upload tizen1.0 source
[kernel/linux-2.6.36.git] / drivers / net / wireless / ath / ath5k / eeprom.c
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  */
19
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
23
24 #include <linux/slab.h>
25
26 #include "ath5k.h"
27 #include "reg.h"
28 #include "debug.h"
29 #include "base.h"
30
31 /*
32  * Read from eeprom
33  */
34 static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
35 {
36         u32 status, timeout;
37
38         /*
39          * Initialize EEPROM access
40          */
41         if (ah->ah_version == AR5K_AR5210) {
42                 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
43                 (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
44         } else {
45                 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
46                 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
47                                 AR5K_EEPROM_CMD_READ);
48         }
49
50         for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
51                 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
52                 if (status & AR5K_EEPROM_STAT_RDDONE) {
53                         if (status & AR5K_EEPROM_STAT_RDERR)
54                                 return -EIO;
55                         *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
56                                         0xffff);
57                         return 0;
58                 }
59                 udelay(15);
60         }
61
62         return -ETIMEDOUT;
63 }
64
65 /*
66  * Translate binary channel representation in EEPROM to frequency
67  */
68 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
69                                  unsigned int mode)
70 {
71         u16 val;
72
73         if (bin == AR5K_EEPROM_CHANNEL_DIS)
74                 return bin;
75
76         if (mode == AR5K_EEPROM_MODE_11A) {
77                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
78                         val = (5 * bin) + 4800;
79                 else
80                         val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
81                                 (bin * 10) + 5100;
82         } else {
83                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
84                         val = bin + 2300;
85                 else
86                         val = bin + 2400;
87         }
88
89         return val;
90 }
91
92 /*
93  * Initialize eeprom & capabilities structs
94  */
95 static int
96 ath5k_eeprom_init_header(struct ath5k_hw *ah)
97 {
98         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
99         int ret;
100         u16 val;
101         u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
102
103         /*
104          * Read values from EEPROM and store them in the capability structure
105          */
106         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
107         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
108         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
109         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
110         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
111
112         /* Return if we have an old EEPROM */
113         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
114                 return 0;
115
116         /*
117          * Validate the checksum of the EEPROM date. There are some
118          * devices with invalid EEPROMs.
119          */
120         AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
121         if (val) {
122                 eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
123                            AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
124                 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
125                 eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
126
127                 /*
128                  * Fail safe check to prevent stupid loops due
129                  * to busted EEPROMs. XXX: This value is likely too
130                  * big still, waiting on a better value.
131                  */
132                 if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
133                         ATH5K_ERR(ah->ah_sc, "Invalid max custom EEPROM size: "
134                                   "%d (0x%04x) max expected: %d (0x%04x)\n",
135                                   eep_max, eep_max,
136                                   3 * AR5K_EEPROM_INFO_MAX,
137                                   3 * AR5K_EEPROM_INFO_MAX);
138                         return -EIO;
139                 }
140         }
141
142         for (cksum = 0, offset = 0; offset < eep_max; offset++) {
143                 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
144                 cksum ^= val;
145         }
146         if (cksum != AR5K_EEPROM_INFO_CKSUM) {
147                 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM "
148                           "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
149                           cksum, eep_max,
150                           eep_max == AR5K_EEPROM_INFO_MAX ?
151                                 "default size" : "custom size");
152                 return -EIO;
153         }
154
155         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
156             ee_ant_gain);
157
158         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
159                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
160                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
161
162                 /* XXX: Don't know which versions include these two */
163                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
164
165                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
166                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
167
168                 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
169                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
170                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
171                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
172                 }
173         }
174
175         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
176                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
177                 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
178                 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
179
180                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
181                 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
182                 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
183         }
184
185         AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
186
187         if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
188                 ee->ee_is_hb63 = true;
189         else
190                 ee->ee_is_hb63 = false;
191
192         AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
193         ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
194         ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
195
196         /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
197          * and enable serdes programming if needed.
198          *
199          * XXX: Serdes values seem to be fixed so
200          * no need to read them here, we write them
201          * during ath5k_hw_attach */
202         AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
203         ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
204                                                         true : false;
205
206         return 0;
207 }
208
209
210 /*
211  * Read antenna infos from eeprom
212  */
213 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
214                 unsigned int mode)
215 {
216         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
217         u32 o = *offset;
218         u16 val;
219         int ret, i = 0;
220
221         AR5K_EEPROM_READ(o++, val);
222         ee->ee_switch_settling[mode]    = (val >> 8) & 0x7f;
223         ee->ee_atn_tx_rx[mode]          = (val >> 2) & 0x3f;
224         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
225
226         AR5K_EEPROM_READ(o++, val);
227         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
228         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
229         ee->ee_ant_control[mode][i++]   = val & 0x3f;
230
231         AR5K_EEPROM_READ(o++, val);
232         ee->ee_ant_control[mode][i++]   = (val >> 10) & 0x3f;
233         ee->ee_ant_control[mode][i++]   = (val >> 4) & 0x3f;
234         ee->ee_ant_control[mode][i]     = (val << 2) & 0x3f;
235
236         AR5K_EEPROM_READ(o++, val);
237         ee->ee_ant_control[mode][i++]   |= (val >> 14) & 0x3;
238         ee->ee_ant_control[mode][i++]   = (val >> 8) & 0x3f;
239         ee->ee_ant_control[mode][i++]   = (val >> 2) & 0x3f;
240         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
241
242         AR5K_EEPROM_READ(o++, val);
243         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
244         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
245         ee->ee_ant_control[mode][i++]   = val & 0x3f;
246
247         /* Get antenna switch tables */
248         ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
249             (ee->ee_ant_control[mode][0] << 4);
250         ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
