upload tizen1.0 source
[kernel/linux-2.6.36.git] / drivers / net / sfc / tx.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2009 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "workarounds.h"
24
25 /*
26  * TX descriptor ring full threshold
27  *
28  * The tx_queue descriptor ring fill-level must fall below this value
29  * before we restart the netif queue
30  */
31 #define EFX_TXQ_THRESHOLD (EFX_TXQ_MASK / 2u)
32
33 /* We need to be able to nest calls to netif_tx_stop_queue(), partly
34  * because of the 2 hardware queues associated with each core queue,
35  * but also so that we can inhibit TX for reasons other than a full
36  * hardware queue. */
37 void efx_stop_queue(struct efx_channel *channel)
38 {
39         struct efx_nic *efx = channel->efx;
40
41         if (!channel->tx_queue)
42                 return;
43
44         spin_lock_bh(&channel->tx_stop_lock);
45         netif_vdbg(efx, tx_queued, efx->net_dev, "stop TX queue\n");
46
47         atomic_inc(&channel->tx_stop_count);
48         netif_tx_stop_queue(
49                 netdev_get_tx_queue(
50                         efx->net_dev,
51                         channel->tx_queue->queue / EFX_TXQ_TYPES));
52
53         spin_unlock_bh(&channel->tx_stop_lock);
54 }
55
56 /* Decrement core TX queue stop count and wake it if the count is 0 */
57 void efx_wake_queue(struct efx_channel *channel)
58 {
59         struct efx_nic *efx = channel->efx;
60
61         if (!channel->tx_queue)
62                 return;
63
64         local_bh_disable();
65         if (atomic_dec_and_lock(&channel->tx_stop_count,
66                                 &channel->tx_stop_lock)) {
67                 netif_vdbg(efx, tx_queued, efx->net_dev, "waking TX queue\n");
68                 netif_tx_wake_queue(
69                         netdev_get_tx_queue(
70                                 efx->net_dev,
71                                 channel->tx_queue->queue / EFX_TXQ_TYPES));
72                 spin_unlock(&channel->tx_stop_lock);
73         }
74         local_bh_enable();
75 }
76
77 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
78                                struct efx_tx_buffer *buffer)
79 {
80         if (buffer->unmap_len) {
81                 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
82                 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
83                                          buffer->unmap_len);
84                 if (buffer->unmap_single)
85                         pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
86                                          PCI_DMA_TODEVICE);
87                 else
88                         pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
89                                        PCI_DMA_TODEVICE);
90                 buffer->unmap_len = 0;
91                 buffer->unmap_single = false;
92         }
93
94         if (buffer->skb) {
95                 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
96                 buffer->skb = NULL;
97                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
98                            "TX queue %d transmission id %x complete\n",
99                            tx_queue->queue, tx_queue->read_count);
100         }
101 }
102
103 /**
104  * struct efx_tso_header - a DMA mapped buffer for packet headers
105  * @next: Linked list of free ones.
106  *      The list is protected by the TX queue lock.
107  * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
108  * @dma_addr: The DMA address of the header below.
109  *
110  * This controls the memory used for a TSO header.  Use TSOH_DATA()
111  * to find the packet header data.  Use TSOH_SIZE() to calculate the
112  * total size required for a given packet header length.  TSO headers
113  * in the free list are exactly %TSOH_STD_SIZE bytes in size.
114  */
115 struct efx_tso_header {
116         union {
117                 struct efx_tso_header *next;
118                 size_t unmap_len;
119         };
120         dma_addr_t dma_addr;
121 };
122
123 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
124                                struct sk_buff *skb);
125 static void efx_fini_tso(struct efx_tx_queue *tx_queue);
126 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
127                                struct efx_tso_header *tsoh);
128
129 static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
130                           struct efx_tx_buffer *buffer)
131 {
132         if (buffer->tsoh) {
133                 if (likely(!buffer->tsoh->unmap_len)) {
134                         buffer->tsoh->next = tx_queue->tso_headers_free;
135                         tx_queue->tso_headers_free = buffer->tsoh;
136                 } else {
137                         efx_tsoh_heap_free(tx_queue, buffer->tsoh);
138                 }
139                 buffer->tsoh = NULL;
140         }
141 }
142
143
144 static inline unsigned
145 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
146 {
147         /* Depending on the NIC revision, we can use descriptor
148          * lengths up to 8K or 8K-1.  However, since PCI Express
149          * devices must split read requests at 4K boundaries, there is
150          * little benefit from using descriptors that cross those
151          * boundaries and we keep things simple by not doing so.
