upload tizen1.0 source
[kernel/linux-2.6.36.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29
30 #include "rt2x00.h"
31 #include "rt2x00lib.h"
32
33 /*
34  * Radio control handlers.
35  */
36 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
37 {
38         int status;
39
40         /*
41          * Don't enable the radio twice.
42          * And check if the hardware button has been disabled.
43          */
44         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
45                 return 0;
46
47         /*
48          * Initialize all data queues.
49          */
50         rt2x00queue_init_queues(rt2x00dev);
51
52         /*
53          * Enable radio.
54          */
55         status =
56             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
57         if (status)
58                 return status;
59
60         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
61
62         rt2x00leds_led_radio(rt2x00dev, true);
63         rt2x00led_led_activity(rt2x00dev, true);
64
65         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
66
67         /*
68          * Enable RX.
69          */
70         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
71
72         /*
73          * Start watchdog monitoring.
74          */
75         rt2x00link_start_watchdog(rt2x00dev);
76
77         /*
78          * Start the TX queues.
79          */
80         ieee80211_wake_queues(rt2x00dev->hw);
81
82         return 0;
83 }
84
85 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
86 {
87         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
88                 return;
89
90         /*
91          * Stop the TX queues in mac80211.
92          */
93         ieee80211_stop_queues(rt2x00dev->hw);
94         rt2x00queue_stop_queues(rt2x00dev);
95
96         /*
97          * Stop watchdog monitoring.
98          */
99         rt2x00link_stop_watchdog(rt2x00dev);
100
101         /*
102          * Disable RX.
103          */
104         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
105
106         /*
107          * Disable radio.
108          */
109         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
110         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
111         rt2x00led_led_activity(rt2x00dev, false);
112         rt2x00leds_led_radio(rt2x00dev, false);
113 }
114
115 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
116 {
117         /*
118          * When we are disabling the RX, we should also stop the link tuner.
119          */
120         if (state == STATE_RADIO_RX_OFF)
121                 rt2x00link_stop_tuner(rt2x00dev);
122
123         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
124
125         /*
126          * When we are enabling the RX, we should also start the link tuner.
127          */
128         if (state == STATE_RADIO_RX_ON)
129                 rt2x00link_start_tuner(rt2x00dev);
130 }
131
132 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
133                                           struct ieee80211_vif *vif)
134 {
135         struct rt2x00_dev *rt2x00dev = data;
136         struct rt2x00_intf *intf = vif_to_intf(vif);
137         int delayed_flags;
138
139         /*
140          * Copy all data we need during this action under the protection
141          * of a spinlock. Otherwise race conditions might occur which results
142          * into an invalid configuration.
143          */
144         spin_lock(&intf->lock);
145
146         delayed_flags = intf->delayed_flags;
147         intf->delayed_flags = 0;
148
149         spin_unlock(&intf->lock);
150
151         /*
152          * It is possible the radio was disabled while the work had been
153          * scheduled. If that happens we should return here immediately,
154          * note that in the spinlock protected area above the delayed_flags
155          * have been cleared correctly.
156          */
157         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
158                 return;
159
160         if (delayed_flags & DELAYED_UPDATE_BEACON)
161                 rt2x00queue_update_beacon(rt2x00dev, vif, true);
162 }
163
164 static void rt2x00lib_intf_scheduled(struct work_struct *work)
165 {
166         struct rt2x00_dev *rt2x00dev =
167             container_of(work, struct rt2x00_dev, intf_work);
168
169         /*
170          * Iterate over each interface and perform the
171          * requested configurations.
172          */
173         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
174                                             rt2x00lib_intf_scheduled_iter,
175                                             rt2x00dev);
176 }
177
178 /*
179  * Interrupt context handlers.