251              ee->ee_ant_control[mode][1]        |
252             (ee->ee_ant_control[mode][2] << 6)  |
253             (ee->ee_ant_control[mode][3] << 12) |
254             (ee->ee_ant_control[mode][4] << 18) |
255             (ee->ee_ant_control[mode][5] << 24);
256         ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
257              ee->ee_ant_control[mode][6]        |
258             (ee->ee_ant_control[mode][7] << 6)  |
259             (ee->ee_ant_control[mode][8] << 12) |
260             (ee->ee_ant_control[mode][9] << 18) |
261             (ee->ee_ant_control[mode][10] << 24);
262
263         /* return new offset */
264         *offset = o;
265
266         return 0;
267 }
268
269 /*
270  * Read supported modes and some mode-specific calibration data
271  * from eeprom
272  */
273 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
274                 unsigned int mode)
275 {
276         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
277         u32 o = *offset;
278         u16 val;
279         int ret;
280
281         ee->ee_n_piers[mode] = 0;
282         AR5K_EEPROM_READ(o++, val);
283         ee->ee_adc_desired_size[mode]   = (s8)((val >> 8) & 0xff);
284         switch(mode) {
285         case AR5K_EEPROM_MODE_11A:
286                 ee->ee_ob[mode][3]      = (val >> 5) & 0x7;
287                 ee->ee_db[mode][3]      = (val >> 2) & 0x7;
288                 ee->ee_ob[mode][2]      = (val << 1) & 0x7;
289
290                 AR5K_EEPROM_READ(o++, val);
291                 ee->ee_ob[mode][2]      |= (val >> 15) & 0x1;
292                 ee->ee_db[mode][2]      = (val >> 12) & 0x7;
293                 ee->ee_ob[mode][1]      = (val >> 9) & 0x7;
294                 ee->ee_db[mode][1]      = (val >> 6) & 0x7;
295                 ee->ee_ob[mode][0]      = (val >> 3) & 0x7;
296                 ee->ee_db[mode][0]      = val & 0x7;
297                 break;
298         case AR5K_EEPROM_MODE_11G:
299         case AR5K_EEPROM_MODE_11B:
300                 ee->ee_ob[mode][1]      = (val >> 4) & 0x7;
301                 ee->ee_db[mode][1]      = val & 0x7;
302                 break;
303         }
304
305         AR5K_EEPROM_READ(o++, val);
306         ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
307         ee->ee_thr_62[mode]             = val & 0xff;
308
309         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
310                 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
311
312         AR5K_EEPROM_READ(o++, val);
313         ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
314         ee->ee_tx_frm2xpa_enable[mode]  = val & 0xff;
315
316         AR5K_EEPROM_READ(o++, val);
317         ee->ee_pga_desired_size[mode]   = (val >> 8) & 0xff;
318
319         if ((val & 0xff) & 0x80)
320                 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
321         else
322                 ee->ee_noise_floor_thr[mode] = val & 0xff;
323
324         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
325                 ee->ee_noise_floor_thr[mode] =
326                     mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
327
328         AR5K_EEPROM_READ(o++, val);
329         ee->ee_xlna_gain[mode]          = (val >> 5) & 0xff;
330         ee->ee_x_gain[mode]             = (val >> 1) & 0xf;
331         ee->ee_xpd[mode]                = val & 0x1;
332
333         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
334             mode != AR5K_EEPROM_MODE_11B)
335                 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
336
337         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
338                 AR5K_EEPROM_READ(o++, val);
339                 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
340
341                 if (mode == AR5K_EEPROM_MODE_11A)
342                         ee->ee_xr_power[mode] = val & 0x3f;
343                 else {
344                         /* b_DB_11[bg] and b_OB_11[bg] */
345                         ee->ee_ob[mode][0] = val & 0x7;
346                         ee->ee_db[mode][0] = (val >> 3) & 0x7;
347                 }
348         }
349
350         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
351                 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
352                 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
353         } else {
354                 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
355
356                 AR5K_EEPROM_READ(o++, val);
357                 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
358
359                 if (mode == AR5K_EEPROM_MODE_11G) {
360                         ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
361                         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
362                                 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
363                 }
364         }
365
366         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
367                         mode == AR5K_EEPROM_MODE_11A) {
368                 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
369                 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
370         }
371
372         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
373                 goto done;
374
375         /* Note: >= v5 have bg freq piers on another location
376          * so these freq piers are ignored for >= v5 (should be 0xff
377          * anyway) */
378         switch(mode) {
379         case AR5K_EEPROM_MODE_11A:
380                 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
381                         break;
382
383                 AR5K_EEPROM_READ(o++, val);
384                 ee->ee_margin_tx_rx[mode] = val & 0x3f;
385                 break;
386         case AR5K_EEPROM_MODE_11B:
387                 AR5K_EEPROM_READ(o++, val);
388
389                 ee->ee_pwr_cal_b[0].freq =
390                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
391                 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
392                         ee->ee_n_piers[mode]++;
393
394                 ee->ee_pwr_cal_b[1].freq =
395                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
396                 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
397                         ee->ee_n_piers[mode]++;
398
399                 AR5K_EEPROM_READ(o++, val);
400                 ee->ee_pwr_cal_b[2].freq =
401                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
402                 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
403                         ee->ee_n_piers[mode]++;
404
405                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
406                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
407                 break;
408         case AR5K_EEPROM_MODE_11G:
409                 AR5K_EEPROM_READ(o++, val);
410
411                 ee->ee_pwr_cal_g[0].freq =
412                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
413                 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
414                         ee->ee_n_piers[mode]++;
415
416                 ee->ee_pwr_cal_g[1].freq =
417                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
418                 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
419                         ee->ee_n_piers[mode]++;
420
421                 AR5K_EEPROM_READ(o++, val);
422                 ee->ee_turbo_max_power[mode] = val & 0x7f;
423                 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
424
425                 AR5K_EEPROM_READ(o++, val);
426                 ee->ee_pwr_cal_g[2].freq =
427                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
428                 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
429                         ee->ee_n_piers[mode]++;
430
431                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
432                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
433
434                 AR5K_EEPROM_READ(o++, val);
435                 ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
436                 ee->ee_q_cal[mode] = val & 0x1f;
437
438                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
439                         AR5K_EEPROM_READ(o++, val);
440                         ee->ee_cck_ofdm_gain_delta = val & 0xff;
441                 }
442                 break;
443         }
444
445         /*
446          * Read turbo mode information on newer EEPROM versions
447          */
448         if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
449                 goto done;
450
451         switch (mode){
452         case AR5K_EEPROM_MODE_11A:
453                 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
454
455                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
456                 AR5K_EEPROM_READ(o++, val);
457                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
458                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
459
460                 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
461                 AR5K_EEPROM_READ(o++, val);
462                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
463                 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
464
465                 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