152          */
153         unsigned len = (~dma_addr & 0xfff) + 1;
154
155         /* Work around hardware bug for unaligned buffers. */
156         if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
157                 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
158
159         return len;
160 }
161
162 /*
163  * Add a socket buffer to a TX queue
164  *
165  * This maps all fragments of a socket buffer for DMA and adds them to
166  * the TX queue.  The queue's insert pointer will be incremented by
167  * the number of fragments in the socket buffer.
168  *
169  * If any DMA mapping fails, any mapped fragments will be unmapped,
170  * the queue's insert pointer will be restored to its original value.
171  *
172  * This function is split out from efx_hard_start_xmit to allow the
173  * loopback test to direct packets via specific TX queues.
174  *
175  * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
176  * You must hold netif_tx_lock() to call this function.
177  */
178 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
179 {
180         struct efx_nic *efx = tx_queue->efx;
181         struct pci_dev *pci_dev = efx->pci_dev;
182         struct efx_tx_buffer *buffer;
183         skb_frag_t *fragment;
184         struct page *page;
185         int page_offset;
186         unsigned int len, unmap_len = 0, fill_level, insert_ptr;
187         dma_addr_t dma_addr, unmap_addr = 0;
188         unsigned int dma_len;
189         bool unmap_single;
190         int q_space, i = 0;
191         netdev_tx_t rc = NETDEV_TX_OK;
192
193         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
194
195         if (skb_shinfo(skb)->gso_size)
196                 return efx_enqueue_skb_tso(tx_queue, skb);
197
198         /* Get size of the initial fragment */
199         len = skb_headlen(skb);
200
201         /* Pad if necessary */
202         if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
203                 EFX_BUG_ON_PARANOID(skb->data_len);
204                 len = 32 + 1;
205                 if (skb_pad(skb, len - skb->len))
206                         return NETDEV_TX_OK;
207         }
208
209         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
210         q_space = EFX_TXQ_MASK - 1 - fill_level;
211
212         /* Map for DMA.  Use pci_map_single rather than pci_map_page
213          * since this is more efficient on machines with sparse
214          * memory.
215          */
216         unmap_single = true;
217         dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
218
219         /* Process all fragments */
220         while (1) {
221                 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
222                         goto pci_err;
223
224                 /* Store fields for marking in the per-fragment final
225                  * descriptor */
226                 unmap_len = len;
227                 unmap_addr = dma_addr;
228
229                 /* Add to TX queue, splitting across DMA boundaries */
230                 do {
231                         if (unlikely(q_space-- <= 0)) {
232                                 /* It might be that completions have
233                                  * happened since the xmit path last
234                                  * checked.  Update the xmit path's
235                                  * copy of read_count.
236                                  */
237                                 ++tx_queue->stopped;
238                                 /* This memory barrier protects the
239                                  * change of stopped from the access
240                                  * of read_count. */
241                                 smp_mb();
242                                 tx_queue->old_read_count =
243                                         *(volatile unsigned *)
244                                         &tx_queue->read_count;
245                                 fill_level = (tx_queue->insert_count
246                                               - tx_queue->old_read_count);
247                                 q_space = EFX_TXQ_MASK - 1 - fill_level;
248                                 if (unlikely(q_space-- <= 0))
249                                         goto stop;
250                                 smp_mb();
251                                 --tx_queue->stopped;
252                         }
253
254                         insert_ptr = tx_queue->insert_count & EFX_TXQ_MASK;
255                         buffer = &tx_queue->buffer[insert_ptr];
256                         efx_tsoh_free(tx_queue, buffer);
257                         EFX_BUG_ON_PARANOID(buffer->tsoh);
258                         EFX_BUG_ON_PARANOID(buffer->skb);
259                         EFX_BUG_ON_PARANOID(buffer->len);
260                         EFX_BUG_ON_PARANOID(!buffer->continuation);
