upload tizen1.0 source
[kernel/linux-2.6.36.git] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500pci
23         Abstract: rt2500pci device specific routines.
24         Supported chipsets: RT2560.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34 #include <linux/slab.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt2500pci.h"
39
40 /*
41  * Register access.
42  * All access to the CSR registers will go through the methods
43  * rt2x00pci_register_read and rt2x00pci_register_write.
44  * BBP and RF register require indirect register access,
45  * and use the CSR registers BBPCSR and RFCSR to achieve this.
46  * These indirect registers work with busy bits,
47  * and we will try maximal REGISTER_BUSY_COUNT times to access
48  * the register while taking a REGISTER_BUSY_DELAY us delay
49  * between each attampt. When the busy bit is still set at that time,
50  * the access attempt is considered to have failed,
51  * and we will print an error.
52  */
53 #define WAIT_FOR_BBP(__dev, __reg) \
54         rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
55 #define WAIT_FOR_RF(__dev, __reg) \
56         rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57
58 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
59                                 const unsigned int word, const u8 value)
60 {
61         u32 reg;
62
63         mutex_lock(&rt2x00dev->csr_mutex);
64
65         /*
66          * Wait until the BBP becomes available, afterwards we
67          * can safely write the new data into the register.
68          */
69         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
70                 reg = 0;
71                 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
72                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
73                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
74                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
75
76                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
77         }
78
79         mutex_unlock(&rt2x00dev->csr_mutex);
80 }
81
82 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
83                                const unsigned int word, u8 *value)
84 {
85         u32 reg;
86
87         mutex_lock(&rt2x00dev->csr_mutex);
88
89         /*
90          * Wait until the BBP becomes available, afterwards we
91          * can safely write the read request into the register.
92          * After the data has been written, we wait until hardware
93          * returns the correct value, if at any time the register
94          * doesn't become available in time, reg will be 0xffffffff
95          * which means we return 0xff to the caller.
96          */
97         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
98                 reg = 0;
99                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
100                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
101                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
102
103                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104
105                 WAIT_FOR_BBP(rt2x00dev, &reg);
106         }
107
108         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109
110         mutex_unlock(&rt2x00dev->csr_mutex);
111 }
112
113 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
114                                const unsigned int word, const u32 value)
115 {
116         u32 reg;
117
118         mutex_lock(&rt2x00dev->csr_mutex);
119
120         /*
121          * Wait until the RF becomes available, afterwards we
122          * can safely write the new data into the register.
123          */
124         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
125                 reg = 0;
126                 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
127                 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
128                 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
129                 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
130
131                 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
132                 rt2x00_rf_write(rt2x00dev, word, value);
133         }
134
135         mutex_unlock(&rt2x00dev->csr_mutex);
136 }
137
138 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
139 {
140         struct rt2x00_dev *rt2x00dev = eeprom->data;
141         u32 reg;
142
143         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
144
145         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
146         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
147         eeprom->reg_data_clock =
148             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
149         eeprom->reg_chip_select =
150             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
151 }
152
153 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
154 {
155         struct rt2x00_dev *rt2x00dev = eeprom->data;
156         u32 reg = 0;
157
158         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
159         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
160         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
161                            !!eeprom->reg_data_clock);
162         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
163                            !!eeprom->reg_chip_select);
164
165         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
166 }
167
168 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
169 static const struct rt2x00debug rt2500pci_rt2x00debug = {
170         .owner  = THIS_MODULE,
171         .csr    = {
172                 .read           = rt2x00pci_register_read,
173                 .write          = rt2x00pci_register_write,
174                 .flags          = RT2X00DEBUGFS_OFFSET,
175                 .word_base      = CSR_REG_BASE,
176                 .word_size      = sizeof(u32),
177                 .word_count     = CSR_REG_SIZE / sizeof(u32),
178         },
179         .eeprom = {
180                 .read           = rt2x00_eeprom_read,
181                 .write          = rt2x00_eeprom_write,
182                 .word_base      = EEPROM_BASE,
183                 .word_size      = sizeof(u16),
184                 .word_count     = EEPROM_SIZE / sizeof(u16),
185         },
186         .bbp    = {
187                 .read           = rt2500pci_bbp_read,
188                 .write          = rt2500pci_bbp_write,
189                 .word_base      = BBP_BASE,
190                 .word_size      = sizeof(u8),
191                 .word_count     = BBP_SIZE / sizeof(u8),
192         },
193         .rf     = {
194                 .read           = rt2x00_rf_read,
195                 .write          = rt2500pci_rf_write,
196                 .word_base      = RF_BASE,
197                 .word_size      = sizeof(u32),
198                 .word_count     = RF_SIZE / sizeof(u32),
199         },
200 };
201 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
202
203 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
204 {
205         u32 reg;
206
207         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
208         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
209 }
210
211 #ifdef CONFIG_RT2X00_LIB_LEDS
212 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
213                                      enum led_brightness brightness)
214 {
215         struct rt2x00_led *led =
216             container_of(led_cdev, struct rt2x00_led, led_dev);
217         unsigned int enabled = brightness != LED_OFF;
218         u32 reg;
219
220         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
221
222         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
223                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
224         else if (led->type == LED_TYPE_ACTIVITY)
225                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
226
227         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
228 }
229
230 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
231                                unsigned long *delay_on,
232                                unsigned long *delay_off)
233 {
234         struct rt2x00_led *led =
235             container_of(led_cdev, struct rt2x00_led, led_dev);
236         u32 reg;
237
238         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
239         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
240         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
241         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
242
243         return 0;
244 }
245
246 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
247                                struct rt2x00_led *led,
248                                enum led_type type)
249 {
250         led->rt2x00dev = rt2x00dev;
251         led->type = type;
252         led->led_dev.brightness_set = rt2500pci_brightness_set;
253         led->led_dev.blink_set = rt2500pci_blink_set;
254         led->flags = LED_INITIALIZED;
255 }
256 #endif /* CONFIG_RT2X00_LIB_LEDS */
257
258 /*
259  * Configuration handlers.