180  */
181 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
182                                      struct ieee80211_vif *vif)
183 {
184         struct rt2x00_dev *rt2x00dev = data;
185         struct sk_buff *skb;
186
187         /*
188          * Only AP mode interfaces do broad- and multicast buffering
189          */
190         if (vif->type != NL80211_IFTYPE_AP)
191                 return;
192
193         /*
194          * Send out buffered broad- and multicast frames
195          */
196         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
197         while (skb) {
198                 rt2x00mac_tx(rt2x00dev->hw, skb);
199                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
200         }
201 }
202
203 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
204                                         struct ieee80211_vif *vif)
205 {
206         struct rt2x00_dev *rt2x00dev = data;
207
208         if (vif->type != NL80211_IFTYPE_AP &&
209             vif->type != NL80211_IFTYPE_ADHOC &&
210             vif->type != NL80211_IFTYPE_MESH_POINT &&
211             vif->type != NL80211_IFTYPE_WDS)
212                 return;
213
214         rt2x00queue_update_beacon(rt2x00dev, vif, true);
215 }
216
217 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
218 {
219         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
220                 return;
221
222         /* send buffered bc/mc frames out for every bssid */
223         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
224                                             rt2x00lib_bc_buffer_iter,
225                                             rt2x00dev);
226         /*
227          * Devices with pre tbtt interrupt don't need to update the beacon
228          * here as they will fetch the next beacon directly prior to
229          * transmission.
230          */
231         if (test_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags))
232                 return;
233
234         /* fetch next beacon */
235         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
236                                             rt2x00lib_beaconupdate_iter,
237                                             rt2x00dev);
238 }
239 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
240
241 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
242 {
243         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
244                 return;
245
246         /* fetch next beacon */
247         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
248                                             rt2x00lib_beaconupdate_iter,
249                                             rt2x00dev);
250 }
251 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
252
253 void rt2x00lib_txdone(struct queue_entry *entry,
254                       struct txdone_entry_desc *txdesc)
255 {
256         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
257         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
258         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
259         enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
260         unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
261         u8 rate_idx, rate_flags, retry_rates;
262         u8 skbdesc_flags = skbdesc->flags;
263         unsigned int i;
264         bool success;
265
266         /*
267          * Unmap the skb.
268          */
269         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
270
271         /*
272          * Remove the extra tx headroom from the skb.
273          */
274         skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
275
276         /*
277          * Signal that the TX descriptor is no longer in the skb.
278          */
279         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
280
281         /*
282          * Remove L2 padding which was added during
283          */
284         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
285                 rt2x00queue_remove_l2pad(entry->skb, header_length);
286
287         /*
288          * If the IV/EIV data was stripped from the frame before it was
289          * passed to the hardware, we should now reinsert it again because
290          * mac80211 will expect the same data to be present it the
291          * frame as it was passed to us.
292          */
293         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
294                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
295
296         /*
297          * Send frame to debugfs immediately, after this call is completed
298          * we are going to overwrite the skb->cb array.
299          */
300         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
301
302         /*
303          * Determine if the frame has been successfully transmitted.
304          */
305         success =
306             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
307             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
308
309         /*
310          * Update TX statistics.
311          */
312         rt2x00dev->link.qual.tx_success += success;
313         rt2x00dev->link.qual.tx_failed += !success;
314
315         rate_idx = skbdesc->tx_rate_idx;
316         rate_flags = skbdesc->tx_rate_flags;
317         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
318             (txdesc->retry + 1) : 1;
319
320         /*
321          * Initialize TX status
322          */
323         memset(&tx_info->status, 0, sizeof(tx_info->status));
324         tx_info->status.ack_signal = 0;
325
326         /*
327          * Frame was send with retries, hardware tried
328          * different rates to send out the frame, at each
329          * retry it lowered the rate 1 step except when the
330          * lowest rate was used.
331          */
332         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
333                 tx_info->status.rates[i].idx = rate_idx - i;
334                 tx_info->status.rates[i].flags = rate_flags;
335
336                 if (rate_idx - i == 0) {
337                         /*
338                          * The lowest rate (index 0) was used until the
339                          * number of max retries was reached.