261                         EFX_BUG_ON_PARANOID(buffer->unmap_len);
262
263                         dma_len = efx_max_tx_len(efx, dma_addr);
264                         if (likely(dma_len >= len))
265                                 dma_len = len;
266
267                         /* Fill out per descriptor fields */
268                         buffer->len = dma_len;
269                         buffer->dma_addr = dma_addr;
270                         len -= dma_len;
271                         dma_addr += dma_len;
272                         ++tx_queue->insert_count;
273                 } while (len);
274
275                 /* Transfer ownership of the unmapping to the final buffer */
276                 buffer->unmap_single = unmap_single;
277                 buffer->unmap_len = unmap_len;
278                 unmap_len = 0;
279
280                 /* Get address and size of next fragment */
281                 if (i >= skb_shinfo(skb)->nr_frags)
282                         break;
283                 fragment = &skb_shinfo(skb)->frags[i];
284                 len = fragment->size;
285                 page = fragment->page;
286                 page_offset = fragment->page_offset;
287                 i++;
288                 /* Map for DMA */
289                 unmap_single = false;
290                 dma_addr = pci_map_page(pci_dev, page, page_offset, len,
291                                         PCI_DMA_TODEVICE);
292         }
293
294         /* Transfer ownership of the skb to the final buffer */
295         buffer->skb = skb;
296         buffer->continuation = false;
297
298         /* Pass off to hardware */
299         efx_nic_push_buffers(tx_queue);
300
301         return NETDEV_TX_OK;
302
303  pci_err:
304         netif_err(efx, tx_err, efx->net_dev,
305                   " TX queue %d could not map skb with %d bytes %d "
306                   "fragments for DMA\n", tx_queue->queue, skb->len,
307                   skb_shinfo(skb)->nr_frags + 1);
308
309         /* Mark the packet as transmitted, and free the SKB ourselves */
310         dev_kfree_skb_any(skb);
311         goto unwind;
312
313  stop:
314         rc = NETDEV_TX_BUSY;
315
316         if (tx_queue->stopped == 1)
317                 efx_stop_queue(tx_queue->channel);
318
319  unwind:
320         /* Work backwards until we hit the original insert pointer value */
321         while (tx_queue->insert_count != tx_queue->write_count) {
322                 --tx_queue->insert_count;
323                 insert_ptr = tx_queue->insert_count & EFX_TXQ_MASK;
324                 buffer = &tx_queue->buffer[insert_ptr];
325                 efx_dequeue_buffer(tx_queue, buffer);
326                 buffer->len = 0;
327         }
328
329         /* Free the fragment we were mid-way through pushing */
330         if (unmap_len) {
331                 if (unmap_single)
332                         pci_unmap_single(pci_dev, unmap_addr, unmap_len,
333                                          PCI_DMA_TODEVICE);
334                 else
335                         pci_unmap_page(pci_dev, unmap_addr, unmap_len,
336                                        PCI_DMA_TODEVICE);
337         }
338
339         return rc;
340 }
341
342 /* Remove packets from the TX queue
343  *
344  * This removes packets from the TX queue, up to and including the
345  * specified index.
346  */
347 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
348                                 unsigned int index)
349 {
350         struct efx_nic *efx = tx_queue->efx;
351         unsigned int stop_index, read_ptr;
352
353         stop_index = (index + 1) & EFX_TXQ_MASK;
354         read_ptr = tx_queue->read_count & EFX_TXQ_MASK;
355
356         while (read_ptr != stop_index) {
357                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
358                 if (unlikely(buffer->len == 0)) {
359                         netif_err(efx, tx_err, efx->net_dev,
360                                   "TX queue %d spurious TX completion id %x\n",
361                                   tx_queue->queue, read_ptr);
362                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
363                         return;
364                 }
365
366                 efx_dequeue_buffer(tx_queue, buffer);
367                 buffer->continuation = true;
368                 buffer->len = 0;
369
370                 ++tx_queue->read_count;
371                 read_ptr = tx_queue->read_count & EFX_TXQ_MASK;
372         }
373 }
374
375 /* Initiate a packet transmission.  We use one channel per CPU
376  * (sharing when we have more CPUs than channels).  On Falcon, the TX
377  * completion events will be directed back to the CPU that transmitted
378  * the packet, which should be cache-efficient.
379  *
380  * Context: non-blocking.
381  * Note that returning anything other than NETDEV_TX_OK will cause the
382  * OS to free the skb.
