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1575         rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1576         rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1577         rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1578         rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1579         rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1580         rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1581         rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1582         rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1583         rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1584         rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1585         rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1586         rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1587         rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1588         rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1589         rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1590         rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1591         rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1592         rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1593
1594         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1595                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1596
1597                 if (eeprom != 0xffff && eeprom != 0x0000) {
1598                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1599                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1600                         rt61pci_bbp_write(rt2x00dev, reg_id, value);
1601                 }
1602         }
1603
1604         return 0;
1605 }
1606
1607 /*
1608  * Device state switch handlers.
1609  */
1610 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1611                               enum dev_state state)
1612 {
1613         u32 reg;
1614
1615         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1616         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1617                            (state == STATE_RADIO_RX_OFF) ||
1618                            (state == STATE_RADIO_RX_OFF_LINK));
1619         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1620 }
1621
1622 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1623                                enum dev_state state)
1624 {
1625         int mask = (state == STATE_RADIO_IRQ_OFF) ||
1626                    (state == STATE_RADIO_IRQ_OFF_ISR);
1627         u32 reg;
1628
1629         /*
1630          * When interrupts are being enabled, the interrupt registers
1631          * should clear the register to assure a clean state.
1632          */
1633         if (state == STATE_RADIO_IRQ_ON) {
1634                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1635                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1636
1637                 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1638                 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1639         }
1640
1641         /*
1642          * Only toggle the interrupts bits we are going to use.
1643          * Non-checked interrupt bits are disabled by default.
1644          */
1645         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1646         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1647         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1648         rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1649         rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1650         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1651
1652         rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1653         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1654         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1655         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1656         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1657         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1658         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1659         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1660         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1661         rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1662 }
1663
1664 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1665 {
1666         u32 reg;
1667
1668         /*
1669          * Initialize all registers.
1670          */
1671         if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1672                      rt61pci_init_registers(rt2x00dev) ||
1673                      rt61pci_init_bbp(rt2x00dev)))
1674                 return -EIO;
1675
1676         /*
1677          * Enable RX.
1678          */
1679         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1680         rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1681         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1682
1683         return 0;
1684 }
1685
1686 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1687 {
1688         /*
1689          * Disable power
1690          */
1691         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1692 }
1693
1694 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1695 {
1696         u32 reg, reg2;
1697         unsigned int i;
1698         char put_to_sleep;
1699
1700         put_to_sleep = (state != STATE_AWAKE);
1701
1702         rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1703         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1704         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1705         rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1706
1707         /*
1708          * Device is not guaranteed to be in the requested state yet.
1709          * We must wait until the register indicates that the
1710          * device has entered the correct state.
1711          */
1712         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1713                 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg2);
1714                 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1715                 if (state == !put_to_sleep)
1716                         return 0;
1717                 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1718                 msleep(10);
1719         }
1720
1721         return -EBUSY;
1722 }
1723
1724 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1725                                     enum dev_state state)
1726 {
1727         int retval = 0;
1728
1729         switch (state) {
1730         case STATE_RADIO_ON:
1731                 retval = rt61pci_enable_radio(rt2x00dev);
1732                 break;
1733         case STATE_RADIO_OFF:
1734                 rt61pci_disable_radio(rt2x00dev);
1735                 break;
1736         case STATE_RADIO_RX_ON:
1737         case STATE_RADIO_RX_ON_LINK:
1738         case STATE_RADIO_RX_OFF:
1739         case STATE_RADIO_RX_OFF_LINK:
1740                 rt61pci_toggle_rx(rt2x00dev, state);
1741                 break;
1742         case STATE_RADIO_IRQ_ON:
1743         case STATE_RADIO_IRQ_ON_ISR:
1744         case STATE_RADIO_IRQ_OFF:
1745         case STATE_RADIO_IRQ_OFF_ISR:
1746                 rt61pci_toggle_irq(rt2x00dev, state);
1747                 break;
1748         case STATE_DEEP_SLEEP:
1749         case STATE_SLEEP:
1750         case STATE_STANDBY:
1751         case STATE_AWAKE:
1752                 retval = rt61pci_set_state(rt2x00dev, state);
1753                 break;
1754         default:
1755                 retval = -ENOTSUPP;
1756                 break;
1757         }
1758
1759         if (unlikely(retval))
1760                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1761                       state, retval);
1762
1763         return retval;
1764 }
1765
1766 /*
1767  * TX descriptor initialization
1768  */
1769 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1770                                   struct sk_buff *skb,
1771                                   struct txentry_desc *txdesc)
1772 {
1773         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1774         struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1775         __le32 *txd = entry_priv->desc;
1776         u32 word;
1777
1778         /*
1779          * Start writing the descriptor words.