340                          */
341                         tx_info->status.rates[i].count = retry_rates - i;
342                         i++;
343                         break;
344                 }
345                 tx_info->status.rates[i].count = 1;
346         }
347         if (i < (IEEE80211_TX_MAX_RATES - 1))
348                 tx_info->status.rates[i].idx = -1; /* terminate */
349
350         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
351                 if (success)
352                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
353                 else
354                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
355         }
356
357         /*
358          * Every single frame has it's own tx status, hence report
359          * every frame as ampdu of size 1.
360          *
361          * TODO: if we can find out how many frames were aggregated
362          * by the hw we could provide the real ampdu_len to mac80211
363          * which would allow the rc algorithm to better decide on
364          * which rates are suitable.
365          */
366         if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
367                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
368                 tx_info->status.ampdu_len = 1;
369                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
370         }
371
372         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
373                 if (success)
374                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
375                 else
376                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
377         }
378
379         /*
380          * Only send the status report to mac80211 when it's a frame
381          * that originated in mac80211. If this was a extra frame coming
382          * through a mac80211 library call (RTS/CTS) then we should not
383          * send the status report back.
384          */
385         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211))
386                 /*
387                  * Only PCI and SOC devices process the tx status in process
388                  * context. Hence use ieee80211_tx_status for PCI and SOC
389                  * devices and stick to ieee80211_tx_status_irqsafe for USB.
390                  */
391                 if (rt2x00_is_usb(rt2x00dev))
392                         ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
393                 else
394                         ieee80211_tx_status(rt2x00dev->hw, entry->skb);
395         else
396                 dev_kfree_skb_any(entry->skb);
397
398         /*
399          * Make this entry available for reuse.
400          */
401         entry->skb = NULL;
402         entry->flags = 0;
403
404         rt2x00dev->ops->lib->clear_entry(entry);
405
406         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
407         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
408
409         /*
410          * If the data queue was below the threshold before the txdone
411          * handler we must make sure the packet queue in the mac80211 stack
412          * is reenabled when the txdone handler has finished.
413          */
414         if (!rt2x00queue_threshold(entry->queue))
415                 ieee80211_wake_queue(rt2x00dev->hw, qid);
416 }
417 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
418
419 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
420                                         struct rxdone_entry_desc *rxdesc)
421 {
422         struct ieee80211_supported_band *sband;
423         const struct rt2x00_rate *rate;
424         unsigned int i;
425         int signal;
426         int type;
427
428         /*
429          * For non-HT rates the MCS value needs to contain the
430          * actually used rate modulation (CCK or OFDM).
431          */
432         if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
433                 signal = RATE_MCS(rxdesc->rate_mode, rxdesc->signal);
434         else
435                 signal = rxdesc->signal;
436
437         type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
438
439         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
440         for (i = 0; i < sband->n_bitrates; i++) {
441                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
442
443                 if (((type == RXDONE_SIGNAL_PLCP) &&
444                      (rate->plcp == signal)) ||
445                     ((type == RXDONE_SIGNAL_BITRATE) &&
446                       (rate->bitrate == signal)) ||
447                     ((type == RXDONE_SIGNAL_MCS) &&
448                       (rate->mcs == signal))) {
449                         return i;
450                 }
451         }
452
453         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
454                 "signal=0x%.4x, type=%d.\n", signal, type);
455         return 0;
456 }
457
458 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
459                       struct queue_entry *entry)
460 {
461         struct rxdone_entry_desc rxdesc;
462         struct sk_buff *skb;
463         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
464         unsigned int header_length;
465         int rate_idx;
466         /*
467          * Allocate a new sk_buffer. If no new buffer available, drop the
468          * received frame and reuse the existing buffer.
469          */
470         skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
471         if (!skb)
472                 return;
473
474         /*
475          * Unmap the skb.
476          */
477         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
478
479         /*
480          * Extract the RXD details.
481          */
482         memset(&rxdesc, 0, sizeof(rxdesc));
483         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
484
485         /*
486          * The data behind the ieee80211 header must be
487          * aligned on a 4 byte boundary.