383  */
384 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
385                                       struct net_device *net_dev)
386 {
387         struct efx_nic *efx = netdev_priv(net_dev);
388         struct efx_tx_queue *tx_queue;
389
390         if (unlikely(efx->port_inhibited))
391                 return NETDEV_TX_BUSY;
392
393         tx_queue = &efx->tx_queue[EFX_TXQ_TYPES * skb_get_queue_mapping(skb)];
394         if (likely(skb->ip_summed == CHECKSUM_PARTIAL))
395                 tx_queue += EFX_TXQ_TYPE_OFFLOAD;
396
397         return efx_enqueue_skb(tx_queue, skb);
398 }
399
400 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
401 {
402         unsigned fill_level;
403         struct efx_nic *efx = tx_queue->efx;
404
405         EFX_BUG_ON_PARANOID(index > EFX_TXQ_MASK);
406
407         efx_dequeue_buffers(tx_queue, index);
408
409         /* See if we need to restart the netif queue.  This barrier
410          * separates the update of read_count from the test of
411          * stopped. */
412         smp_mb();
413         if (unlikely(tx_queue->stopped) && likely(efx->port_enabled)) {
414                 fill_level = tx_queue->insert_count - tx_queue->read_count;
415                 if (fill_level < EFX_TXQ_THRESHOLD) {
416                         EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
417
418                         /* Do this under netif_tx_lock(), to avoid racing
419                          * with efx_xmit(). */
420                         netif_tx_lock(efx->net_dev);
421                         if (tx_queue->stopped) {
422                                 tx_queue->stopped = 0;
423                                 efx_wake_queue(tx_queue->channel);
424                         }
425                         netif_tx_unlock(efx->net_dev);
426                 }
427         }
428 }
429
430 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
431 {
432         struct efx_nic *efx = tx_queue->efx;
433         unsigned int txq_size;
434         int i, rc;
435
436         netif_dbg(efx, probe, efx->net_dev, "creating TX queue %d\n",
437                   tx_queue->queue);
438
439         /* Allocate software ring */
440         txq_size = EFX_TXQ_SIZE * sizeof(*tx_queue->buffer);
441         tx_queue->buffer = kzalloc(txq_size, GFP_KERNEL);
442         if (!tx_queue->buffer)
443                 return -ENOMEM;
444         for (i = 0; i <= EFX_TXQ_MASK; ++i)
445                 tx_queue->buffer[i].continuation = true;
446
447         /* Allocate hardware ring */
448         rc = efx_nic_probe_tx(tx_queue);
449         if (rc)
450                 goto fail;
451
452         return 0;
453
454  fail:
455         kfree(tx_queue->buffer);
456         tx_queue->buffer = NULL;
457         return rc;
458 }
459
460 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
461 {
462         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
463                   "initialising TX queue %d\n", tx_queue->queue);
464
465         tx_queue->insert_count = 0;
466         tx_queue->write_count = 0;
467         tx_queue->read_count = 0;
468         tx_queue->old_read_count = 0;
469         BUG_ON(tx_queue->stopped);
470
471         /* Set up TX descriptor ring */
472         efx_nic_init_tx(tx_queue);
473 }
474
475 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
476 {
477         struct efx_tx_buffer *buffer;
478
479         if (!tx_queue->buffer)
480                 return;
481
482         /* Free any buffers left in the ring */
483         while (tx_queue->read_count != tx_queue->write_count) {
484                 buffer = &tx_queue->buffer[tx_queue->read_count & EFX_TXQ_MASK];
485                 efx_dequeue_buffer(tx_queue, buffer);
486                 buffer->continuation = true;
487                 buffer->len = 0;
488
489                 ++tx_queue->read_count;
490         }
491 }
492
493 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
494 {
495         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
496                   "shutting down TX queue %d\n", tx_queue->queue);
497
498         /* Flush TX queue, remove descriptor ring */
499         efx_nic_fini_tx(tx_queue);
500
501         efx_release_tx_buffers(tx_queue);
502
503         /* Free up TSO header cache */
504         efx_fini_tso(tx_queue);
505
506         /* Release queue's stop on port, if any */
507         if (tx_queue->stopped) {
508                 tx_queue->stopped = 0;
509                 efx_wake_queue(tx_queue->channel);
510         }
511 }
512
513 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
514 {
515         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
516                   "destroying TX queue %d\n", tx_queue->queue);
517         efx_nic_remove_tx(tx_queue);
518
519         kfree(tx_queue->buffer);
520         tx_queue->buffer = NULL;
521 }
522
523
524 /* Efx TCP segmentation acceleration.
525  *
526  * Why?  Because by doing it here in the driver we can go significantly
527  * faster than the GSO.
528  *
529  * Requires TX checksum offload support.
530  */
531
532 /* Number of bytes inserted at the start of a TSO header buffer,
533  * similar to NET_IP_ALIGN.