1780          */
1781         rt2x00_desc_read(txd, 1, &word);
1782         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1783         rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1784         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1785         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1786         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1787         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1788                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1789         rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1790         rt2x00_desc_write(txd, 1, word);
1791
1792         rt2x00_desc_read(txd, 2, &word);
1793         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1794         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1795         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1796         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1797         rt2x00_desc_write(txd, 2, word);
1798
1799         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1800                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1801                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1802         }
1803
1804         rt2x00_desc_read(txd, 5, &word);
1805         rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1806         rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1807                            skbdesc->entry->entry_idx);
1808         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1809                            TXPOWER_TO_DEV(rt2x00dev->tx_power));
1810         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1811         rt2x00_desc_write(txd, 5, word);
1812
1813         if (txdesc->queue != QID_BEACON) {
1814                 rt2x00_desc_read(txd, 6, &word);
1815                 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1816                                    skbdesc->skb_dma);
1817                 rt2x00_desc_write(txd, 6, word);
1818
1819                 rt2x00_desc_read(txd, 11, &word);
1820                 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1821                                    txdesc->length);
1822                 rt2x00_desc_write(txd, 11, word);
1823         }
1824
1825         /*
1826          * Writing TXD word 0 must the last to prevent a race condition with
1827          * the device, whereby the device may take hold of the TXD before we
1828          * finished updating it.
1829          */
1830         rt2x00_desc_read(txd, 0, &word);
1831         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1832         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1833         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1834                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1835         rt2x00_set_field32(&word, TXD_W0_ACK,
1836                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1837         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1838                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1839         rt2x00_set_field32(&word, TXD_W0_OFDM,
1840                            (txdesc->rate_mode == RATE_MODE_OFDM));
1841         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1842         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1843                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1844         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1845                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1846         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1847                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1848         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1849         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1850         rt2x00_set_field32(&word, TXD_W0_BURST,
1851                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1852         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1853         rt2x00_desc_write(txd, 0, word);
1854
1855         /*
1856          * Register descriptor details in skb frame descriptor.
1857          */
1858         skbdesc->desc = txd;
1859         skbdesc->desc_len =
1860                 (txdesc->queue == QID_BEACON) ?  TXINFO_SIZE : TXD_DESC_SIZE;
1861 }
1862
1863 /*
1864  * TX data initialization
1865  */
1866 static void rt61pci_write_beacon(struct queue_entry *entry,
1867                                  struct txentry_desc *txdesc)
1868 {
1869         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1870         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1871         unsigned int beacon_base;
1872         u32 reg;
1873
1874         /*
1875          * Disable beaconing while we are reloading the beacon data,
1876          * otherwise we might be sending out invalid data.
1877          */
1878         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1879         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1880         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1881
1882         /*
1883          * Write the TX descriptor for the beacon.
1884          */
1885         rt61pci_write_tx_desc(rt2x00dev, entry->skb, txdesc);
1886
1887         /*
1888          * Dump beacon to userspace through debugfs.
1889          */
1890         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1891
1892         /*
1893          * Write entire beacon with descriptor to register.
1894          */
1895         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1896         rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
1897                                       entry_priv->desc, TXINFO_SIZE);
1898         rt2x00pci_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
1899                                       entry->skb->data, entry->skb->len);
1900
1901         /*
1902          * Enable beaconing again.
1903          *
1904          * For Wi-Fi faily generated beacons between participating
1905          * stations. Set TBTT phase adaptive adjustment step to 8us.
1906          */
1907         rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1908
1909         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1910         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1911         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1912         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1913
1914         /*
1915          * Clean up beacon skb.