488          */
489         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
490
491         /*
492          * Hardware might have stripped the IV/EIV/ICV data,
493          * in that case it is possible that the data was
494          * provided separately (through hardware descriptor)
495          * in which case we should reinsert the data into the frame.
496          */
497         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
498             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
499                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
500                                           &rxdesc);
501         else if (header_length &&
502                  (rxdesc.size > header_length) &&
503                  (rxdesc.dev_flags & RXDONE_L2PAD))
504                 rt2x00queue_remove_l2pad(entry->skb, header_length);
505         else
506                 rt2x00queue_align_payload(entry->skb, header_length);
507
508         /* Trim buffer to correct size */
509         skb_trim(entry->skb, rxdesc.size);
510
511         /*
512          * Check if the frame was received using HT. In that case,
513          * the rate is the MCS index and should be passed to mac80211
514          * directly. Otherwise we need to translate the signal to
515          * the correct bitrate index.
516          */
517         if (rxdesc.rate_mode == RATE_MODE_CCK ||
518             rxdesc.rate_mode == RATE_MODE_OFDM) {
519                 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
520         } else {
521                 rxdesc.flags |= RX_FLAG_HT;
522                 rate_idx = rxdesc.signal;
523         }
524
525         /*
526          * Update extra components
527          */
528         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
529         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
530
531         rx_status->mactime = rxdesc.timestamp;
532         rx_status->rate_idx = rate_idx;
533         rx_status->signal = rxdesc.rssi;
534         rx_status->flag = rxdesc.flags;
535         rx_status->antenna = rt2x00dev->link.ant.active.rx;
536
537         /*
538          * Send frame to mac80211 & debugfs.
539          * mac80211 will clean up the skb structure.
540          */
541         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
542         memcpy(IEEE80211_SKB_RXCB(entry->skb), rx_status, sizeof(*rx_status));
543
544         /*
545          * Currently only PCI and SOC devices handle rx interrupts in process
546          * context. Hence, use ieee80211_rx_irqsafe for USB and ieee80211_rx_ni
547          * for PCI and SOC devices.
548          */
549         if (rt2x00_is_usb(rt2x00dev))
550                 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb);
551         else
552                 ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
553
554         /*
555          * Replace the skb with the freshly allocated one.
556          */
557         entry->skb = skb;
558         entry->flags = 0;
559
560         rt2x00dev->ops->lib->clear_entry(entry);
561
562         rt2x00queue_index_inc(entry->queue, Q_INDEX);
563 }
564 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
565
566 /*
567  * Driver initialization handlers.
568  */
569 const struct rt2x00_rate rt2x00_supported_rates[12] = {
570         {
571                 .flags = DEV_RATE_CCK,
572                 .bitrate = 10,
573                 .ratemask = BIT(0),
574                 .plcp = 0x00,
575                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
576         },
577         {
578                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
579                 .bitrate = 20,
580                 .ratemask = BIT(1),
581                 .plcp = 0x01,
582                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
583         },
584         {
585                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
586                 .bitrate = 55,
587                 .ratemask = BIT(2),
588                 .plcp = 0x02,
589                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
590         },
591         {
592                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
593                 .bitrate = 110,
594                 .ratemask = BIT(3),
595                 .plcp = 0x03,
596                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
597         },
598         {
599                 .flags = DEV_RATE_OFDM,
600                 .bitrate = 60,
601                 .ratemask = BIT(4),
602                 .plcp = 0x0b,
603                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
604         },
605         {
606                 .flags = DEV_RATE_OFDM,
607                 .bitrate = 90,
608                 .ratemask = BIT(5),
609                 .plcp = 0x0f,
610                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
611         },
612         {
613                 .flags = DEV_RATE_OFDM,
614                 .bitrate = 120,
615                 .ratemask = BIT(6),
616                 .plcp = 0x0a,
617                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
618         },
619         {
620                 .flags = DEV_RATE_OFDM,
621                 .bitrate = 180,
622                 .ratemask = BIT(7),
623                 .plcp = 0x0e,
624                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
625         },
626         {
627                 .flags = DEV_RATE_OFDM,
628                 .bitrate = 240,
629                 .ratemask = BIT(8),
630                 .plcp = 0x09,
631                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
632         },
633         {
634                 .flags = DEV_RATE_OFDM,