534  */
535 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
536 #define TSOH_OFFSET     0
537 #else
538 #define TSOH_OFFSET     NET_IP_ALIGN
539 #endif
540
541 #define TSOH_BUFFER(tsoh)       ((u8 *)(tsoh + 1) + TSOH_OFFSET)
542
543 /* Total size of struct efx_tso_header, buffer and padding */
544 #define TSOH_SIZE(hdr_len)                                      \
545         (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
546
547 /* Size of blocks on free list.  Larger blocks must be allocated from
548  * the heap.
549  */
550 #define TSOH_STD_SIZE           128
551
552 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
553 #define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data)
554 #define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data)
555 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
556 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
557
558 /**
559  * struct tso_state - TSO state for an SKB
560  * @out_len: Remaining length in current segment
561  * @seqnum: Current sequence number
562  * @ipv4_id: Current IPv4 ID, host endian
563  * @packet_space: Remaining space in current packet
564  * @dma_addr: DMA address of current position
565  * @in_len: Remaining length in current SKB fragment
566  * @unmap_len: Length of SKB fragment
567  * @unmap_addr: DMA address of SKB fragment
568  * @unmap_single: DMA single vs page mapping flag
569  * @protocol: Network protocol (after any VLAN header)
570  * @header_len: Number of bytes of header
571  * @full_packet_size: Number of bytes to put in each outgoing segment
572  *
573  * The state used during segmentation.  It is put into this data structure
574  * just to make it easy to pass into inline functions.
575  */
576 struct tso_state {
577         /* Output position */
578         unsigned out_len;
579         unsigned seqnum;
580         unsigned ipv4_id;
581         unsigned packet_space;
582
583         /* Input position */
584         dma_addr_t dma_addr;
585         unsigned in_len;
586         unsigned unmap_len;
587         dma_addr_t unmap_addr;
588         bool unmap_single;
589
590         __be16 protocol;
591         unsigned header_len;
592         int full_packet_size;
593 };
594
595
596 /*
597  * Verify that our various assumptions about sk_buffs and the conditions
598  * under which TSO will be attempted hold true.  Return the protocol number.
599  */
600 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
601 {
602         __be16 protocol = skb->protocol;
603
604         EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
605                             protocol);
606         if (protocol == htons(ETH_P_8021Q)) {
607                 /* Find the encapsulated protocol; reset network header
608                  * and transport header based on that. */
609                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
610                 protocol = veh->h_vlan_encapsulated_proto;
611                 skb_set_network_header(skb, sizeof(*veh));
612                 if (protocol == htons(ETH_P_IP))
613                         skb_set_transport_header(skb, sizeof(*veh) +
614                                                  4 * ip_hdr(skb)->ihl);
615                 else if (protocol == htons(ETH_P_IPV6))
616                         skb_set_transport_header(skb, sizeof(*veh) +
617                                                  sizeof(struct ipv6hdr));
618         }
619
620         if (protocol == htons(ETH_P_IP)) {
621                 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
622         } else {
623                 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
624                 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
625         }
626         EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
627                              + (tcp_hdr(skb)->doff << 2u)) >
628                             skb_headlen(skb));
629
630         return protocol;
631 }
632
633
634 /*
635  * Allocate a page worth of efx_tso_header structures, and string them
636  * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
637  */
638 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
639 {
640
641         struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
642         struct efx_tso_header *tsoh;
643         dma_addr_t dma_addr;
644         u8 *base_kva, *kva;
645
646         base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
647         if (base_kva == NULL) {
648                 netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
649                           "Unable to allocate page for TSO headers\n");
650                 return -ENOMEM;
651         }
652
653         /* pci_alloc_consistent() allocates pages. */
654         EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
655
656         for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
657                 tsoh = (struct efx_tso_header *)kva;
658                 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
659                 tsoh->next = tx_queue->tso_headers_free;
660                 tx_queue->tso_headers_free = tsoh;
661         }
662
663         return 0;
664 }
665
666
667 /* Free up a TSO header, and all others in the same page. */
668 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
669                                 struct efx_tso_header *tsoh,
670                                 struct pci_dev *pci_dev)