260  */
261 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
262                                     const unsigned int filter_flags)
263 {
264         u32 reg;
265
266         /*
267          * Start configuration steps.
268          * Note that the version error will always be dropped
269          * and broadcast frames will always be accepted since
270          * there is no filter for it at this time.
271          */
272         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
273         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
274                            !(filter_flags & FIF_FCSFAIL));
275         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
276                            !(filter_flags & FIF_PLCPFAIL));
277         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
278                            !(filter_flags & FIF_CONTROL));
279         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
280                            !(filter_flags & FIF_PROMISC_IN_BSS));
281         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
282                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
283                            !rt2x00dev->intf_ap_count);
284         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
285         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
286                            !(filter_flags & FIF_ALLMULTI));
287         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
288         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
289 }
290
291 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
292                                   struct rt2x00_intf *intf,
293                                   struct rt2x00intf_conf *conf,
294                                   const unsigned int flags)
295 {
296         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
297         unsigned int bcn_preload;
298         u32 reg;
299
300         if (flags & CONFIG_UPDATE_TYPE) {
301                 /*
302                  * Enable beacon config
303                  */
304                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
305                 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
306                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
307                 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
308                 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
309
310                 /*
311                  * Enable synchronisation.
312                  */
313                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
314                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
315                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
316                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
317                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
318         }
319
320         if (flags & CONFIG_UPDATE_MAC)
321                 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
322                                               conf->mac, sizeof(conf->mac));
323
324         if (flags & CONFIG_UPDATE_BSSID)
325                 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
326                                               conf->bssid, sizeof(conf->bssid));
327 }
328
329 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
330                                  struct rt2x00lib_erp *erp)
331 {
332         int preamble_mask;
333         u32 reg;
334
335         /*
336          * When short preamble is enabled, we should set bit 0x08
337          */
338         preamble_mask = erp->short_preamble << 3;
339
340         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
341         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
342         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
343         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
344         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
345         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
346
347         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
348         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
349         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
350         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
351         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
352
353         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
354         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
355         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
356         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
357         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
358
359         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
360         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
361         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
362         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
363         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
364
365         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
366         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
367         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
368         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
369         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
370
371         rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
372
373         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
374         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
375         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
376
377         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
378         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
379         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
380         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
381
382         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
383         rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
384         rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
385         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
386
387         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
388         rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
389         rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
390         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
391 }
392
393 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
394                                  struct antenna_setup *ant)
395 {
396         u32 reg;
397         u8 r14;
398         u8 r2;
399
400         /*
401          * We should never come here because rt2x00lib is supposed
402          * to catch this and send us the correct antenna explicitely.
403          */
404         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
405                ant->tx == ANTENNA_SW_DIVERSITY);
406
407         rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
408         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
409         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
410
411         /*
412          * Configure the TX antenna.
413          */
414         switch (ant->tx) {
415         case ANTENNA_A:
416                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
417                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
418                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
419                 break;
420         case ANTENNA_B:
421         default:
422                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
423                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
424                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
425                 break;
426         }
427
428         /*
429          * Configure the RX antenna.
430          */
431         switch (ant->rx) {
432         case ANTENNA_A:
433                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
434                 break;
435         case ANTENNA_B:
436         default:
437                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
438                 break;
439         }
440
441         /*
442          * RT2525E and RT5222 need to flip TX I/Q
443          */
444         if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
445                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
446                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
447                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
448
449                 /*
450                  * RT2525E does not need RX I/Q Flip.
451                  */
452                 if (rt2x00_rf(rt2x00dev, RF2525E))
453                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
454         } else {
455                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
456                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
457         }
458
459         rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
460         rt2500pci_bbp_write(rt2x00dev, 14, r14);
461         rt2500pci_bbp_write(rt2x00dev, 2, r2);
462 }
463
464 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
465                                      struct rf_channel *rf, const int txpower)
466 {
467         u8 r70;
468
469         /*
470          * Set TXpower.
471          */
472         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
473
474         /*
475          * Switch on tuning bits.
476          * For RT2523 devices we do not need to update the R1 register.
477          */
478         if (!rt2x00_rf(rt2x00dev, RF2523))
479                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
480         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
481
482         /*
483          * For RT2525 we should first set the channel to half band higher.
484          */
485         if (rt2x00_rf(rt2x00dev, RF2525)) {
486                 static const u32 vals[] = {
487                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
488                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
489                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
490                         0x00080d2e, 0x00080d3a
491                 };
492
493                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
494                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
495                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
496                 if (rf->rf4)
497                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
498         }
499
500         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
501         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
502         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
503         if (rf->rf4)
504                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
505
506         /*
507          * Channel 14 requires the Japan filter bit to be set.
508          */
509         r70 = 0x46;
510         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
511         rt2500pci_bbp_write(rt2x00dev, 70, r70);
512
513         msleep(1);
514
515         /*
516          * Switch off tuning bits.
517          * For RT2523 devices we do not need to update the R1 register.
518          */
519         if (!rt2x00_rf(rt2x00dev, RF2523)) {
520                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
521                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
522         }
523
524         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
525         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
526
527         /*
528          * Clear false CRC during channel switch.
529          */
530         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
531 }
532
533 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
534                                      const int txpower)
535 {
536         u32 rf3;
537
538         rt2x00_rf_read(rt2x00dev, 3, &rf3);
539         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
540         rt2500pci_rf_write(rt2x00dev, 3, rf3);
541 }
542
543 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
544                                          struct rt2x00lib_conf *libconf)
545 {
546         u32 reg;
547
548         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
549         rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
550                            libconf->conf->long_frame_max_tx_count);
551         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
552                            libconf->conf->short_frame_max_tx_count);
553         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
554 }
555
556 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
557                                 struct rt2x00lib_conf *libconf)
558 {
559         enum dev_state state =
560             (libconf->conf->flags & IEEE80211_CONF_PS) ?