1916          */
1917         dev_kfree_skb_any(entry->skb);
1918         entry->skb = NULL;
1919 }
1920
1921 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1922                                   const enum data_queue_qid queue)
1923 {
1924         u32 reg;
1925
1926         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1927         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1928         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1929         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1930         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1931         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1932 }
1933
1934 static void rt61pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1935                                   const enum data_queue_qid qid)
1936 {
1937         u32 reg;
1938
1939         if (qid == QID_BEACON) {
1940                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1941                 return;
1942         }
1943
1944         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1945         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, (qid == QID_AC_BE));
1946         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, (qid == QID_AC_BK));
1947         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, (qid == QID_AC_VI));
1948         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, (qid == QID_AC_VO));
1949         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1950 }
1951
1952 /*
1953  * RX control handlers
1954  */
1955 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1956 {
1957         u8 offset = rt2x00dev->lna_gain;
1958         u8 lna;
1959
1960         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1961         switch (lna) {
1962         case 3:
1963                 offset += 90;
1964                 break;
1965         case 2:
1966                 offset += 74;
1967                 break;
1968         case 1:
1969                 offset += 64;
1970                 break;
1971         default:
1972                 return 0;
1973         }
1974
1975         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1976                 if (lna == 3 || lna == 2)
1977                         offset += 10;
1978         }
1979
1980         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1981 }
1982
1983 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1984                                 struct rxdone_entry_desc *rxdesc)
1985 {
1986         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1987         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1988         u32 word0;
1989         u32 word1;
1990
1991         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1992         rt2x00_desc_read(entry_priv->desc, 1, &word1);
1993
1994         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1995                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1996
1997         rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1998         rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1999
2000         if (rxdesc->cipher != CIPHER_NONE) {
2001                 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
2002                 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2003                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2004
2005                 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2006                 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2007
2008                 /*
2009                  * Hardware has stripped IV/EIV data from 802.11 frame during
2010                  * decryption. It has provided the data separately but rt2x00lib
2011                  * should decide if it should be reinserted.
2012                  */
2013                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2014
2015                 /*
2016                  * FIXME: Legacy driver indicates that the frame does
2017                  * contain the Michael Mic. Unfortunately, in rt2x00
2018                  * the MIC seems to be missing completely...
2019                  */
2020                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2021
2022                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2023                         rxdesc->flags |= RX_FLAG_DECRYPTED;
2024                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2025                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2026         }
2027
2028         /*
2029          * Obtain the status about this packet.
2030          * When frame was received with an OFDM bitrate,
2031          * the signal is the PLCP value. If it was received with
2032          * a CCK bitrate the signal is the rate in 100kbit/s.
2033          */
2034         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2035         rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2036         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2037
2038         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2039                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2040         else
2041                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2042         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2043                 rxdesc->dev_flags |= RXDONE_MY_BSS;
2044 }
2045
2046 /*
2047  * Interrupt functions.
2048  */
2049 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2050 {
2051         struct data_queue *queue;
2052         struct queue_entry *entry;
2053         struct queue_entry *entry_done;
2054         struct queue_entry_priv_pci *entry_priv;
2055         struct txdone_entry_desc txdesc;
2056         u32 word;
2057         u32 reg;
2058         int type;
2059         int index;
2060         int i;
2061
2062         /*
2063          * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2064          * at most X times and also stop processing once the TX_STA_FIFO_VALID
2065          * flag is not set anymore.
2066          *
2067          * The legacy drivers use X=TX_RING_SIZE but state in a comment
2068          * that the TX_STA_FIFO stack has a size of 16. We stick to our
2069          * tx ring size for now.
2070          */
2071         for (i = 0; i < TX_ENTRIES; i++) {
2072                 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2073                 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2074                         break;
2075
2076                 /*
2077                  * Skip this entry when it contains an invalid
2078                  * queue identication number.
2079                  */
2080                 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2081                 queue = rt2x00queue_get_queue(rt2x00dev, type);
2082                 if (unlikely(!queue))
2083                         continue;
2084
2085                 /*
2086                  * Skip this entry when it contains an invalid
2087                  * index number.
2088                  */
2089                 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2090                 if (unlikely(index >= queue->limit))
2091                         continue;
2092
2093                 entry = &queue->entries[index];
2094                 entry_priv = entry->priv_data;
2095                 rt2x00_desc_read(entry_priv->desc, 0, &word);
2096
2097                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2098                     !rt2x00_get_field32(word, TXD_W0_VALID))
2099                         return;
2100
2101                 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2102                 while (entry != entry_done) {
2103                         /* Catch up.
2104                          * Just report any entries we missed as failed.
2105                          */
2106                         WARNING(rt2x00dev,
2107                                 "TX status report missed for entry %d\n",
2108                                 entry_done->entry_idx);
2109
2110                         txdesc.flags = 0;
2111                         __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
2112                         txdesc.retry = 0;
2113
2114                         rt2x00lib_txdone(entry_done, &txdesc);
2115                         entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2116                 }
2117
2118                 /*
2119                  * Obtain the status about this packet.