635                 .bitrate = 360,
636                 .ratemask = BIT(9),
637                 .plcp = 0x0d,
638                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
639         },
640         {
641                 .flags = DEV_RATE_OFDM,
642                 .bitrate = 480,
643                 .ratemask = BIT(10),
644                 .plcp = 0x08,
645                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
646         },
647         {
648                 .flags = DEV_RATE_OFDM,
649                 .bitrate = 540,
650                 .ratemask = BIT(11),
651                 .plcp = 0x0c,
652                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
653         },
654 };
655
656 static void rt2x00lib_channel(struct ieee80211_channel *entry,
657                               const int channel, const int tx_power,
658                               const int value)
659 {
660         entry->center_freq = ieee80211_channel_to_frequency(channel);
661         entry->hw_value = value;
662         entry->max_power = tx_power;
663         entry->max_antenna_gain = 0xff;
664 }
665
666 static void rt2x00lib_rate(struct ieee80211_rate *entry,
667                            const u16 index, const struct rt2x00_rate *rate)
668 {
669         entry->flags = 0;
670         entry->bitrate = rate->bitrate;
671         entry->hw_value =index;
672         entry->hw_value_short = index;
673
674         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
675                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
676 }
677
678 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
679                                     struct hw_mode_spec *spec)
680 {
681         struct ieee80211_hw *hw = rt2x00dev->hw;
682         struct ieee80211_channel *channels;
683         struct ieee80211_rate *rates;
684         unsigned int num_rates;
685         unsigned int i;
686
687         num_rates = 0;
688         if (spec->supported_rates & SUPPORT_RATE_CCK)
689                 num_rates += 4;
690         if (spec->supported_rates & SUPPORT_RATE_OFDM)
691                 num_rates += 8;
692
693         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
694         if (!channels)
695                 return -ENOMEM;
696
697         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
698         if (!rates)
699                 goto exit_free_channels;
700
701         /*
702          * Initialize Rate list.
703          */
704         for (i = 0; i < num_rates; i++)
705                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
706
707         /*
708          * Initialize Channel list.
709          */
710         for (i = 0; i < spec->num_channels; i++) {
711                 rt2x00lib_channel(&channels[i],
712                                   spec->channels[i].channel,
713                                   spec->channels_info[i].max_power, i);
714         }
715
716         /*
717          * Intitialize 802.11b, 802.11g
718          * Rates: CCK, OFDM.
719          * Channels: 2.4 GHz
720          */
721         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
722                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
723                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
724                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
725                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
726                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
727                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
728                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
729                        &spec->ht, sizeof(spec->ht));
730         }
731
732         /*
733          * Intitialize 802.11a
734          * Rates: OFDM.
735          * Channels: OFDM, UNII, HiperLAN2.
736          */
737         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
738                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
739                     spec->num_channels - 14;
740                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
741                     num_rates - 4;
742                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
743                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
744                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
745                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
746                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
747                        &spec->ht, sizeof(spec->ht));
748         }
749
750         return 0;
751
752  exit_free_channels:
753         kfree(channels);
754         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
755         return -ENOMEM;
756 }
757
758 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
759 {
760         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
761                 ieee80211_unregister_hw(rt2x00dev->hw);
762
763         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
764                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
765                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
766                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
767                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
768         }
769
770         kfree(rt2x00dev->spec.channels_info);
771 }
772
773 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
774 {
775         struct hw_mode_spec *spec = &rt2x00dev->spec;
776         int status;
777
778         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
779                 return 0;
780
781         /*
782          * Initialize HW modes.