466                         ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
467                 break;
468         case AR5K_EEPROM_MODE_11G:
469                 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
470
471                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
472                 AR5K_EEPROM_READ(o++, val);
473                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
474                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
475
476                 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
477                 AR5K_EEPROM_READ(o++, val);
478                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
479                 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
480                 break;
481         }
482
483 done:
484         /* return new offset */
485         *offset = o;
486
487         return 0;
488 }
489
490 /* Read mode-specific data (except power calibration data) */
491 static int
492 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
493 {
494         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
495         u32 mode_offset[3];
496         unsigned int mode;
497         u32 offset;
498         int ret;
499
500         /*
501          * Get values for all modes
502          */
503         mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
504         mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
505         mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
506
507         ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
508                 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
509
510         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
511                 offset = mode_offset[mode];
512
513                 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
514                 if (ret)
515                         return ret;
516
517                 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
518                 if (ret)
519                         return ret;
520         }
521
522         /* override for older eeprom versions for better performance */
523         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
524                 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
525                 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
526                 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
527         }
528
529         return 0;
530 }
531
532 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
533  * frequency mask) */
534 static inline int
535 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
536                         struct ath5k_chan_pcal_info *pc, unsigned int mode)
537 {
538         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
539         int o = *offset;
540         int i = 0;
541         u8 freq1, freq2;
542         int ret;
543         u16 val;
544
545         ee->ee_n_piers[mode] = 0;
546         while(i < max) {
547                 AR5K_EEPROM_READ(o++, val);
548
549                 freq1 = val & 0xff;
550                 if (!freq1)
551                         break;
552
553                 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
554                                 freq1, mode);
555                 ee->ee_n_piers[mode]++;
556
557                 freq2 = (val >> 8) & 0xff;
558                 if (!freq2)
559                         break;
560
561                 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
562                                 freq2, mode);
563                 ee->ee_n_piers[mode]++;
564         }
565
566         /* return new offset */
567         *offset = o;
568
569         return 0;
570 }
571
572 /* Read frequency piers for 802.11a */
573 static int
574 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
575 {
576         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
577         struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
578         int i, ret;
579         u16 val;
580         u8 mask;
581
582         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
583                 ath5k_eeprom_read_freq_list(ah, &offset,
584                         AR5K_EEPROM_N_5GHZ_CHAN, pcal,
585                         AR5K_EEPROM_MODE_11A);
586         } else {
587                 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
588
589                 AR5K_EEPROM_READ(offset++, val);
590                 pcal[0].freq  = (val >> 9) & mask;
591                 pcal[1].freq  = (val >> 2) & mask;
592                 pcal[2].freq  = (val << 5) & mask;
593
594                 AR5K_EEPROM_READ(offset++, val);
595                 pcal[2].freq |= (val >> 11) & 0x1f;
596                 pcal[3].freq  = (val >> 4) & mask;
597                 pcal[4].freq  = (val << 3) & mask;
598
599                 AR5K_EEPROM_READ(offset++, val);
600                 pcal[4].freq |= (val >> 13) & 0x7;
601                 pcal[5].freq  = (val >> 6) & mask;
602                 pcal[6].freq  = (val << 1) & mask;
603
604                 AR5K_EEPROM_READ(offset++, val);
605                 pcal[6].freq |= (val >> 15) & 0x1;
606                 pcal[7].freq  = (val >> 8) & mask;
607                 pcal[8].freq  = (val >> 1) & mask;
608                 pcal[9].freq  = (val << 6) & mask;
609
610                 AR5K_EEPROM_READ(offset++, val);
611                 pcal[9].freq |= (val >> 10) & 0x3f;
612
613                 /* Fixed number of piers */
614                 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
615
616                 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
617                         pcal[i].freq = ath5k_eeprom_bin2freq(ee,
618                                 pcal[i].freq, AR5K_EEPROM_MODE_11A);
619                 }
620         }
621
622         return 0;
623 }
624
625 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
626 static inline int
627 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
628 {
629         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
630         struct ath5k_chan_pcal_info *pcal;
631
632         switch(mode) {
633         case AR5K_EEPROM_MODE_11B:
634                 pcal = ee->ee_pwr_cal_b;
635                 break;
636         case AR5K_EEPROM_MODE_11G:
637                 pcal = ee->ee_pwr_cal_g;
638                 break;
639         default:
640                 return -EINVAL;
641         }
642
643         ath5k_eeprom_read_freq_list(ah, &offset,
644                 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
645                 mode);
646
647         return 0;
648 }
649
650 /*
651  * Read power calibration for RF5111 chips
652  *
653  * For RF5111 we have an XPD -eXternal Power Detector- curve
654  * for each calibrated channel. Each curve has 0,5dB Power steps
655  * on x axis and PCDAC steps (offsets) on y axis and looks like an
656  * exponential function. To recreate the curve we read 11 points
657  * here and interpolate later.
658  */
659
660 /* Used to match PCDAC steps with power values on RF5111 chips
661  * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
662  * steps that match with the power values we read from eeprom. On
663  * older eeprom versions (< 3.2) these steps are equaly spaced at
664  * 10% of the pcdac curve -until the curve reaches it's maximum-
665  * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
666  * these 11 steps are spaced in a different way. This function returns
667  * the pcdac steps based on eeprom version and curve min/max so that we
668  * can have pcdac/pwr points.
669  */
670 static inline void
671 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
672 {
673         static const u16 intercepts3[] =
674                 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
675         static const u16 intercepts3_2[] =
676                 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
677         const u16 *ip;
678         int i;
679
680         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
681                 ip = intercepts3_2;
682         else
683                 ip = intercepts3;
684
685         for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
686                 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
687 }
688
689 /* Convert RF5111 specific data to generic raw data
690  * used by interpolation code */
691 static int
692 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
693                                 struct ath5k_chan_pcal_info *chinfo)
694 {
695         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
696         struct ath5k_chan_pcal_info_rf5111 *pcinfo;
697         struct ath5k_pdgain_info *pd;
698         u8 pier, point, idx;
699         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
700
701         /* Fill raw data for each calibration pier */
702         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
703
704                 pcinfo = &chinfo[pier].rf5111_info;
705
706                 /* Allocate pd_curves for this cal pier */
707                 chinfo[pier].pd_curves =
708                         kcalloc(AR5K_EEPROM_N_PD_CURVES,
709                                 sizeof(struct ath5k_pdgain_info),
710                                 GFP_KERNEL);
711
712                 if (!chinfo[pier].pd_curves)
713                         return -ENOMEM;
714
715                 /* Only one curve for RF5111
716                  * find out which one and place
717                  * in pd_curves.