2120                  */
2121                 txdesc.flags = 0;
2122                 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2123                 case 0: /* Success, maybe with retry */
2124                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2125                         break;
2126                 case 6: /* Failure, excessive retries */
2127                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2128                         /* Don't break, this is a failed frame! */
2129                 default: /* Failure */
2130                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
2131                 }
2132                 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2133
2134                 /*
2135                  * the frame was retried at least once
2136                  * -> hw used fallback rates
2137                  */
2138                 if (txdesc.retry)
2139                         __set_bit(TXDONE_FALLBACK, &txdesc.flags);
2140
2141                 rt2x00lib_txdone(entry, &txdesc);
2142         }
2143 }
2144
2145 static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2146 {
2147         struct ieee80211_conf conf = { .flags = 0 };
2148         struct rt2x00lib_conf libconf = { .conf = &conf };
2149
2150         rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2151 }
2152
2153 static irqreturn_t rt61pci_interrupt_thread(int irq, void *dev_instance)
2154 {
2155         struct rt2x00_dev *rt2x00dev = dev_instance;
2156         u32 reg = rt2x00dev->irqvalue[0];
2157         u32 reg_mcu = rt2x00dev->irqvalue[1];
2158
2159         /*
2160          * Handle interrupts, walk through all bits
2161          * and run the tasks, the bits are checked in order of
2162          * priority.
2163          */
2164
2165         /*
2166          * 1 - Rx ring done interrupt.
2167          */
2168         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2169                 rt2x00pci_rxdone(rt2x00dev);
2170
2171         /*
2172          * 2 - Tx ring done interrupt.
2173          */
2174         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2175                 rt61pci_txdone(rt2x00dev);
2176
2177         /*
2178          * 3 - Handle MCU command done.
2179          */
2180         if (reg_mcu)
2181                 rt2x00pci_register_write(rt2x00dev,
2182                                          M2H_CMD_DONE_CSR, 0xffffffff);
2183
2184         /*
2185          * 4 - MCU Autowakeup interrupt.
2186          */
2187         if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2188                 rt61pci_wakeup(rt2x00dev);
2189
2190         /*
2191          * 5 - Beacon done interrupt.
2192          */
2193         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2194                 rt2x00lib_beacondone(rt2x00dev);
2195
2196         /* Enable interrupts again. */
2197         rt2x00dev->ops->lib->set_device_state(rt2x00dev,
2198                                               STATE_RADIO_IRQ_ON_ISR);
2199         return IRQ_HANDLED;
2200 }
2201
2202
2203 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2204 {
2205         struct rt2x00_dev *rt2x00dev = dev_instance;
2206         u32 reg_mcu;
2207         u32 reg;
2208
2209         /*
2210          * Get the interrupt sources & saved to local variable.
2211          * Write register value back to clear pending interrupts.
2212          */
2213         rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2214         rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2215
2216         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2217         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2218
2219         if (!reg && !reg_mcu)
2220                 return IRQ_NONE;
2221
2222         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2223                 return IRQ_HANDLED;
2224
2225         /* Store irqvalues for use in the interrupt thread. */
2226         rt2x00dev->irqvalue[0] = reg;
2227         rt2x00dev->irqvalue[1] = reg_mcu;
2228
2229         /* Disable interrupts, will be enabled again in the interrupt thread. */
2230         rt2x00dev->ops->lib->set_device_state(rt2x00dev,
2231                                               STATE_RADIO_IRQ_OFF_ISR);
2232         return IRQ_WAKE_THREAD;
2233 }
2234
2235 /*
2236  * Device probe functions.
2237  */
2238 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2239 {
2240         struct eeprom_93cx6 eeprom;
2241         u32 reg;
2242         u16 word;
2243         u8 *mac;
2244         s8 value;
2245
2246         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2247
2248         eeprom.data = rt2x00dev;
2249         eeprom.register_read = rt61pci_eepromregister_read;
2250         eeprom.register_write = rt61pci_eepromregister_write;
2251         eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2252             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2253         eeprom.reg_data_in = 0;
2254         eeprom.reg_data_out = 0;
2255         eeprom.reg_data_clock = 0;
2256         eeprom.reg_chip_select = 0;
2257
2258         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2259                                EEPROM_SIZE / sizeof(u16));
2260
2261         /*
2262          * Start validation of the data that has been read.