783          */
784         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
785         if (status)
786                 return status;
787
788         /*
789          * Initialize HW fields.
790          */
791         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
792
793         /*
794          * Initialize extra TX headroom required.
795          */
796         rt2x00dev->hw->extra_tx_headroom =
797                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
798                       rt2x00dev->ops->extra_tx_headroom);
799
800         /*
801          * Take TX headroom required for alignment into account.
802          */
803         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
804                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
805         else if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
806                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
807
808         /*
809          * Register HW.
810          */
811         status = ieee80211_register_hw(rt2x00dev->hw);
812         if (status)
813                 return status;
814
815         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
816
817         return 0;
818 }
819
820 /*
821  * Initialization/uninitialization handlers.
822  */
823 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
824 {
825         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
826                 return;
827
828         /*
829          * Unregister extra components.
830          */
831         rt2x00rfkill_unregister(rt2x00dev);
832
833         /*
834          * Allow the HW to uninitialize.
835          */
836         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
837
838         /*
839          * Free allocated queue entries.
840          */
841         rt2x00queue_uninitialize(rt2x00dev);
842 }
843
844 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
845 {
846         int status;
847
848         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
849                 return 0;
850
851         /*
852          * Allocate all queue entries.
853          */
854         status = rt2x00queue_initialize(rt2x00dev);
855         if (status)
856                 return status;
857
858         /*
859          * Initialize the device.
860          */
861         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
862         if (status) {
863                 rt2x00queue_uninitialize(rt2x00dev);
864                 return status;
865         }
866
867         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
868
869         /*
870          * Register the extra components.
871          */
872         rt2x00rfkill_register(rt2x00dev);
873
874         return 0;
875 }
876
877 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
878 {
879         int retval;
880
881         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
882                 return 0;
883
884         /*
885          * If this is the first interface which is added,
886          * we should load the firmware now.
887          */
888         retval = rt2x00lib_load_firmware(rt2x00dev);
889         if (retval)
890                 return retval;
891
892         /*
893          * Initialize the device.
894          */
895         retval = rt2x00lib_initialize(rt2x00dev);
896         if (retval)
897                 return retval;
898
899         rt2x00dev->intf_ap_count = 0;
900         rt2x00dev->intf_sta_count = 0;
901         rt2x00dev->intf_associated = 0;
902
903         /* Enable the radio */
904         retval = rt2x00lib_enable_radio(rt2x00dev);
905         if (retval) {
906                 rt2x00queue_uninitialize(rt2x00dev);
907                 return retval;
908         }
909
910         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
911
912         return 0;
913 }
914
915 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
916 {
917         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
918                 return;
919
920         /*
921          * Perhaps we can add something smarter here,
922          * but for now just disabling the radio should do.
923          */
924         rt2x00lib_disable_radio(rt2x00dev);
925
926         rt2x00dev->intf_ap_count = 0;
927         rt2x00dev->intf_sta_count = 0;
928         rt2x00dev->intf_associated = 0;
929 }
930
931 /*
932  * driver allocation handlers.
933  */
934 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
935 {
936         int retval = -ENOMEM;
937
938         mutex_init(&rt2x00dev->csr_mutex);
939
940         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
941
942         /*
943          * Make room for rt2x00_intf inside the per-interface
944          * structure ieee80211_vif.
945          */
946         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
947
948         /*
949          * Determine which operating modes are supported, all modes
950          * which require beaconing, depend on the availability of
951          * beacon entries.
952          */
953         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
954         if (rt2x00dev->ops->bcn->entry_num > 0)
955                 rt2x00dev->hw->wiphy->interface_modes |=
956                     BIT(NL80211_IFTYPE_ADHOC) |
957                     BIT(NL80211_IFTYPE_AP) |
958                     BIT(NL80211_IFTYPE_MESH_POINT) |
959                     BIT(NL80211_IFTYPE_WDS);
960
961         /*
962          * Initialize configuration work.
963          */
964         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
965
966         /*
967          * Let the driver probe the device to detect the capabilities.