561                 STATE_SLEEP : STATE_AWAKE;
562         u32 reg;
563
564         if (state == STATE_SLEEP) {
565                 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
566                 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
567                                    (rt2x00dev->beacon_int - 20) * 16);
568                 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
569                                    libconf->conf->listen_interval - 1);
570
571                 /* We must first disable autowake before it can be enabled */
572                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
573                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
574
575                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
576                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
577         } else {
578                 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
579                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
580                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
581         }
582
583         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
584 }
585
586 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
587                              struct rt2x00lib_conf *libconf,
588                              const unsigned int flags)
589 {
590         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
591                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
592                                          libconf->conf->power_level);
593         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
594             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
595                 rt2500pci_config_txpower(rt2x00dev,
596                                          libconf->conf->power_level);
597         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
598                 rt2500pci_config_retry_limit(rt2x00dev, libconf);
599         if (flags & IEEE80211_CONF_CHANGE_PS)
600                 rt2500pci_config_ps(rt2x00dev, libconf);
601 }
602
603 /*
604  * Link tuning
605  */
606 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
607                                  struct link_qual *qual)
608 {
609         u32 reg;
610
611         /*
612          * Update FCS error count from register.
613          */
614         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
615         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
616
617         /*
618          * Update False CCA count from register.
619          */
620         rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
621         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
622 }
623
624 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
625                                      struct link_qual *qual, u8 vgc_level)
626 {
627         if (qual->vgc_level_reg != vgc_level) {
628                 rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
629                 qual->vgc_level = vgc_level;
630                 qual->vgc_level_reg = vgc_level;
631         }
632 }
633
634 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
635                                   struct link_qual *qual)
636 {
637         rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
638 }
639
640 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
641                                  struct link_qual *qual, const u32 count)
642 {
643         /*
644          * To prevent collisions with MAC ASIC on chipsets
645          * up to version C the link tuning should halt after 20
646          * seconds while being associated.
647          */
648         if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
649             rt2x00dev->intf_associated && count > 20)
650                 return;
651
652         /*
653          * Chipset versions C and lower should directly continue
654          * to the dynamic CCA tuning. Chipset version D and higher
655          * should go straight to dynamic CCA tuning when they
656          * are not associated.
657          */
658         if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
659             !rt2x00dev->intf_associated)
660                 goto dynamic_cca_tune;
661
662         /*
663          * A too low RSSI will cause too much false CCA which will
664          * then corrupt the R17 tuning. To remidy this the tuning should
665          * be stopped (While making sure the R17 value will not exceed limits)
666          */
667         if (qual->rssi < -80 && count > 20) {
668                 if (qual->vgc_level_reg >= 0x41)
669                         rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
670                 return;
671         }
672
673         /*
674          * Special big-R17 for short distance
675          */
676         if (qual->rssi >= -58) {
677                 rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
678                 return;
679         }
680
681         /*
682          * Special mid-R17 for middle distance
683          */
684         if (qual->rssi >= -74) {
685                 rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
686                 return;
687         }
688
689         /*
690          * Leave short or middle distance condition, restore r17
691          * to the dynamic tuning range.
692          */
693         if (qual->vgc_level_reg >= 0x41) {
694                 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
695                 return;
696         }
697
698 dynamic_cca_tune:
699
700         /*
701          * R17 is inside the dynamic tuning range,
702          * start tuning the link based on the false cca counter.
703          */
704         if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
705                 rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
706         else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
707                 rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
708 }
709
710 /*
711  * Initialization functions.
712  */
713 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
714 {
715         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
716         u32 word;
717
718         if (entry->queue->qid == QID_RX) {
719                 rt2x00_desc_read(entry_priv->desc, 0, &word);
720
721                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
722         } else {
723                 rt2x00_desc_read(entry_priv->desc, 0, &word);
724
725                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
726                         rt2x00_get_field32(word, TXD_W0_VALID));
727         }
728 }
729
730 static void rt2500pci_clear_entry(struct queue_entry *entry)
731 {
732         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
733         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
734         u32 word;
735
736         if (entry->queue->qid == QID_RX) {
737                 rt2x00_desc_read(entry_priv->desc, 1, &word);
738                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
739                 rt2x00_desc_write(entry_priv->desc, 1, word);
740
741                 rt2x00_desc_read(entry_priv->desc, 0, &word);
742                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
743                 rt2x00_desc_write(entry_priv->desc, 0, word);
744         } else {
745                 rt2x00_desc_read(entry_priv->desc, 0, &word);
746                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
747                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
748                 rt2x00_desc_write(entry_priv->desc, 0, word);
749         }
750 }
751
752 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
753 {
754         struct queue_entry_priv_pci *entry_priv;
755         u32 reg;
756
757         /*
758          * Initialize registers.
759          */
760         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
761         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
762         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
763         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
764         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
765         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
766
767         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
768         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
769         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
770                            entry_priv->desc_dma);
771         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
772
773         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
774         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
775         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
776                            entry_priv->desc_dma);
777         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
778
779         entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
780         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
781         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
782                            entry_priv->desc_dma);
783         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
784
785         entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
786         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
787         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
788                            entry_priv->desc_dma);
789         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
790
791         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
792         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
793         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
794         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
795
796         entry_priv = rt2x00dev->rx->entries[0].priv_data;
797         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
798         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
799                            entry_priv->desc_dma);
800         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
801
802         return 0;
803 }
804
805 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
806 {
807         u32 reg;
808
809         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
810         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
811         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
812         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
813
814         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
815         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
816         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
817         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
818         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
819
820         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
821         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
822                            rt2x00dev->rx->data_size / 128);
823         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
824
825         /*
826          * Always use CWmin and CWmax set in descriptor.