718                  * Note: ee_x_gain is reversed here */
719                 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
720
721                         if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
722                                 pdgain_idx[0] = idx;
723                                 break;
724                         }
725                 }
726
727                 ee->ee_pd_gains[mode] = 1;
728
729                 pd = &chinfo[pier].pd_curves[idx];
730
731                 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
732
733                 /* Allocate pd points for this curve */
734                 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
735                                         sizeof(u8), GFP_KERNEL);
736                 if (!pd->pd_step)
737                         return -ENOMEM;
738
739                 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
740                                         sizeof(s16), GFP_KERNEL);
741                 if (!pd->pd_pwr)
742                         return -ENOMEM;
743
744                 /* Fill raw dataset
745                  * (convert power to 0.25dB units
746                  * for RF5112 combatibility) */
747                 for (point = 0; point < pd->pd_points; point++) {
748
749                         /* Absolute values */
750                         pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
751
752                         /* Already sorted */
753                         pd->pd_step[point] = pcinfo->pcdac[point];
754                 }
755
756                 /* Set min/max pwr */
757                 chinfo[pier].min_pwr = pd->pd_pwr[0];
758                 chinfo[pier].max_pwr = pd->pd_pwr[10];
759
760         }
761
762         return 0;
763 }
764
765 /* Parse EEPROM data */
766 static int
767 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
768 {
769         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
770         struct ath5k_chan_pcal_info *pcal;
771         int offset, ret;
772         int i;
773         u16 val;
774
775         offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
776         switch(mode) {
777         case AR5K_EEPROM_MODE_11A:
778                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
779                         return 0;
780
781                 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
782                         offset + AR5K_EEPROM_GROUP1_OFFSET);
783                 if (ret < 0)
784                         return ret;
785
786                 offset += AR5K_EEPROM_GROUP2_OFFSET;
787                 pcal = ee->ee_pwr_cal_a;
788                 break;
789         case AR5K_EEPROM_MODE_11B:
790                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
791                     !AR5K_EEPROM_HDR_11G(ee->ee_header))
792                         return 0;
793
794                 pcal = ee->ee_pwr_cal_b;
795                 offset += AR5K_EEPROM_GROUP3_OFFSET;
796
797                 /* fixed piers */
798                 pcal[0].freq = 2412;
799                 pcal[1].freq = 2447;
800                 pcal[2].freq = 2484;
801                 ee->ee_n_piers[mode] = 3;
802                 break;
803         case AR5K_EEPROM_MODE_11G:
804                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
805                         return 0;
806
807                 pcal = ee->ee_pwr_cal_g;
808                 offset += AR5K_EEPROM_GROUP4_OFFSET;
809
810                 /* fixed piers */
811                 pcal[0].freq = 2312;
812                 pcal[1].freq = 2412;
813                 pcal[2].freq = 2484;
814                 ee->ee_n_piers[mode] = 3;
815                 break;
816         default:
817                 return -EINVAL;
818         }
819
820         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
821                 struct ath5k_chan_pcal_info_rf5111 *cdata =
822                         &pcal[i].rf5111_info;
823
824                 AR5K_EEPROM_READ(offset++, val);
825                 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
826                 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
827                 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
828
829                 AR5K_EEPROM_READ(offset++, val);
830                 cdata->pwr[0] |= ((val >> 14) & 0x3);
831                 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
832                 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
833                 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
834
835                 AR5K_EEPROM_READ(offset++, val);
836                 cdata->pwr[3] |= ((val >> 12) & 0xf);
837                 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
838                 cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
839
840                 AR5K_EEPROM_READ(offset++, val);
841                 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
842                 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
843                 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
844
845                 AR5K_EEPROM_READ(offset++, val);
846                 cdata->pwr[8] |= ((val >> 14) & 0x3);
847                 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
848                 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
849
850                 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
851                         cdata->pcdac_max, cdata->pcdac);
852         }
853
854         return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
855 }
856
857
858 /*
859  * Read power calibration for RF5112 chips
860  *
861  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
862  * for each calibrated channel on 0, -6, -12 and -18dbm but we only
863  * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
864  * power steps on x axis and PCDAC steps on y axis and looks like a
865  * linear function. To recreate the curve and pass the power values
866  * on hw, we read 4 points for xpd 0 (lower gain -> max power)
867  * and 3 points for xpd 3 (higher gain -> lower power) here and
868  * interpolate later.
869  *
870  * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
871  */
872
873 /* Convert RF5112 specific data to generic raw data
874  * used by interpolation code */
875 static int
876 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
877                                 struct ath5k_chan_pcal_info *chinfo)
878 {
879         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
880         struct ath5k_chan_pcal_info_rf5112 *pcinfo;
881         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
882         unsigned int pier, pdg, point;
883
884         /* Fill raw data for each calibration pier */
885         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
886
887                 pcinfo = &chinfo[pier].rf5112_info;
888
889                 /* Allocate pd_curves for this cal pier */
890                 chinfo[pier].pd_curves =
891                                 kcalloc(AR5K_EEPROM_N_PD_CURVES,
892                                         sizeof(struct ath5k_pdgain_info),
893                                         GFP_KERNEL);
894
895                 if (!chinfo[pier].pd_curves)
896                         return -ENOMEM;
897
898                 /* Fill pd_curves */
899                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
900
901                         u8 idx = pdgain_idx[pdg];
902                         struct ath5k_pdgain_info *pd =
903                                         &chinfo[pier].pd_curves[idx];
904
905                         /* Lowest gain curve (max power) */
906                         if (pdg == 0) {
907                                 /* One more point for better accuracy */
908                                 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
909
910                                 /* Allocate pd points for this curve */
911                                 pd->pd_step = kcalloc(pd->pd_points,
912                                                 sizeof(u8), GFP_KERNEL);
913
914                                 if (!pd->pd_step)
915                                         return -ENOMEM;
916
917                                 pd->pd_pwr = kcalloc(pd->pd_points,
918                                                 sizeof(s16), GFP_KERNEL);
919
920                                 if (!pd->pd_pwr)
921                                         return -ENOMEM;
922
923
924                                 /* Fill raw dataset
925                                  * (all power levels are in 0.25dB units) */
926                                 pd->pd_step[0] = pcinfo->pcdac_x0[0];
927                                 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
928
929                                 for (point = 1; point < pd->pd_points;
930                                 point++) {
931                                         /* Absolute values */
932                                         pd->pd_pwr[point] =
933                                                 pcinfo->pwr_x0[point];
934
935                                         /* Deltas */
936                                         pd->pd_step[point] =
937                                                 pd->pd_step[point - 1] +
938                                                 pcinfo->pcdac_x0[point];
939                                 }
940
941                                 /* Set min power for this frequency */
942                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
943
944                         /* Highest gain curve (min power) */
945                         } else if (pdg == 1) {
946
947                                 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
948
949                                 /* Allocate pd points for this curve */
950                                 pd->pd_step = kcalloc(pd->pd_points,
951                                                 sizeof(u8), GFP_KERNEL);
952
953                                 if (!pd->pd_step)
954                                         return -ENOMEM;
955
956                                 pd->pd_pwr = kcalloc(pd->pd_points,
957                                                 sizeof(s16), GFP_KERNEL);
958
959                                 if (!pd->pd_pwr)
960                                         return -ENOMEM;
961
962                                 /* Fill raw dataset
963                                  * (all power levels are in 0.25dB units) */
964                                 for (point = 0; point < pd->pd_points;
965                                 point++) {
966                                         /* Absolute values */
967                                         pd->pd_pwr[point] =
968                                                 pcinfo->pwr_x3[point];
969
970                                         /* Fixed points */
971                                         pd->pd_step[point] =
972                                                 pcinfo->pcdac_x3[point];
973                                 }
974
975                                 /* Since we have a higher gain curve
976                                  * override min power */
977                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
978                         }
979                 }
980         }
981
982         return 0;
983 }
984
985 /* Parse EEPROM data */
986 static int
987 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
988 {
989         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
990         struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
991         struct ath5k_chan_pcal_info *gen_chan_info;
992         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
993         u32 offset;
994         u8 i, c;
995         u16 val;
996         int ret;
997         u8 pd_gains = 0;
998
999         /* Count how many curves we have and
1000          * identify them (which one of the 4
1001          * available curves we have on each count).