968          */
969         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
970         if (retval) {
971                 ERROR(rt2x00dev, "Failed to allocate device.\n");
972                 goto exit;
973         }
974
975         /*
976          * Allocate queue array.
977          */
978         retval = rt2x00queue_allocate(rt2x00dev);
979         if (retval)
980                 goto exit;
981
982         /*
983          * Initialize ieee80211 structure.
984          */
985         retval = rt2x00lib_probe_hw(rt2x00dev);
986         if (retval) {
987                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
988                 goto exit;
989         }
990
991         /*
992          * Register extra components.
993          */
994         rt2x00link_register(rt2x00dev);
995         rt2x00leds_register(rt2x00dev);
996         rt2x00debug_register(rt2x00dev);
997
998         return 0;
999
1000 exit:
1001         rt2x00lib_remove_dev(rt2x00dev);
1002
1003         return retval;
1004 }
1005 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1006
1007 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1008 {
1009         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1010
1011         /*
1012          * Disable radio.
1013          */
1014         rt2x00lib_disable_radio(rt2x00dev);
1015
1016         /*
1017          * Stop all work.
1018          */
1019         cancel_work_sync(&rt2x00dev->intf_work);
1020
1021         /*
1022          * Uninitialize device.
1023          */
1024         rt2x00lib_uninitialize(rt2x00dev);
1025
1026         /*
1027          * Free extra components
1028          */
1029         rt2x00debug_deregister(rt2x00dev);
1030         rt2x00leds_unregister(rt2x00dev);
1031
1032         /*
1033          * Free ieee80211_hw memory.
1034          */
1035         rt2x00lib_remove_hw(rt2x00dev);
1036
1037         /*
1038          * Free firmware image.
1039          */
1040         rt2x00lib_free_firmware(rt2x00dev);
1041
1042         /*
1043          * Free queue structures.
1044          */
1045         rt2x00queue_free(rt2x00dev);
1046 }
1047 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1048
1049 /*
1050  * Device state handlers
1051  */
1052 #ifdef CONFIG_PM
1053 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1054 {
1055         NOTICE(rt2x00dev, "Going to sleep.\n");
1056
1057         /*
1058          * Prevent mac80211 from accessing driver while suspended.
1059          */
1060         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1061                 return 0;
1062
1063         /*
1064          * Cleanup as much as possible.
1065          */
1066         rt2x00lib_uninitialize(rt2x00dev);
1067
1068         /*
1069          * Suspend/disable extra components.
1070          */
1071         rt2x00leds_suspend(rt2x00dev);
1072         rt2x00debug_deregister(rt2x00dev);
1073
1074         /*
1075          * Set device mode to sleep for power management,
1076          * on some hardware this call seems to consistently fail.
1077          * From the specifications it is hard to tell why it fails,
1078          * and if this is a "bad thing".
1079          * Overall it is safe to just ignore the failure and
1080          * continue suspending. The only downside is that the
1081          * device will not be in optimal power save mode, but with
1082          * the radio and the other components already disabled the
1083          * device is as good as disabled.
1084          */
1085         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1086                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1087                         "continue suspending.\n");
1088
1089         return 0;
1090 }
1091 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1092
1093 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1094 {
1095         NOTICE(rt2x00dev, "Waking up.\n");
1096
1097         /*
1098          * Restore/enable extra components.
1099          */
1100         rt2x00debug_register(rt2x00dev);
1101         rt2x00leds_resume(rt2x00dev);
1102
1103         /*
1104          * We are ready again to receive requests from mac80211.
1105          */
1106         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1107
1108         return 0;
1109 }
1110 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1111 #endif /* CONFIG_PM */
1112
1113 /*
1114  * rt2x00lib module information.
1115  */
1116 MODULE_AUTHOR(DRV_PROJECT);
1117 MODULE_VERSION(DRV_VERSION);
1118 MODULE_DESCRIPTION("rt2x00 library");
1119 MODULE_LICENSE("GPL");