827          */
828         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
829         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
830         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
831
832         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
833         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
834         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
835         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
836         rt2x00_set_field32(&reg, CSR14_TCFP, 0);
837         rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
838         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
839         rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
840         rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
841         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
842
843         rt2x00pci_register_write(rt2x00dev, CNT3, 0);
844
845         rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
846         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
847         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
848         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
849         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
850         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
851         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
852         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
853         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
854         rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
855
856         rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
857         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
858         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
859         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
860         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
861         rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
862
863         rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
864         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
865         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
866         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
867         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
868         rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
869
870         rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
871         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
872         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
873         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
874         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
875         rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
876
877         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
878         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
879         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
880         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
881         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
882         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
883         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
884         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
885         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
886         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
887
888         rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
889         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
890         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
891         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
892         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
893         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
894         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
895         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
896         rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
897
898         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
899
900         rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
901         rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
902
903         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
904                 return -EBUSY;
905
906         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
907         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
908
909         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
910         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
911         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
912
913         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
914         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
915         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
916         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
917         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
918         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
919         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
920         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
921
922         rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
923
924         rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
925
926         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
927         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
928         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
929         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
930         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
931
932         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
933         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
934         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
935         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
936
937         /*
938          * We must clear the FCS and FIFO error count.
939          * These registers are cleared on read,
940          * so we may pass a useless variable to store the value.
941          */
942         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
943         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
944
945         return 0;
946 }
947
948 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
949 {
950         unsigned int i;
951         u8 value;
952
953         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
954                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
955                 if ((value != 0xff) && (value != 0x00))
956                         return 0;
957                 udelay(REGISTER_BUSY_DELAY);
958         }
959
960         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
961         return -EACCES;
962 }
963
964 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
965 {
966         unsigned int i;
967         u16 eeprom;
968         u8 reg_id;
969         u8 value;
970
971         if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
972                 return -EACCES;
973
974         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
975         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
976         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
977         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
978         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
979         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
980         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
981         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
982         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
983         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
984         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
985         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
986         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
987         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
988         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
989         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
990         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
991         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
992         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
993         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
994         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
995         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
996         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
997         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
998         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
999         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1000         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1001         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1002         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1003         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1004
1005         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1006                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1007
1008                 if (eeprom != 0xffff && eeprom != 0x0000) {
1009                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1010                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1011                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1012                 }
1013         }
1014
1015         return 0;
1016 }
1017
1018 /*
1019  * Device state switch handlers.
1020  */
1021 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1022                                 enum dev_state state)
1023 {
1024         u32 reg;
1025
1026         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1027         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1028                            (state == STATE_RADIO_RX_OFF) ||
1029                            (state == STATE_RADIO_RX_OFF_LINK));
1030         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1031 }
1032
1033 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1034                                  enum dev_state state)
1035 {
1036         int mask = (state == STATE_RADIO_IRQ_OFF) ||
1037                    (state == STATE_RADIO_IRQ_OFF_ISR);
1038         u32 reg;
1039
1040         /*
1041          * When interrupts are being enabled, the interrupt registers
1042          * should clear the register to assure a clean state.
1043          */
1044         if (state == STATE_RADIO_IRQ_ON) {
1045                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1046                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1047         }
1048
1049         /*
1050          * Only toggle the interrupts bits we are going to use.
1051          * Non-checked interrupt bits are disabled by default.
1052          */
1053         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1054         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1055         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1056         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1057         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1058         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1059         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1060 }
1061
1062 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1063 {
1064         /*
1065          * Initialize all registers.
1066          */
1067         if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1068                      rt2500pci_init_registers(rt2x00dev) ||
1069                      rt2500pci_init_bbp(rt2x00dev)))
1070                 return -EIO;
1071
1072         return 0;
1073 }
1074
1075 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1076 {
1077         /*
1078          * Disable power
1079          */
1080         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1081 }
1082
1083 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1084                                enum dev_state state)
1085 {
1086         u32 reg, reg2;
1087         unsigned int i;
1088         char put_to_sleep;
1089         char bbp_state;
1090         char rf_state;
1091
1092         put_to_sleep = (state != STATE_AWAKE);
1093
1094         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1095         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1096         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1097         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1098         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1099         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1100
1101         /*
1102          * Device is not guaranteed to be in the requested state yet.
1103          * We must wait until the register indicates that the
1104          * device has entered the correct state.
1105          */
1106         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1107                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
1108                 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1109                 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1110                 if (bbp_state == state && rf_state == state)
1111                         return 0;
1112                 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1113                 msleep(10);
1114         }
1115
1116         return -EBUSY;
1117 }
1118
1119 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1120                                       enum dev_state state)
1121 {
1122         int retval = 0;
1123
1124         switch (state) {
1125         case STATE_RADIO_ON:
1126                 retval = rt2500pci_enable_radio(rt2x00dev);
1127                 break;
1128         case STATE_RADIO_OFF:
1129                 rt2500pci_disable_radio(rt2x00dev);
1130                 break;
1131         case STATE_RADIO_RX_ON:
1132         case STATE_RADIO_RX_ON_LINK:
1133         case STATE_RADIO_RX_OFF:
1134         case STATE_RADIO_RX_OFF_LINK:
1135                 rt2500pci_toggle_rx(rt2x00dev, state);
1136                 break;
1137         case STATE_RADIO_IRQ_ON:
1138         case STATE_RADIO_IRQ_ON_ISR:
1139         case STATE_RADIO_IRQ_OFF:
1140         case STATE_RADIO_IRQ_OFF_ISR:
1141                 rt2500pci_toggle_irq(rt2x00dev, state);
1142                 break;
1143         case STATE_DEEP_SLEEP:
1144         case STATE_SLEEP:
1145         case STATE_STANDBY:
1146         case STATE_AWAKE:
1147                 retval = rt2500pci_set_state(rt2x00dev, state);
1148                 break;
1149         default:
1150                 retval = -ENOTSUPP;
1151                 break;
1152         }
1153
1154         if (unlikely(retval))
1155                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1156                       state, retval);
1157
1158         return retval;
1159 }
1160
1161 /*
1162  * TX descriptor initialization
1163  */
1164 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1165                                     struct sk_buff *skb,
1166                                     struct txentry_desc *txdesc)
1167 {
1168         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1169         struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1170         __le32 *txd = entry_priv->desc;
1171         u32 word;
1172
1173         /*
1174          * Start writing the descriptor words.