2263          */
2264         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2265         if (!is_valid_ether_addr(mac)) {
2266                 random_ether_addr(mac);
2267                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2268         }
2269
2270         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2271         if (word == 0xffff) {
2272                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2273                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2274                                    ANTENNA_B);
2275                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2276                                    ANTENNA_B);
2277                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2278                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2279                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2280                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2281                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2282                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2283         }
2284
2285         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2286         if (word == 0xffff) {
2287                 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2288                 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2289                 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2290                 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2291                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2292                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2293                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2294                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2295                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2296         }
2297
2298         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2299         if (word == 0xffff) {
2300                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2301                                    LED_MODE_DEFAULT);
2302                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2303                 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2304         }
2305
2306         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2307         if (word == 0xffff) {
2308                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2309                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2310                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2311                 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2312         }
2313
2314         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2315         if (word == 0xffff) {
2316                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2317                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2318                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2319                 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2320         } else {
2321                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2322                 if (value < -10 || value > 10)
2323                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2324                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2325                 if (value < -10 || value > 10)
2326                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2327                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2328         }
2329
2330         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2331         if (word == 0xffff) {
2332                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2333                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2334                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2335                 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2336         } else {
2337                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2338                 if (value < -10 || value > 10)
2339                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2340                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2341                 if (value < -10 || value > 10)
2342                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2343                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2344         }
2345
2346         return 0;
2347 }
2348
2349 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2350 {
2351         u32 reg;
2352         u16 value;
2353         u16 eeprom;
2354
2355         /*
2356          * Read EEPROM word for configuration.
2357          */
2358         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2359
2360         /*
2361          * Identify RF chipset.
2362          */
2363         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2364         rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2365         rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2366                         value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2367
2368         if (!rt2x00_rf(rt2x00dev, RF5225) &&
2369             !rt2x00_rf(rt2x00dev, RF5325) &&
2370             !rt2x00_rf(rt2x00dev, RF2527) &&
2371             !rt2x00_rf(rt2x00dev, RF2529)) {
2372                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2373                 return -ENODEV;
2374         }
2375
2376         /*
2377          * Determine number of antennas.
2378          */
2379         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2380                 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2381
2382         /*
2383          * Identify default antenna configuration.
2384          */
2385         rt2x00dev->default_ant.tx =
2386             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2387         rt2x00dev->default_ant.rx =
2388             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2389
2390         /*
2391          * Read the Frame type.
2392          */
2393         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2394                 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2395
2396         /*
2397          * Detect if this device has a hardware controlled radio.
2398          */
2399         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2400                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2401
2402         /*
2403          * Read frequency offset and RF programming sequence.
2404          */
2405         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2406         if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2407                 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2408
2409         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2410
2411         /*
2412          * Read external LNA informations.
2413          */
2414         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2415
2416         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2417                 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2418         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2419                 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2420
2421         /*
2422          * When working with a RF2529 chip without double antenna,
2423          * the antenna settings should be gathered from the NIC
2424          * eeprom word.
2425          */
2426         if (rt2x00_rf(rt2x00dev, RF2529) &&
2427             !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2428                 rt2x00dev->default_ant.rx =
2429                     ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2430                 rt2x00dev->default_ant.tx =
2431                     ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2432
2433                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2434                         rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2435                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2436                         rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2437         }
2438
2439         /*
2440          * Store led settings, for correct led behaviour.
2441          * If the eeprom value is invalid,
2442          * switch to default led mode.