1002          * Curves are stored from lower (x0) to
1003          * higher (x3) gain */
1004         for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
1005                 /* ee_x_gain[mode] is x gain mask */
1006                 if ((ee->ee_x_gain[mode] >> i) & 0x1)
1007                         pdgain_idx[pd_gains++] = i;
1008         }
1009         ee->ee_pd_gains[mode] = pd_gains;
1010
1011         if (pd_gains == 0 || pd_gains > 2)
1012                 return -EINVAL;
1013
1014         switch (mode) {
1015         case AR5K_EEPROM_MODE_11A:
1016                 /*
1017                  * Read 5GHz EEPROM channels
1018                  */
1019                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1020                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1021
1022                 offset += AR5K_EEPROM_GROUP2_OFFSET;
1023                 gen_chan_info = ee->ee_pwr_cal_a;
1024                 break;
1025         case AR5K_EEPROM_MODE_11B:
1026                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1027                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1028                         offset += AR5K_EEPROM_GROUP3_OFFSET;
1029
1030                 /* NB: frequency piers parsed during mode init */
1031                 gen_chan_info = ee->ee_pwr_cal_b;
1032                 break;
1033         case AR5K_EEPROM_MODE_11G:
1034                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1035                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1036                         offset += AR5K_EEPROM_GROUP4_OFFSET;
1037                 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1038                         offset += AR5K_EEPROM_GROUP2_OFFSET;
1039
1040                 /* NB: frequency piers parsed during mode init */
1041                 gen_chan_info = ee->ee_pwr_cal_g;
1042                 break;
1043         default:
1044                 return -EINVAL;
1045         }
1046
1047         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1048                 chan_pcal_info = &gen_chan_info[i].rf5112_info;
1049
1050                 /* Power values in quarter dB
1051                  * for the lower xpd gain curve
1052                  * (0 dBm -> higher output power) */
1053                 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1054                         AR5K_EEPROM_READ(offset++, val);
1055                         chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1056                         chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1057                 }
1058
1059                 /* PCDAC steps
1060                  * corresponding to the above power
1061                  * measurements */
1062                 AR5K_EEPROM_READ(offset++, val);
1063                 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1064                 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1065                 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1066
1067                 /* Power values in quarter dB
1068                  * for the higher xpd gain curve
1069                  * (18 dBm -> lower output power) */
1070                 AR5K_EEPROM_READ(offset++, val);
1071                 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1072                 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1073
1074                 AR5K_EEPROM_READ(offset++, val);
1075                 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1076
1077                 /* PCDAC steps
1078                  * corresponding to the above power
1079                  * measurements (fixed) */
1080                 chan_pcal_info->pcdac_x3[0] = 20;
1081                 chan_pcal_info->pcdac_x3[1] = 35;
1082                 chan_pcal_info->pcdac_x3[2] = 63;
1083
1084                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1085                         chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1086
1087                         /* Last xpd0 power level is also channel maximum */
1088                         gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1089                 } else {
1090                         chan_pcal_info->pcdac_x0[0] = 1;
1091                         gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1092                 }
1093
1094         }
1095
1096         return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1097 }
1098
1099
1100 /*
1101  * Read power calibration for RF2413 chips
1102  *
1103  * For RF2413 we have a Power to PDDAC table (Power Detector)
1104  * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1105  * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1106  * axis and looks like an exponential function like the RF5111 curve.
1107  *
1108  * To recreate the curves we read here the points and interpolate
1109  * later. Note that in most cases only 2 (higher and lower) curves are
1110  * used (like RF5112) but vendors have the oportunity to include all
1111  * 4 curves on eeprom. The final curve (higher power) has an extra
1112  * point for better accuracy like RF5112.
1113  */
1114
1115 /* For RF2413 power calibration data doesn't start on a fixed location and
1116  * if a mode is not supported, it's section is missing -not zeroed-.