1175          */
1176         rt2x00_desc_read(txd, 1, &word);
1177         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1178         rt2x00_desc_write(txd, 1, word);
1179
1180         rt2x00_desc_read(txd, 2, &word);
1181         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1182         rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1183         rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1184         rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1185         rt2x00_desc_write(txd, 2, word);
1186
1187         rt2x00_desc_read(txd, 3, &word);
1188         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1189         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1190         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1191         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1192         rt2x00_desc_write(txd, 3, word);
1193
1194         rt2x00_desc_read(txd, 10, &word);
1195         rt2x00_set_field32(&word, TXD_W10_RTS,
1196                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1197         rt2x00_desc_write(txd, 10, word);
1198
1199         /*
1200          * Writing TXD word 0 must the last to prevent a race condition with
1201          * the device, whereby the device may take hold of the TXD before we
1202          * finished updating it.
1203          */
1204         rt2x00_desc_read(txd, 0, &word);
1205         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1206         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1207         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1208                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1209         rt2x00_set_field32(&word, TXD_W0_ACK,
1210                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1211         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1212                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1213         rt2x00_set_field32(&word, TXD_W0_OFDM,
1214                            (txdesc->rate_mode == RATE_MODE_OFDM));
1215         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1216         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1217         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1218                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1219         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1220         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1221         rt2x00_desc_write(txd, 0, word);
1222
1223         /*
1224          * Register descriptor details in skb frame descriptor.
1225          */
1226         skbdesc->desc = txd;
1227         skbdesc->desc_len = TXD_DESC_SIZE;
1228 }
1229
1230 /*
1231  * TX data initialization
1232  */
1233 static void rt2500pci_write_beacon(struct queue_entry *entry,
1234                                    struct txentry_desc *txdesc)
1235 {
1236         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1237         u32 reg;
1238
1239         /*
1240          * Disable beaconing while we are reloading the beacon data,
1241          * otherwise we might be sending out invalid data.
1242          */
1243         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1244         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1245         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1246
1247         rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1248
1249         /*
1250          * Write the TX descriptor for the beacon.
1251          */
1252         rt2500pci_write_tx_desc(rt2x00dev, entry->skb, txdesc);
1253
1254         /*
1255          * Dump beacon to userspace through debugfs.
1256          */
1257         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1258
1259         /*
1260          * Enable beaconing again.
1261          */
1262         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1263         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1264         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1265         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1266 }
1267
1268 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1269                                     const enum data_queue_qid queue)
1270 {
1271         u32 reg;
1272
1273         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1274         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1275         rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1276         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1277         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1278 }
1279
1280 static void rt2500pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1281                                     const enum data_queue_qid qid)
1282 {
1283         u32 reg;
1284
1285         if (qid == QID_BEACON) {
1286                 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1287         } else {
1288                 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1289                 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1290                 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1291         }
1292 }
1293
1294 /*
1295  * RX control handlers
1296  */
1297 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1298                                   struct rxdone_entry_desc *rxdesc)
1299 {
1300         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1301         u32 word0;
1302         u32 word2;
1303
1304         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1305         rt2x00_desc_read(entry_priv->desc, 2, &word2);
1306
1307         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1308                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1309         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1310                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1311
1312         /*
1313          * Obtain the status about this packet.
1314          * When frame was received with an OFDM bitrate,
1315          * the signal is the PLCP value. If it was received with
1316          * a CCK bitrate the signal is the rate in 100kbit/s.
1317          */
1318         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1319         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1320             entry->queue->rt2x00dev->rssi_offset;
1321         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1322
1323         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1324                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1325         else
1326                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1327         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1328                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1329 }
1330
1331 /*
1332  * Interrupt functions.
1333  */
1334 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1335                              const enum data_queue_qid queue_idx)
1336 {
1337         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1338         struct queue_entry_priv_pci *entry_priv;
1339         struct queue_entry *entry;
1340         struct txdone_entry_desc txdesc;
1341         u32 word;
1342
1343         while (!rt2x00queue_empty(queue)) {
1344                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1345                 entry_priv = entry->priv_data;
1346                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1347
1348                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1349                     !rt2x00_get_field32(word, TXD_W0_VALID))
1350                         break;
1351
1352                 /*
1353                  * Obtain the status about this packet.
1354                  */
1355                 txdesc.flags = 0;
1356                 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1357                 case 0: /* Success */
1358                 case 1: /* Success with retry */
1359                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1360                         break;
1361                 case 2: /* Failure, excessive retries */
1362                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1363                         /* Don't break, this is a failed frame! */
1364                 default: /* Failure */
1365                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1366                 }
1367                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1368
1369                 rt2x00lib_txdone(entry, &txdesc);
1370         }
1371 }
1372
1373 static irqreturn_t rt2500pci_interrupt_thread(int irq, void *dev_instance)
1374 {
1375         struct rt2x00_dev *rt2x00dev = dev_instance;
1376         u32 reg = rt2x00dev->irqvalue[0];
1377
1378         /*
1379          * Handle interrupts, walk through all bits
1380          * and run the tasks, the bits are checked in order of
1381          * priority.