2443          */
2444 #ifdef CONFIG_RT2X00_LIB_LEDS
2445         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2446         value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2447
2448         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2449         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2450         if (value == LED_MODE_SIGNAL_STRENGTH)
2451                 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2452                                  LED_TYPE_QUALITY);
2453
2454         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2455         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2456                            rt2x00_get_field16(eeprom,
2457                                               EEPROM_LED_POLARITY_GPIO_0));
2458         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2459                            rt2x00_get_field16(eeprom,
2460                                               EEPROM_LED_POLARITY_GPIO_1));
2461         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2462                            rt2x00_get_field16(eeprom,
2463                                               EEPROM_LED_POLARITY_GPIO_2));
2464         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2465                            rt2x00_get_field16(eeprom,
2466                                               EEPROM_LED_POLARITY_GPIO_3));
2467         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2468                            rt2x00_get_field16(eeprom,
2469                                               EEPROM_LED_POLARITY_GPIO_4));
2470         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2471                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2472         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2473                            rt2x00_get_field16(eeprom,
2474                                               EEPROM_LED_POLARITY_RDY_G));
2475         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2476                            rt2x00_get_field16(eeprom,
2477                                               EEPROM_LED_POLARITY_RDY_A));
2478 #endif /* CONFIG_RT2X00_LIB_LEDS */
2479
2480         return 0;
2481 }
2482
2483 /*
2484  * RF value list for RF5225 & RF5325
2485  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2486  */
2487 static const struct rf_channel rf_vals_noseq[] = {
2488         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2489         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2490         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2491         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2492         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2493         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2494         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2495         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2496         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2497         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2498         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2499         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2500         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2501         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2502
2503         /* 802.11 UNI / HyperLan 2 */
2504         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2505         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2506         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2507         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2508         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2509         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2510         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2511         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2512
2513         /* 802.11 HyperLan 2 */
2514         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2515         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2516         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2517         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2518         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2519         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2520         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2521         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2522         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2523         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2524
2525         /* 802.11 UNII */
2526         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2527         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2528         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2529         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2530         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2531         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2532
2533         /* MMAC(Japan)J52 ch 34,38,42,46 */
2534         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2535         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2536         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2537         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2538 };
2539
2540 /*
2541  * RF value list for RF5225 & RF5325
2542  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2543  */
2544 static const struct rf_channel rf_vals_seq[] = {
2545         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2546         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2547         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2548         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2549         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2550         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2551         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2552         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2553         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2554         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2555         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2556         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2557         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2558         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2559
2560         /* 802.11 UNI / HyperLan 2 */
2561         { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2562         { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2563         { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2564         { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2565         { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2566         { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2567         { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2568         { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2569
2570         /* 802.11 HyperLan 2 */
2571         { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2572         { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2573         { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2574         { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2575         { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2576         { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2577         { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2578         { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2579         { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2580         { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2581
2582         /* 802.11 UNII */
2583         { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2584         { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2585         { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2586         { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2587         { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2588         { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2589
2590         /* MMAC(Japan)J52 ch 34,38,42,46 */
2591         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2592         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2593         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2594         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2595 };
2596
2597 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2598 {
2599         struct hw_mode_spec *spec = &rt2x00dev->spec;
2600         struct channel_info *info;
2601         char *tx_power;
2602         unsigned int i;
2603
2604         /*
2605          * Disable powersaving as default.
2606          */
2607         rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2608
2609         /*
2610          * Initialize all hw fields.
2611          */
2612         rt2x00dev->hw->flags =
2613             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2614             IEEE80211_HW_SIGNAL_DBM |
2615             IEEE80211_HW_SUPPORTS_PS |
2616             IEEE80211_HW_PS_NULLFUNC_STACK;
2617
2618         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2619         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2620                                 rt2x00_eeprom_addr(rt2x00dev,
2621                                                    EEPROM_MAC_ADDR_0));
2622
2623         /*
2624          * As rt61 has a global fallback table we cannot specify
2625          * more then one tx rate per frame but since the hw will
2626          * try several rates (based on the fallback table) we should
2627          * still initialize max_rates to the maximum number of rates
2628          * we are going to try. Otherwise mac80211 will truncate our
2629          * reported tx rates and the rc algortihm will end up with
2630          * incorrect data.
2631          */
2632         rt2x00dev->hw->max_rates = 7;
2633         rt2x00dev->hw->max_rate_tries = 1;
2634
2635         /*
2636          * Initialize hw_mode information.
2637          */
2638         spec->supported_bands = SUPPORT_BAND_2GHZ;
2639         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2640
2641         if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2642                 spec->num_channels = 14;
2643                 spec->channels = rf_vals_noseq;
2644         } else {
2645                 spec->num_channels = 14;
2646                 spec->channels = rf_vals_seq;
2647         }
2648
2649         if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2650                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2651                 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2652         }
2653
2654         /*
2655          * Create channel information array
2656          */
2657         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2658         if (!info)
2659                 return -ENOMEM;
2660
2661         spec->channels_info = info;
2662
2663         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2664         for (i = 0; i < 14; i++) {
2665                 info[i].max_power = MAX_TXPOWER;
2666                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2667         }
2668
2669         if (spec->num_channels > 14) {
2670                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2671                 for (i = 14; i < spec->num_channels; i++) {
2672                         info[i].max_power = MAX_TXPOWER;
2673                         info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2674                 }
2675         }
2676
2677         return 0;
2678 }
2679
2680 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2681 {
2682         int retval;
2683
2684         /*
2685          * Disable power saving.
2686          */
2687         rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2688
2689         /*
2690          * Allocate eeprom data.