1117  * So we need to calculate the starting offset for each section by using
1118  * these two functions */
1119
1120 /* Return the size of each section based on the mode and the number of pd
1121  * gains available (maximum 4). */
1122 static inline unsigned int
1123 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1124 {
1125         static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1126         unsigned int sz;
1127
1128         sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1129         sz *= ee->ee_n_piers[mode];
1130
1131         return sz;
1132 }
1133
1134 /* Return the starting offset for a section based on the modes supported
1135  * and each section's size. */
1136 static unsigned int
1137 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1138 {
1139         u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1140
1141         switch(mode) {
1142         case AR5K_EEPROM_MODE_11G:
1143                 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1144                         offset += ath5k_pdgains_size_2413(ee,
1145                                         AR5K_EEPROM_MODE_11B) +
1146                                         AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1147                 /* fall through */
1148         case AR5K_EEPROM_MODE_11B:
1149                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1150                         offset += ath5k_pdgains_size_2413(ee,
1151                                         AR5K_EEPROM_MODE_11A) +
1152                                         AR5K_EEPROM_N_5GHZ_CHAN / 2;
1153                 /* fall through */
1154         case AR5K_EEPROM_MODE_11A:
1155                 break;
1156         default:
1157                 break;
1158         }
1159
1160         return offset;
1161 }
1162
1163 /* Convert RF2413 specific data to generic raw data
1164  * used by interpolation code */
1165 static int
1166 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1167                                 struct ath5k_chan_pcal_info *chinfo)
1168 {
1169         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1170         struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1171         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1172         unsigned int pier, pdg, point;
1173
1174         /* Fill raw data for each calibration pier */
1175         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1176
1177                 pcinfo = &chinfo[pier].rf2413_info;
1178
1179                 /* Allocate pd_curves for this cal pier */
1180                 chinfo[pier].pd_curves =
1181                                 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1182                                         sizeof(struct ath5k_pdgain_info),
1183                                         GFP_KERNEL);
1184
1185                 if (!chinfo[pier].pd_curves)
1186                         return -ENOMEM;
1187
1188                 /* Fill pd_curves */
1189                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1190
1191                         u8 idx = pdgain_idx[pdg];
1192                         struct ath5k_pdgain_info *pd =
1193                                         &chinfo[pier].pd_curves[idx];
1194
1195                         /* One more point for the highest power
1196                          * curve (lowest gain) */
1197                         if (pdg == ee->ee_pd_gains[mode] - 1)
1198                                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1199                         else
1200                                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1201
1202                         /* Allocate pd points for this curve */
1203                         pd->pd_step = kcalloc(pd->pd_points,
1204                                         sizeof(u8), GFP_KERNEL);
1205
1206                         if (!pd->pd_step)
1207                                 return -ENOMEM;
1208
1209                         pd->pd_pwr = kcalloc(pd->pd_points,
1210                                         sizeof(s16), GFP_KERNEL);
1211
1212                         if (!pd->pd_pwr)
1213                                 return -ENOMEM;
1214
1215                         /* Fill raw dataset
1216                          * convert all pwr levels to
1217                          * quarter dB for RF5112 combatibility */
1218                         pd->pd_step[0] = pcinfo->pddac_i[pdg];
1219                         pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1220
1221                         for (point = 1; point < pd->pd_points; point++) {
1222
1223                                 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1224                                         2 * pcinfo->pwr[pdg][point - 1];
1225
1226                                 pd->pd_step[point] = pd->pd_step[point - 1] +
1227                                                 pcinfo->pddac[pdg][point - 1];
1228
1229                         }
1230
1231                         /* Highest gain curve -> min power */
1232                         if (pdg == 0)
1233                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
1234
1235                         /* Lowest gain curve -> max power */
1236                         if (pdg == ee->ee_pd_gains[mode] - 1)
1237                                 chinfo[pier].max_pwr =
1238                                         pd->pd_pwr[pd->pd_points - 1];
1239                 }
1240         }
1241
1242         return 0;
1243 }
1244
1245 /* Parse EEPROM data */
1246 static int
1247 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1248 {
1249         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1250         struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1251         struct ath5k_chan_pcal_info *chinfo;
1252         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1253         u32 offset;
1254         int idx, i, ret;
1255         u16 val;
1256         u8 pd_gains = 0;
1257
1258         /* Count how many curves we have and
1259          * identify them (which one of the 4
1260          * available curves we have on each count).
1261          * Curves are stored from higher to
1262          * lower gain so we go backwards */
1263         for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1264                 /* ee_x_gain[mode] is x gain mask */
1265                 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1266                         pdgain_idx[pd_gains++] = idx;
1267
1268         }
1269         ee->ee_pd_gains[mode] = pd_gains;
1270
1271         if (pd_gains == 0)
1272                 return -EINVAL;
1273
1274         offset = ath5k_cal_data_offset_2413(ee, mode);
1275         switch (mode) {
1276         case AR5K_EEPROM_MODE_11A:
1277                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1278                         return 0;
1279
1280                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1281                 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1282                 chinfo = ee->ee_pwr_cal_a;
1283                 break;
1284         case AR5K_EEPROM_MODE_11B:
1285                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1286                         return 0;
1287
1288                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1289                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1290                 chinfo = ee->ee_pwr_cal_b;
1291                 break;
1292         case AR5K_EEPROM_MODE_11G:
1293                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1294                         return 0;
1295
1296                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1297                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1298                 chinfo = ee->ee_pwr_cal_g;
1299                 break;
1300         default:
1301                 return -EINVAL;
1302         }
1303
1304         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1305                 pcinfo = &chinfo[i].rf2413_info;
1306
1307                 /*
1308                  * Read pwr_i, pddac_i and the first
1309                  * 2 pd points (pwr, pddac)
1310                  */
1311                 AR5K_EEPROM_READ(offset++, val);
1312                 pcinfo->pwr_i[0] = val & 0x1f;
1313                 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1314                 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1315
1316                 AR5K_EEPROM_READ(offset++, val);
1317                 pcinfo->pddac[0][0] = val & 0x3f;
1318                 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1319                 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1320
1321                 AR5K_EEPROM_READ(offset++, val);
1322                 pcinfo->pwr[0][2] = val & 0xf;
1323                 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1324
1325                 pcinfo->pwr[0][3] = 0;
1326                 pcinfo->pddac[0][3] = 0;
1327
1328                 if (pd_gains > 1) {
1329                         /*
1330                          * Pd gain 0 is not the last pd gain
1331                          * so it only has 2 pd points.
1332                          * Continue wih pd gain 1.
1333                          */
1334                         pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1335
1336                         pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1337                         AR5K_EEPROM_READ(offset++, val);
1338                         pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1339
1340                         pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1341                         pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1342
1343                         AR5K_EEPROM_READ(offset++, val);
1344                         pcinfo->pwr[1][1] = val & 0xf;
1345                         pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1346                         pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1347
1348                         pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1349                         AR5K_EEPROM_READ(offset++, val);
1350                         pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1351
1352                         pcinfo->pwr[1][3] = 0;
1353                         pcinfo->pddac[1][3] = 0;
1354                 } else if (pd_gains == 1) {
1355                         /*
1356                          * Pd gain 0 is the last one so
1357                          * read the extra point.
1358                          */
1359                         pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1360
1361                         pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1362                         AR5K_EEPROM_READ(offset++, val);
1363                         pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1364                 }
1365
1366                 /*
1367                  * Proceed with the other pd_gains
1368                  * as above.