1382          */
1383
1384         /*
1385          * 1 - Beacon timer expired interrupt.
1386          */
1387         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1388                 rt2x00lib_beacondone(rt2x00dev);
1389
1390         /*
1391          * 2 - Rx ring done interrupt.
1392          */
1393         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1394                 rt2x00pci_rxdone(rt2x00dev);
1395
1396         /*
1397          * 3 - Atim ring transmit done interrupt.
1398          */
1399         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1400                 rt2500pci_txdone(rt2x00dev, QID_ATIM);
1401
1402         /*
1403          * 4 - Priority ring transmit done interrupt.
1404          */
1405         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1406                 rt2500pci_txdone(rt2x00dev, QID_AC_BE);
1407
1408         /*
1409          * 5 - Tx ring transmit done interrupt.
1410          */
1411         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1412                 rt2500pci_txdone(rt2x00dev, QID_AC_BK);
1413
1414         /* Enable interrupts again. */
1415         rt2x00dev->ops->lib->set_device_state(rt2x00dev,
1416                                               STATE_RADIO_IRQ_ON_ISR);
1417
1418         return IRQ_HANDLED;
1419 }
1420
1421 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1422 {
1423         struct rt2x00_dev *rt2x00dev = dev_instance;
1424         u32 reg;
1425
1426         /*
1427          * Get the interrupt sources & saved to local variable.
1428          * Write register value back to clear pending interrupts.
1429          */
1430         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1431         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1432
1433         if (!reg)
1434                 return IRQ_NONE;
1435
1436         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1437                 return IRQ_HANDLED;
1438
1439         /* Store irqvalues for use in the interrupt thread. */
1440         rt2x00dev->irqvalue[0] = reg;
1441
1442         /* Disable interrupts, will be enabled again in the interrupt thread. */
1443         rt2x00dev->ops->lib->set_device_state(rt2x00dev,
1444                                               STATE_RADIO_IRQ_OFF_ISR);
1445
1446         return IRQ_WAKE_THREAD;
1447 }
1448
1449 /*
1450  * Device probe functions.
1451  */
1452 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1453 {
1454         struct eeprom_93cx6 eeprom;
1455         u32 reg;
1456         u16 word;
1457         u8 *mac;
1458
1459         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1460
1461         eeprom.data = rt2x00dev;
1462         eeprom.register_read = rt2500pci_eepromregister_read;
1463         eeprom.register_write = rt2500pci_eepromregister_write;
1464         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1465             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1466         eeprom.reg_data_in = 0;
1467         eeprom.reg_data_out = 0;
1468         eeprom.reg_data_clock = 0;
1469         eeprom.reg_chip_select = 0;
1470
1471         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1472                                EEPROM_SIZE / sizeof(u16));
1473
1474         /*
1475          * Start validation of the data that has been read.
1476          */
1477         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1478         if (!is_valid_ether_addr(mac)) {
1479                 random_ether_addr(mac);
1480                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1481         }
1482
1483         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1484         if (word == 0xffff) {
1485                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1486                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1487                                    ANTENNA_SW_DIVERSITY);
1488                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1489                                    ANTENNA_SW_DIVERSITY);
1490                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1491                                    LED_MODE_DEFAULT);
1492                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1493                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1494                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1495                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1496                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1497         }
1498
1499         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1500         if (word == 0xffff) {
1501                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1502                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1503                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1504                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1505                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1506         }
1507
1508         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1509         if (word == 0xffff) {
1510                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1511                                    DEFAULT_RSSI_OFFSET);
1512                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1513                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1514         }
1515
1516         return 0;
1517 }
1518
1519 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1520 {
1521         u32 reg;
1522         u16 value;
1523         u16 eeprom;
1524
1525         /*
1526          * Read EEPROM word for configuration.
1527          */
1528         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1529
1530         /*
1531          * Identify RF chipset.
1532          */
1533         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1534         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1535         rt2x00_set_chip(rt2x00dev, RT2560, value,
1536                         rt2x00_get_field32(reg, CSR0_REVISION));
1537
1538         if (!rt2x00_rf(rt2x00dev, RF2522) &&
1539             !rt2x00_rf(rt2x00dev, RF2523) &&
1540             !rt2x00_rf(rt2x00dev, RF2524) &&
1541             !rt2x00_rf(rt2x00dev, RF2525) &&
1542             !rt2x00_rf(rt2x00dev, RF2525E) &&
1543             !rt2x00_rf(rt2x00dev, RF5222)) {
1544                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1545                 return -ENODEV;
1546         }
1547
1548         /*
1549          * Identify default antenna configuration.
1550          */
1551         rt2x00dev->default_ant.tx =
1552             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1553         rt2x00dev->default_ant.rx =
1554             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1555
1556         /*
1557          * Store led mode, for correct led behaviour.
1558          */
1559 #ifdef CONFIG_RT2X00_LIB_LEDS
1560         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1561
1562         rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1563         if (value == LED_MODE_TXRX_ACTIVITY ||
1564             value == LED_MODE_DEFAULT ||
1565             value == LED_MODE_ASUS)
1566                 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1567                                    LED_TYPE_ACTIVITY);
1568 #endif /* CONFIG_RT2X00_LIB_LEDS */
1569
1570         /*
1571          * Detect if this device has an hardware controlled radio.
1572          */
1573         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1574                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1575
1576         /*
1577          * Check if the BBP tuning should be enabled.
1578          */
1579         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1580         if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1581                 __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
1582
1583         /*
1584          * Read the RSSI <-> dBm offset information.