671 {
672         struct efx_tso_header **p;
673         unsigned long base_kva;
674         dma_addr_t base_dma;
675
676         base_kva = (unsigned long)tsoh & PAGE_MASK;
677         base_dma = tsoh->dma_addr & PAGE_MASK;
678
679         p = &tx_queue->tso_headers_free;
680         while (*p != NULL) {
681                 if (((unsigned long)*p & PAGE_MASK) == base_kva)
682                         *p = (*p)->next;
683                 else
684                         p = &(*p)->next;
685         }
686
687         pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
688 }
689
690 static struct efx_tso_header *
691 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
692 {
693         struct efx_tso_header *tsoh;
694
695         tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
696         if (unlikely(!tsoh))
697                 return NULL;
698
699         tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
700                                         TSOH_BUFFER(tsoh), header_len,
701                                         PCI_DMA_TODEVICE);
702         if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
703                                            tsoh->dma_addr))) {
704                 kfree(tsoh);
705                 return NULL;
706         }
707
708         tsoh->unmap_len = header_len;
709         return tsoh;
710 }
711
712 static void
713 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
714 {
715         pci_unmap_single(tx_queue->efx->pci_dev,
716                          tsoh->dma_addr, tsoh->unmap_len,
717                          PCI_DMA_TODEVICE);
718         kfree(tsoh);
719 }
720
721 /**
722  * efx_tx_queue_insert - push descriptors onto the TX queue
723  * @tx_queue:           Efx TX queue
724  * @dma_addr:           DMA address of fragment
725  * @len:                Length of fragment
726  * @final_buffer:       The final buffer inserted into the queue
727  *
728  * Push descriptors onto the TX queue.  Return 0 on success or 1 if
729  * @tx_queue full.
730  */
731 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
732                                dma_addr_t dma_addr, unsigned len,
733                                struct efx_tx_buffer **final_buffer)
734 {
735         struct efx_tx_buffer *buffer;
736         struct efx_nic *efx = tx_queue->efx;
737         unsigned dma_len, fill_level, insert_ptr;
738         int q_space;
739
740         EFX_BUG_ON_PARANOID(len <= 0);
741
742         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
743         /* -1 as there is no way to represent all descriptors used */
744         q_space = EFX_TXQ_MASK - 1 - fill_level;
745
746         while (1) {
747                 if (unlikely(q_space-- <= 0)) {
748                         /* It might be that completions have happened
749                          * since the xmit path last checked.  Update
750                          * the xmit path's copy of read_count.
751                          */
752                         ++tx_queue->stopped;
753                         /* This memory barrier protects the change of
754                          * stopped from the access of read_count. */
755                         smp_mb();
756                         tx_queue->old_read_count =
757                                 *(volatile unsigned *)&tx_queue->read_count;
758                         fill_level = (tx_queue->insert_count
759                                       - tx_queue->old_read_count);
760                         q_space = EFX_TXQ_MASK - 1 - fill_level;
761                         if (unlikely(q_space-- <= 0)) {
762                                 *final_buffer = NULL;
763                                 return 1;
764                         }
765                         smp_mb();
766                         --tx_queue->stopped;
767                 }
768
769                 insert_ptr = tx_queue->insert_count & EFX_TXQ_MASK;
770                 buffer = &tx_queue->buffer[insert_ptr];
771                 ++tx_queue->insert_count;
772
773                 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
774                                     tx_queue->read_count >
775                                     EFX_TXQ_MASK);
776
777                 efx_tsoh_free(tx_queue, buffer);
778                 EFX_BUG_ON_PARANOID(buffer->len);
779                 EFX_BUG_ON_PARANOID(buffer->unmap_len);
780                 EFX_BUG_ON_PARANOID(buffer->skb);
781                 EFX_BUG_ON_PARANOID(!buffer->continuation);
782                 EFX_BUG_ON_PARANOID(buffer->tsoh);
783
784                 buffer->dma_addr = dma_addr;
785
786                 dma_len = efx_max_tx_len(efx, dma_addr);
787
788                 /* If there is enough space to send then do so */
789                 if (dma_len >= len)
790                         break;
791
792                 buffer->len = dma_len; /* Don't set the other members */
793                 dma_addr += dma_len;
794                 len -= dma_len;
795         }
796
797         EFX_BUG_ON_PARANOID(!len);
798         buffer->len = len;
799         *final_buffer = buffer;
800         return 0;
801 }
802
803
804 /*
805  * Put a TSO header into the TX queue.
806  *
807  * This is special-cased because we know that it is small enough to fit in
808  * a single fragment, and we know it doesn't cross a page boundary.  It
809  * also allows us to not worry about end-of-packet etc.