1369                  */
1370                 if (pd_gains > 2) {
1371                         pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1372                         pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1373
1374                         AR5K_EEPROM_READ(offset++, val);
1375                         pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1376                         pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1377                         pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1378
1379                         pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1380                         AR5K_EEPROM_READ(offset++, val);
1381                         pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1382
1383                         pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1384                         pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1385
1386                         pcinfo->pwr[2][3] = 0;
1387                         pcinfo->pddac[2][3] = 0;
1388                 } else if (pd_gains == 2) {
1389                         pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1390                         pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1391                 }
1392
1393                 if (pd_gains > 3) {
1394                         pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1395                         AR5K_EEPROM_READ(offset++, val);
1396                         pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1397
1398                         pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1399                         pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1400                         pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1401
1402                         AR5K_EEPROM_READ(offset++, val);
1403                         pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1404                         pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1405                         pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1406
1407                         pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1408                         AR5K_EEPROM_READ(offset++, val);
1409                         pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1410
1411                         pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1412                         pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1413
1414                         pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1415                         AR5K_EEPROM_READ(offset++, val);
1416                         pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1417                 } else if (pd_gains == 3) {
1418                         pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1419                         AR5K_EEPROM_READ(offset++, val);
1420                         pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1421
1422                         pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1423                 }
1424         }
1425
1426         return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1427 }
1428
1429
1430 /*
1431  * Read per rate target power (this is the maximum tx power
1432  * supported by the card). This info is used when setting
1433  * tx power, no matter the channel.
1434  *
1435  * This also works for v5 EEPROMs.
1436  */
1437 static int
1438 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1439 {
1440         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1441         struct ath5k_rate_pcal_info *rate_pcal_info;
1442         u8 *rate_target_pwr_num;
1443         u32 offset;
1444         u16 val;
1445         int ret, i;
1446
1447         offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1448         rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1449         switch (mode) {
1450         case AR5K_EEPROM_MODE_11A:
1451                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1452                 rate_pcal_info = ee->ee_rate_tpwr_a;
1453                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1454                 break;
1455         case AR5K_EEPROM_MODE_11B:
1456                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1457                 rate_pcal_info = ee->ee_rate_tpwr_b;
1458                 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1459                 break;
1460         case AR5K_EEPROM_MODE_11G:
1461                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1462                 rate_pcal_info = ee->ee_rate_tpwr_g;
1463                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1464                 break;
1465         default:
1466                 return -EINVAL;
1467         }
1468
1469         /* Different freq mask for older eeproms (<= v3.2) */
1470         if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1471                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1472                         AR5K_EEPROM_READ(offset++, val);
1473                         rate_pcal_info[i].freq =
1474                             ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1475
1476                         rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1477                         rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1478
1479                         AR5K_EEPROM_READ(offset++, val);
1480
1481                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1482                             val == 0) {
1483                                 (*rate_target_pwr_num) = i;
1484                                 break;
1485                         }
1486
1487                         rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1488                         rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1489                         rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1490                 }
1491         } else {
1492                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1493                         AR5K_EEPROM_READ(offset++, val);
1494                         rate_pcal_info[i].freq =
1495                             ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1496
1497                         rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1498                         rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1499
1500                         AR5K_EEPROM_READ(offset++, val);
1501
1502                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1503                             val == 0) {
1504                                 (*rate_target_pwr_num) = i;
1505                                 break;
1506                         }
1507
1508                         rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1509                         rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1510                         rate_pcal_info[i].target_power_54 = (val & 0x3f);
1511                 }
1512         }
1513
1514         return 0;
1515 }
1516
1517 /*
1518  * Read per channel calibration info from EEPROM
1519  *
1520  * This info is used to calibrate the baseband power table. Imagine
1521  * that for each channel there is a power curve that's hw specific
1522  * (depends on amplifier etc) and we try to "correct" this curve using
1523  * offsets we pass on to phy chip (baseband -> before amplifier) so that
1524  * it can use accurate power values when setting tx power (takes amplifier's
1525  * performance on each channel into account).
1526  *
1527  * EEPROM provides us with the offsets for some pre-calibrated channels
1528  * and we have to interpolate to create the full table for these channels and
1529  * also the table for any channel.
1530  */
1531 static int
1532 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1533 {
1534         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1535         int (*read_pcal)(struct ath5k_hw *hw, int mode);
1536         int mode;
1537         int err;
1538
1539         if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1540                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1541                 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1542         else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1543                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1544                 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1545         else
1546                 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1547
1548
1549         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1550         mode++) {
1551                 err = read_pcal(ah, mode);
1552                 if (err)
1553                         return err;
1554
1555                 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1556                 if (err < 0)
1557                         return err;
1558         }
1559
1560         return 0;
1561 }
1562
1563 static int
1564 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
1565 {
1566         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1567         struct ath5k_chan_pcal_info *chinfo;
1568         u8 pier, pdg;
1569
1570         switch (mode) {
1571         case AR5K_EEPROM_MODE_11A:
1572                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1573                         return 0;
1574                 chinfo = ee->ee_pwr_cal_a;
1575                 break;
1576         case AR5K_EEPROM_MODE_11B:
1577                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1578                         return 0;
1579                 chinfo = ee->ee_pwr_cal_b;
1580                 break;
1581         case AR5K_EEPROM_MODE_11G:
1582                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1583                         return 0;
1584                 chinfo = ee->ee_pwr_cal_g;
1585                 break;
1586         default:
1587                 return -EINVAL;
1588         }
1589
1590         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1591                 if (!chinfo[pier].pd_curves)
1592                         continue;
1593
1594                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1595                         struct ath5k_pdgain_info *pd =
1596                                         &chinfo[pier].pd_curves[pdg];
1597
1598                         if (pd != NULL) {
1599                                 kfree(pd->pd_step);
1600                                 kfree(pd->pd_pwr);
1601                         }
1602                 }
1603
1604                 kfree(chinfo[pier].pd_curves);
1605         }
1606
1607         return 0;
1608 }
1609
1610 void
1611 ath5k_eeprom_detach(struct ath5k_hw *ah)
1612 {
1613         u8 mode;
1614
1615         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1616                 ath5k_eeprom_free_pcal_info(ah, mode);
1617 }
1618
1619 /* Read conformance test limits used for regulatory control */
1620 static int
1621 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1622 {
1623         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1624         struct ath5k_edge_power *rep;
1625         unsigned int fmask, pmask;
1626         unsigned int ctl_mode;
1627         int ret, i, j;
1628         u32 offset;
1629         u16 val;
1630
1631         pmask = AR5K_EEPROM_POWER_M;
1632         fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1633         offset = AR5K_EEPROM_CTL(ee->ee_version);
1634         ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1635         for (i = 0; i < ee->ee_ctls; i += 2) {
1636                 AR5K_EEPROM_READ(offset++, val);
1637                 ee->ee_ctl[i] = (val >> 8) & 0xff;
1638                 ee->ee_ctl[i + 1] = val & 0xff;
1639         }
1640
1641         offset = AR5K_EEPROM_GROUP8_OFFSET;
1642         if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1643                 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1644                         AR5K_EEPROM_GROUP5_OFFSET;
1645         else
1646                 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1647
1648         rep = ee->ee_ctl_pwr;
1649         for(i = 0; i < ee->ee_ctls; i++) {
1650                 switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1651                 case AR5K_CTL_11A:
1652                 case AR5K_CTL_TURBO:
1653                         ctl_mode = AR5K_EEPROM_MODE_11A;
1654                         break;
1655                 default:
1656                         ctl_mode = AR5K_EEPROM_MODE_11G;
1657                         break;
1658                 }
1659                 if (ee->ee_ctl[i] == 0) {
1660                         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1661                                 offset += 8;
1662                         else
1663                                 offset += 7;
1664                         rep += AR5K_EEPROM_N_EDGES;
1665                         continue;
1666                 }
1667                 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1668                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1669                                 AR5K_EEPROM_READ(offset++, val);
1670                                 rep[j].freq = (val >> 8) & fmask;
1671                                 rep[j + 1].freq = val & fmask;
1672                         }
1673                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1674                                 AR5K_EEPROM_READ(offset++, val);
1675                                 rep[j].edge = (val >> 8) & pmask;
1676                                 rep[j].flag = (val >> 14) & 1;
1677                                 rep[j + 1].edge = val & pmask;
1678                                 rep[j + 1].flag = (val >> 6) & 1;
1679                         }
1680                 } else {
1681                         AR5K_EEPROM_READ(offset++, val);
1682                         rep[0].freq = (val >> 9) & fmask;
1683                         rep[1].freq = (val >> 2) & fmask;
1684                         rep[2].freq = (val << 5) & fmask;
1685
1686                         AR5K_EEPROM_READ(offset++, val);
1687                         rep[2].freq |= (val >> 11) & 0x1f;
1688                         rep[3].freq = (val >> 4) & fmask;
1689                         rep[4].freq = (val << 3) & fmask;
1690
1691                         AR5K_EEPROM_READ(offset++, val);
1692                         rep[4].freq |= (val >> 13) & 0x7;
1693                         rep[5].freq = (val >> 6) & fmask;
1694                         rep[6].freq = (val << 1) & fmask;
1695
1696                         AR5K_EEPROM_READ(offset++, val);
1697                         rep[6].freq |= (val >> 15) & 0x1;
1698                         rep[7].freq = (val >> 8) & fmask;
1699
1700                         rep[0].edge = (val >> 2) & pmask;
1701                         rep[1].edge = (val << 4) & pmask;
1702
1703                         AR5K_EEPROM_READ(offset++, val);
1704                         rep[1].edge |= (val >> 12) & 0xf;
1705                         rep[2].edge = (val >> 6) & pmask;
1706                         rep[3].edge = val & pmask;
1707
1708                         AR5K_EEPROM_READ(offset++, val);
1709                         rep[4].edge = (val >> 10) & pmask;
1710                         rep[5].edge = (val >> 4) & pmask;
1711                         rep[6].edge = (val << 2) & pmask;
1712
1713                         AR5K_EEPROM_READ(offset++, val);
1714                         rep[6].edge |= (val >> 14) & 0x3;
1715                         rep[7].edge = (val >> 8) & pmask;
1716                 }
1717                 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1718                         rep[j].freq = ath5k_eeprom_bin2freq(ee,
1719                                 rep[j].freq, ctl_mode);
1720                 }
1721                 rep += AR5K_EEPROM_N_EDGES;
1722         }
1723
1724         return 0;
1725 }
1726
1727 static int
1728 ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1729 {
1730         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1731         u32 offset;
1732         u16 val;
1733         int ret = 0, i;
1734
1735         offset = AR5K_EEPROM_CTL(ee->ee_version) +
1736                                 AR5K_EEPROM_N_CTLS(ee->ee_version);
1737
1738         if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1739                 /* No spur info for 5GHz */
1740                 ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1741                 /* 2 channels for 2GHz (2464/2420) */
1742                 ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1743                 ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1744                 ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1745         } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1746                 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1747                         AR5K_EEPROM_READ(offset, val);
1748                         ee->ee_spur_chans[i][0] = val;
1749                         AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1750                                                                         val);
1751                         ee->ee_spur_chans[i][1] = val;
1752                         offset++;
1753                 }
1754         }
1755
1756         return ret;
1757 }
1758
1759 /*
1760  * Initialize eeprom data structure
1761  */
1762 int
1763 ath5k_eeprom_init(struct ath5k_hw *ah)
1764 {
1765         int err;
1766
1767         err = ath5k_eeprom_init_header(ah);
1768         if (err < 0)
1769                 return err;
1770
1771         err = ath5k_eeprom_init_modes(ah);
1772         if (err < 0)
1773                 return err;
1774
1775         err = ath5k_eeprom_read_pcal_info(ah);
1776         if (err < 0)
1777                 return err;
1778
1779         err = ath5k_eeprom_read_ctl_info(ah);
1780         if (err < 0)
1781                 return err;
1782
1783         err = ath5k_eeprom_read_spur_chans(ah);
1784         if (err < 0)
1785                 return err;
1786
1787         return 0;
1788 }
1789
1790 /*
1791  * Read the MAC address from eeprom
1792  */
1793 int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1794 {
1795         u8 mac_d[ETH_ALEN] = {};
1796         u32 total, offset;
1797         u16 data;
1798         int octet, ret;
1799
1800         ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
1801         if (ret)
1802                 return ret;
1803
1804         for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1805                 ret = ath5k_hw_eeprom_read(ah, offset, &data);
1806                 if (ret)
1807                         return ret;
1808
1809                 total += data;
1810                 mac_d[octet + 1] = data & 0xff;
1811                 mac_d[octet] = data >> 8;
1812                 octet += 2;
1813         }
1814
1815         if (!total || total == 3 * 0xffff)
1816                 return -EINVAL;
1817
1818         memcpy(mac, mac_d, ETH_ALEN);
1819
1820         return 0;
1821 }