1585          */
1586         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1587         rt2x00dev->rssi_offset =
1588             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1589
1590         return 0;
1591 }
1592
1593 /*
1594  * RF value list for RF2522
1595  * Supports: 2.4 GHz
1596  */
1597 static const struct rf_channel rf_vals_bg_2522[] = {
1598         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1599         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1600         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1601         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1602         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1603         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1604         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1605         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1606         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1607         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1608         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1609         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1610         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1611         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1612 };
1613
1614 /*
1615  * RF value list for RF2523
1616  * Supports: 2.4 GHz
1617  */
1618 static const struct rf_channel rf_vals_bg_2523[] = {
1619         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1620         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1621         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1622         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1623         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1624         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1625         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1626         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1627         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1628         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1629         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1630         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1631         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1632         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1633 };
1634
1635 /*
1636  * RF value list for RF2524
1637  * Supports: 2.4 GHz
1638  */
1639 static const struct rf_channel rf_vals_bg_2524[] = {
1640         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1641         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1642         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1643         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1644         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1645         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1646         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1647         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1648         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1649         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1650         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1651         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1652         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1653         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1654 };
1655
1656 /*
1657  * RF value list for RF2525
1658  * Supports: 2.4 GHz
1659  */
1660 static const struct rf_channel rf_vals_bg_2525[] = {
1661         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1662         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1663         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1664         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1665         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1666         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1667         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1668         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1669         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1670         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1671         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1672         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1673         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1674         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1675 };
1676
1677 /*
1678  * RF value list for RF2525e
1679  * Supports: 2.4 GHz
1680  */
1681 static const struct rf_channel rf_vals_bg_2525e[] = {
1682         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1683         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1684         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1685         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1686         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1687         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1688         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1689         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1690         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1691         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1692         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1693         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1694         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1695         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1696 };
1697
1698 /*
1699  * RF value list for RF5222
1700  * Supports: 2.4 GHz & 5.2 GHz
1701  */
1702 static const struct rf_channel rf_vals_5222[] = {
1703         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1704         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1705         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1706         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1707         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1708         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1709         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1710         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1711         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1712         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1713         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1714         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1715         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1716         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1717
1718         /* 802.11 UNI / HyperLan 2 */
1719         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1720         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1721         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1722         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1723         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1724         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1725         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1726         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1727
1728         /* 802.11 HyperLan 2 */
1729         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1730         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1731         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1732         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1733         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1734         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1735         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1736         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1737         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1738         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1739
1740         /* 802.11 UNII */
1741         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1742         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1743         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1744         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1745         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1746 };
1747
1748 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1749 {
1750         struct hw_mode_spec *spec = &rt2x00dev->spec;
1751         struct channel_info *info;
1752         char *tx_power;
1753         unsigned int i;
1754
1755         /*
1756          * Initialize all hw fields.
1757          */
1758         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1759                                IEEE80211_HW_SIGNAL_DBM |
1760                                IEEE80211_HW_SUPPORTS_PS |
1761                                IEEE80211_HW_PS_NULLFUNC_STACK;
1762
1763         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1764         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1765                                 rt2x00_eeprom_addr(rt2x00dev,
1766                                                    EEPROM_MAC_ADDR_0));
1767
1768         /*
1769          * Initialize hw_mode information.
1770          */
1771         spec->supported_bands = SUPPORT_BAND_2GHZ;
1772         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1773
1774         if (rt2x00_rf(rt2x00dev, RF2522)) {
1775                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1776                 spec->channels = rf_vals_bg_2522;
1777         } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1778                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1779                 spec->channels = rf_vals_bg_2523;
1780         } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1781                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1782                 spec->channels = rf_vals_bg_2524;
1783         } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1784                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1785                 spec->channels = rf_vals_bg_2525;
1786         } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1787                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1788                 spec->channels = rf_vals_bg_2525e;
1789         } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1790                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1791                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1792                 spec->channels = rf_vals_5222;
1793         }
1794
1795         /*
1796          * Create channel information array
1797          */
1798         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1799         if (!info)
1800                 return -ENOMEM;
1801
1802         spec->channels_info = info;
1803
1804         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1805         for (i = 0; i < 14; i++) {
1806                 info[i].max_power = MAX_TXPOWER;
1807                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1808         }
1809
1810         if (spec->num_channels > 14) {
1811                 for (i = 14; i < spec->num_channels; i++) {
1812                         info[i].max_power = MAX_TXPOWER;
1813                         info[i].default_power1 = DEFAULT_TXPOWER;
1814                 }
1815         }
1816
1817         return 0;
1818 }
1819
1820 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1821 {
1822         int retval;
1823
1824         /*
1825          * Allocate eeprom data.
1826          */
1827         retval = rt2500pci_validate_eeprom(rt2x00dev);
1828         if (retval)
1829                 return retval;
1830
1831         retval = rt2500pci_init_eeprom(rt2x00dev);
1832         if (retval)
1833                 return retval;
1834
1835         /*
1836          * Initialize hw specifications.
1837          */
1838         retval = rt2500pci_probe_hw_mode(rt2x00dev);
1839         if (retval)
1840                 return retval;
1841
1842         /*
1843          * This device requires the atim queue and DMA-mapped skbs.
1844          */
1845         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1846         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1847
1848         /*
1849          * Set the rssi offset.
1850          */
1851         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1852
1853         return 0;
1854 }
1855
1856 /*
1857  * IEEE80211 stack callback functions.