810  */
811 static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
812                                struct efx_tso_header *tsoh, unsigned len)
813 {
814         struct efx_tx_buffer *buffer;
815
816         buffer = &tx_queue->buffer[tx_queue->insert_count & EFX_TXQ_MASK];
817         efx_tsoh_free(tx_queue, buffer);
818         EFX_BUG_ON_PARANOID(buffer->len);
819         EFX_BUG_ON_PARANOID(buffer->unmap_len);
820         EFX_BUG_ON_PARANOID(buffer->skb);
821         EFX_BUG_ON_PARANOID(!buffer->continuation);
822         EFX_BUG_ON_PARANOID(buffer->tsoh);
823         buffer->len = len;
824         buffer->dma_addr = tsoh->dma_addr;
825         buffer->tsoh = tsoh;
826
827         ++tx_queue->insert_count;
828 }
829
830
831 /* Remove descriptors put into a tx_queue. */
832 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
833 {
834         struct efx_tx_buffer *buffer;
835         dma_addr_t unmap_addr;
836
837         /* Work backwards until we hit the original insert pointer value */
838         while (tx_queue->insert_count != tx_queue->write_count) {
839                 --tx_queue->insert_count;
840                 buffer = &tx_queue->buffer[tx_queue->insert_count &
841                                            EFX_TXQ_MASK];
842                 efx_tsoh_free(tx_queue, buffer);
843                 EFX_BUG_ON_PARANOID(buffer->skb);
844                 if (buffer->unmap_len) {
845                         unmap_addr = (buffer->dma_addr + buffer->len -
846                                       buffer->unmap_len);
847                         if (buffer->unmap_single)
848                                 pci_unmap_single(tx_queue->efx->pci_dev,
849                                                  unmap_addr, buffer->unmap_len,
850                                                  PCI_DMA_TODEVICE);
851                         else
852                                 pci_unmap_page(tx_queue->efx->pci_dev,
853                                                unmap_addr, buffer->unmap_len,
854                                                PCI_DMA_TODEVICE);
855                         buffer->unmap_len = 0;
856                 }
857                 buffer->len = 0;
858                 buffer->continuation = true;
859         }
860 }
861
862
863 /* Parse the SKB header and initialise state. */
864 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
865 {
866         /* All ethernet/IP/TCP headers combined size is TCP header size
867          * plus offset of TCP header relative to start of packet.
868          */
869         st->header_len = ((tcp_hdr(skb)->doff << 2u)
870                           + PTR_DIFF(tcp_hdr(skb), skb->data));
871         st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
872
873         if (st->protocol == htons(ETH_P_IP))
874                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
875         else
876                 st->ipv4_id = 0;
877         st->seqnum = ntohl(tcp_hdr(skb)->seq);
878
879         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
880         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
881         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
882
883         st->packet_space = st->full_packet_size;
884         st->out_len = skb->len - st->header_len;
885         st->unmap_len = 0;
886         st->unmap_single = false;
887 }
888
889 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
890                             skb_frag_t *frag)
891 {
892         st->unmap_addr = pci_map_page(efx->pci_dev, frag->page,
893                                       frag->page_offset, frag->size,
894                                       PCI_DMA_TODEVICE);
895         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
896                 st->unmap_single = false;
897                 st->unmap_len = frag->size;
898                 st->in_len = frag->size;
899                 st->dma_addr = st->unmap_addr;
900                 return 0;
901         }
902         return -ENOMEM;
903 }
904
905 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
906                                  const struct sk_buff *skb)
907 {
908         int hl = st->header_len;
909         int len = skb_headlen(skb) - hl;
910
911         st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
912                                         len, PCI_DMA_TODEVICE);
913         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
914                 st->unmap_single = true;
915                 st->unmap_len = len;
916                 st->in_len = len;
917                 st->dma_addr = st->unmap_addr;
918                 return 0;
919         }
920         return -ENOMEM;
921 }
922
923
924 /**
925  * tso_fill_packet_with_fragment - form descriptors for the current fragment
926  * @tx_queue:           Efx TX queue
927  * @skb:                Socket buffer
928  * @st:                 TSO state
929  *
930  * Form descriptors for the current fragment, until we reach the end
931  * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
932  * space in @tx_queue.