2691          */
2692         retval = rt61pci_validate_eeprom(rt2x00dev);
2693         if (retval)
2694                 return retval;
2695
2696         retval = rt61pci_init_eeprom(rt2x00dev);
2697         if (retval)
2698                 return retval;
2699
2700         /*
2701          * Initialize hw specifications.
2702          */
2703         retval = rt61pci_probe_hw_mode(rt2x00dev);
2704         if (retval)
2705                 return retval;
2706
2707         /*
2708          * This device has multiple filters for control frames,
2709          * but has no a separate filter for PS Poll frames.
2710          */
2711         __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
2712
2713         /*
2714          * This device requires firmware and DMA mapped skbs.
2715          */
2716         __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2717         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2718         if (!modparam_nohwcrypt)
2719                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2720         __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
2721
2722         /*
2723          * Set the rssi offset.
2724          */
2725         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2726
2727         return 0;
2728 }
2729
2730 /*
2731  * IEEE80211 stack callback functions.
2732  */
2733 static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2734                            const struct ieee80211_tx_queue_params *params)
2735 {
2736         struct rt2x00_dev *rt2x00dev = hw->priv;
2737         struct data_queue *queue;
2738         struct rt2x00_field32 field;
2739         int retval;
2740         u32 reg;
2741         u32 offset;
2742
2743         /*
2744          * First pass the configuration through rt2x00lib, that will
2745          * update the queue settings and validate the input. After that
2746          * we are free to update the registers based on the value
2747          * in the queue parameter.
2748          */
2749         retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2750         if (retval)
2751                 return retval;
2752
2753         /*
2754          * We only need to perform additional register initialization
2755          * for WMM queues.
2756          */
2757         if (queue_idx >= 4)
2758                 return 0;
2759
2760         queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2761
2762         /* Update WMM TXOP register */
2763         offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2764         field.bit_offset = (queue_idx & 1) * 16;
2765         field.bit_mask = 0xffff << field.bit_offset;
2766
2767         rt2x00pci_register_read(rt2x00dev, offset, &reg);
2768         rt2x00_set_field32(&reg, field, queue->txop);
2769         rt2x00pci_register_write(rt2x00dev, offset, reg);
2770
2771         /* Update WMM registers */
2772         field.bit_offset = queue_idx * 4;
2773         field.bit_mask = 0xf << field.bit_offset;
2774
2775         rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2776         rt2x00_set_field32(&reg, field, queue->aifs);
2777         rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2778
2779         rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2780         rt2x00_set_field32(&reg, field, queue->cw_min);
2781         rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2782
2783         rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2784         rt2x00_set_field32(&reg, field, queue->cw_max);
2785         rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2786
2787         return 0;
2788 }
2789
2790 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2791 {
2792         struct rt2x00_dev *rt2x00dev = hw->priv;
2793         u64 tsf;
2794         u32 reg;
2795
2796         rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2797         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2798         rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2799         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2800
2801         return tsf;
2802 }
2803
2804 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2805         .tx                     = rt2x00mac_tx,
2806         .start                  = rt2x00mac_start,
2807         .stop                   = rt2x00mac_stop,
2808         .add_interface          = rt2x00mac_add_interface,
2809         .remove_interface       = rt2x00mac_remove_interface,
2810         .config                 = rt2x00mac_config,
2811         .configure_filter       = rt2x00mac_configure_filter,
2812         .set_key                = rt2x00mac_set_key,
2813         .sw_scan_start          = rt2x00mac_sw_scan_start,
2814         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
2815         .get_stats              = rt2x00mac_get_stats,
2816         .bss_info_changed       = rt2x00mac_bss_info_changed,
2817         .conf_tx                = rt61pci_conf_tx,
2818         .get_tsf                = rt61pci_get_tsf,
2819         .rfkill_poll            = rt2x00mac_rfkill_poll,
2820 };
2821