1858  */
1859 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1860 {
1861         struct rt2x00_dev *rt2x00dev = hw->priv;
1862         u64 tsf;
1863         u32 reg;
1864
1865         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1866         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1867         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1868         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1869
1870         return tsf;
1871 }
1872
1873 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1874 {
1875         struct rt2x00_dev *rt2x00dev = hw->priv;
1876         u32 reg;
1877
1878         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1879         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1880 }
1881
1882 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1883         .tx                     = rt2x00mac_tx,
1884         .start                  = rt2x00mac_start,
1885         .stop                   = rt2x00mac_stop,
1886         .add_interface          = rt2x00mac_add_interface,
1887         .remove_interface       = rt2x00mac_remove_interface,
1888         .config                 = rt2x00mac_config,
1889         .configure_filter       = rt2x00mac_configure_filter,
1890         .sw_scan_start          = rt2x00mac_sw_scan_start,
1891         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1892         .get_stats              = rt2x00mac_get_stats,
1893         .bss_info_changed       = rt2x00mac_bss_info_changed,
1894         .conf_tx                = rt2x00mac_conf_tx,
1895         .get_tsf                = rt2500pci_get_tsf,
1896         .tx_last_beacon         = rt2500pci_tx_last_beacon,
1897         .rfkill_poll            = rt2x00mac_rfkill_poll,
1898 };
1899
1900 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1901         .irq_handler            = rt2500pci_interrupt,
1902         .irq_handler_thread     = rt2500pci_interrupt_thread,
1903         .probe_hw               = rt2500pci_probe_hw,
1904         .initialize             = rt2x00pci_initialize,
1905         .uninitialize           = rt2x00pci_uninitialize,
1906         .get_entry_state        = rt2500pci_get_entry_state,
1907         .clear_entry            = rt2500pci_clear_entry,
1908         .set_device_state       = rt2500pci_set_device_state,
1909         .rfkill_poll            = rt2500pci_rfkill_poll,
1910         .link_stats             = rt2500pci_link_stats,
1911         .reset_tuner            = rt2500pci_reset_tuner,
1912         .link_tuner             = rt2500pci_link_tuner,
1913         .write_tx_desc          = rt2500pci_write_tx_desc,
1914         .write_beacon           = rt2500pci_write_beacon,
1915         .kick_tx_queue          = rt2500pci_kick_tx_queue,
1916         .kill_tx_queue          = rt2500pci_kill_tx_queue,
1917         .fill_rxdone            = rt2500pci_fill_rxdone,
1918         .config_filter          = rt2500pci_config_filter,
1919         .config_intf            = rt2500pci_config_intf,
1920         .config_erp             = rt2500pci_config_erp,
1921         .config_ant             = rt2500pci_config_ant,
1922         .config                 = rt2500pci_config,
1923 };
1924
1925 static const struct data_queue_desc rt2500pci_queue_rx = {
1926         .entry_num              = RX_ENTRIES,
1927         .data_size              = DATA_FRAME_SIZE,
1928         .desc_size              = RXD_DESC_SIZE,
1929         .priv_size              = sizeof(struct queue_entry_priv_pci),
1930 };
1931
1932 static const struct data_queue_desc rt2500pci_queue_tx = {
1933         .entry_num              = TX_ENTRIES,
1934         .data_size              = DATA_FRAME_SIZE,
1935         .desc_size              = TXD_DESC_SIZE,
1936         .priv_size              = sizeof(struct queue_entry_priv_pci),
1937 };
1938
1939 static const struct data_queue_desc rt2500pci_queue_bcn = {
1940         .entry_num              = BEACON_ENTRIES,
1941         .data_size              = MGMT_FRAME_SIZE,
1942         .desc_size              = TXD_DESC_SIZE,
1943         .priv_size              = sizeof(struct queue_entry_priv_pci),
1944 };
1945
1946 static const struct data_queue_desc rt2500pci_queue_atim = {
1947         .entry_num              = ATIM_ENTRIES,
1948         .data_size              = DATA_FRAME_SIZE,
1949         .desc_size              = TXD_DESC_SIZE,
1950         .priv_size              = sizeof(struct queue_entry_priv_pci),
1951 };
1952
1953 static const struct rt2x00_ops rt2500pci_ops = {
1954         .name                   = KBUILD_MODNAME,
1955         .max_sta_intf           = 1,
1956         .max_ap_intf            = 1,
1957         .eeprom_size            = EEPROM_SIZE,
1958         .rf_size                = RF_SIZE,
1959         .tx_queues              = NUM_TX_QUEUES,
1960         .extra_tx_headroom      = 0,
1961         .rx                     = &rt2500pci_queue_rx,
1962         .tx                     = &rt2500pci_queue_tx,
1963         .bcn                    = &rt2500pci_queue_bcn,
1964         .atim                   = &rt2500pci_queue_atim,
1965         .lib                    = &rt2500pci_rt2x00_ops,
1966         .hw                     = &rt2500pci_mac80211_ops,
1967 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1968         .debugfs                = &rt2500pci_rt2x00debug,
1969 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1970 };
1971
1972 /*
1973  * RT2500pci module information.
1974  */
1975 static DEFINE_PCI_DEVICE_TABLE(rt2500pci_device_table) = {
1976         { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1977         { 0, }
1978 };
1979
1980 MODULE_AUTHOR(DRV_PROJECT);
1981 MODULE_VERSION(DRV_VERSION);
1982 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1983 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1984 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1985 MODULE_LICENSE("GPL");
1986
1987 static struct pci_driver rt2500pci_driver = {
1988         .name           = KBUILD_MODNAME,
1989         .id_table       = rt2500pci_device_table,
1990         .probe          = rt2x00pci_probe,
1991         .remove         = __devexit_p(rt2x00pci_remove),
1992         .suspend        = rt2x00pci_suspend,
1993         .resume         = rt2x00pci_resume,
1994 };
1995
1996 static int __init rt2500pci_init(void)
1997 {
1998         return pci_register_driver(&rt2500pci_driver);
1999 }
2000
2001 static void __exit rt2500pci_exit(void)
2002 {
2003         pci_unregister_driver(&rt2500pci_driver);
2004 }
2005
2006 module_init(rt2500pci_init);
2007 module_exit(rt2500pci_exit);