2822 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2823         .irq_handler            = rt61pci_interrupt,
2824         .irq_handler_thread     = rt61pci_interrupt_thread,
2825         .probe_hw               = rt61pci_probe_hw,
2826         .get_firmware_name      = rt61pci_get_firmware_name,
2827         .check_firmware         = rt61pci_check_firmware,
2828         .load_firmware          = rt61pci_load_firmware,
2829         .initialize             = rt2x00pci_initialize,
2830         .uninitialize           = rt2x00pci_uninitialize,
2831         .get_entry_state        = rt61pci_get_entry_state,
2832         .clear_entry            = rt61pci_clear_entry,
2833         .set_device_state       = rt61pci_set_device_state,
2834         .rfkill_poll            = rt61pci_rfkill_poll,
2835         .link_stats             = rt61pci_link_stats,
2836         .reset_tuner            = rt61pci_reset_tuner,
2837         .link_tuner             = rt61pci_link_tuner,
2838         .write_tx_desc          = rt61pci_write_tx_desc,
2839         .write_beacon           = rt61pci_write_beacon,
2840         .kick_tx_queue          = rt61pci_kick_tx_queue,
2841         .kill_tx_queue          = rt61pci_kill_tx_queue,
2842         .fill_rxdone            = rt61pci_fill_rxdone,
2843         .config_shared_key      = rt61pci_config_shared_key,
2844         .config_pairwise_key    = rt61pci_config_pairwise_key,
2845         .config_filter          = rt61pci_config_filter,
2846         .config_intf            = rt61pci_config_intf,
2847         .config_erp             = rt61pci_config_erp,
2848         .config_ant             = rt61pci_config_ant,
2849         .config                 = rt61pci_config,
2850 };
2851
2852 static const struct data_queue_desc rt61pci_queue_rx = {
2853         .entry_num              = RX_ENTRIES,
2854         .data_size              = DATA_FRAME_SIZE,
2855         .desc_size              = RXD_DESC_SIZE,
2856         .priv_size              = sizeof(struct queue_entry_priv_pci),
2857 };
2858
2859 static const struct data_queue_desc rt61pci_queue_tx = {
2860         .entry_num              = TX_ENTRIES,
2861         .data_size              = DATA_FRAME_SIZE,
2862         .desc_size              = TXD_DESC_SIZE,
2863         .priv_size              = sizeof(struct queue_entry_priv_pci),
2864 };
2865
2866 static const struct data_queue_desc rt61pci_queue_bcn = {
2867         .entry_num              = 4 * BEACON_ENTRIES,
2868         .data_size              = 0, /* No DMA required for beacons */
2869         .desc_size              = TXINFO_SIZE,
2870         .priv_size              = sizeof(struct queue_entry_priv_pci),
2871 };
2872
2873 static const struct rt2x00_ops rt61pci_ops = {
2874         .name                   = KBUILD_MODNAME,
2875         .max_sta_intf           = 1,
2876         .max_ap_intf            = 4,
2877         .eeprom_size            = EEPROM_SIZE,
2878         .rf_size                = RF_SIZE,
2879         .tx_queues              = NUM_TX_QUEUES,
2880         .extra_tx_headroom      = 0,
2881         .rx                     = &rt61pci_queue_rx,
2882         .tx                     = &rt61pci_queue_tx,
2883         .bcn                    = &rt61pci_queue_bcn,
2884         .lib                    = &rt61pci_rt2x00_ops,
2885         .hw                     = &rt61pci_mac80211_ops,
2886 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2887         .debugfs                = &rt61pci_rt2x00debug,
2888 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2889 };
2890
2891 /*
2892  * RT61pci module information.
2893  */
2894 static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
2895         /* RT2561s */
2896         { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2897         /* RT2561 v2 */
2898         { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2899         /* RT2661 */
2900         { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2901         { 0, }
2902 };
2903
2904 MODULE_AUTHOR(DRV_PROJECT);
2905 MODULE_VERSION(DRV_VERSION);
2906 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2907 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2908                         "PCI & PCMCIA chipset based cards");
2909 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2910 MODULE_FIRMWARE(FIRMWARE_RT2561);
2911 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2912 MODULE_FIRMWARE(FIRMWARE_RT2661);
2913 MODULE_LICENSE("GPL");
2914
2915 static struct pci_driver rt61pci_driver = {
2916         .name           = KBUILD_MODNAME,
2917         .id_table       = rt61pci_device_table,
2918         .probe          = rt2x00pci_probe,
2919         .remove         = __devexit_p(rt2x00pci_remove),
2920         .suspend        = rt2x00pci_suspend,
2921         .resume         = rt2x00pci_resume,
2922 };
2923
2924 static int __init rt61pci_init(void)
2925 {
2926         return pci_register_driver(&rt61pci_driver);
2927 }
2928
2929 static void __exit rt61pci_exit(void)
2930 {
2931         pci_unregister_driver(&rt61pci_driver);
2932 }
2933
2934 module_init(rt61pci_init);
2935 module_exit(rt61pci_exit);