933  */
934 static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
935                                          const struct sk_buff *skb,
936                                          struct tso_state *st)
937 {
938         struct efx_tx_buffer *buffer;
939         int n, end_of_packet, rc;
940
941         if (st->in_len == 0)
942                 return 0;
943         if (st->packet_space == 0)
944                 return 0;
945
946         EFX_BUG_ON_PARANOID(st->in_len <= 0);
947         EFX_BUG_ON_PARANOID(st->packet_space <= 0);
948
949         n = min(st->in_len, st->packet_space);
950
951         st->packet_space -= n;
952         st->out_len -= n;
953         st->in_len -= n;
954
955         rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
956         if (likely(rc == 0)) {
957                 if (st->out_len == 0)
958                         /* Transfer ownership of the skb */
959                         buffer->skb = skb;
960
961                 end_of_packet = st->out_len == 0 || st->packet_space == 0;
962                 buffer->continuation = !end_of_packet;
963
964                 if (st->in_len == 0) {
965                         /* Transfer ownership of the pci mapping */
966                         buffer->unmap_len = st->unmap_len;
967                         buffer->unmap_single = st->unmap_single;
968                         st->unmap_len = 0;
969                 }
970         }
971
972         st->dma_addr += n;
973         return rc;
974 }
975
976
977 /**
978  * tso_start_new_packet - generate a new header and prepare for the new packet
979  * @tx_queue:           Efx TX queue
980  * @skb:                Socket buffer
981  * @st:                 TSO state
982  *
983  * Generate a new header and prepare for the new packet.  Return 0 on
984  * success, or -1 if failed to alloc header.
985  */
986 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
987                                 const struct sk_buff *skb,
988                                 struct tso_state *st)
989 {
990         struct efx_tso_header *tsoh;
991         struct tcphdr *tsoh_th;
992         unsigned ip_length;
993         u8 *header;
994
995         /* Allocate a DMA-mapped header buffer. */
996         if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
997                 if (tx_queue->tso_headers_free == NULL) {
998                         if (efx_tsoh_block_alloc(tx_queue))
999                                 return -1;
1000                 }
1001                 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
1002                 tsoh = tx_queue->tso_headers_free;
1003                 tx_queue->tso_headers_free = tsoh->next;
1004                 tsoh->unmap_len = 0;
1005         } else {
1006                 tx_queue->tso_long_headers++;
1007                 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
1008                 if (unlikely(!tsoh))
1009                         return -1;
1010         }
1011
1012         header = TSOH_BUFFER(tsoh);
1013         tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
1014
1015         /* Copy and update the headers. */
1016         memcpy(header, skb->data, st->header_len);
1017
1018         tsoh_th->seq = htonl(st->seqnum);
1019         st->seqnum += skb_shinfo(skb)->gso_size;
1020         if (st->out_len > skb_shinfo(skb)->gso_size) {
1021                 /* This packet will not finish the TSO burst. */
1022                 ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
1023                 tsoh_th->fin = 0;
1024                 tsoh_th->psh = 0;
1025         } else {
1026                 /* This packet will be the last in the TSO burst. */
1027                 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
1028                 tsoh_th->fin = tcp_hdr(skb)->fin;
1029                 tsoh_th->psh = tcp_hdr(skb)->psh;
1030         }
1031
1032         if (st->protocol == htons(ETH_P_IP)) {
1033                 struct iphdr *tsoh_iph =
1034                         (struct iphdr *)(header + SKB_IPV4_OFF(skb));
1035
1036                 tsoh_iph->tot_len = htons(ip_length);
1037
1038                 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1039                 tsoh_iph->id = htons(st->ipv4_id);
1040                 st->ipv4_id++;
1041         } else {
1042                 struct ipv6hdr *tsoh_iph =
1043                         (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
1044
1045                 tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
1046         }
1047
1048         st->packet_space = skb_shinfo(skb)->gso_size;
1049         ++tx_queue->tso_packets;
1050
1051         /* Form a descriptor for this header. */
1052         efx_tso_put_header(tx_queue, tsoh, st->header_len);
1053
1054         return 0;
1055 }
1056
1057
1058 /**
1059  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1060  * @tx_queue:           Efx TX queue
1061  * @skb:                Socket buffer
1062  *
1063  * Context: You must hold netif_tx_lock() to call this function.
1064  *
1065  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1066  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1067  * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1068  */
1069 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1070                                struct sk_buff *skb)
1071 {
1072         struct efx_nic *efx = tx_queue->efx;
1073         int frag_i, rc, rc2 = NETDEV_TX_OK;
1074         struct tso_state state;
1075
1076         /* Find the packet protocol and sanity-check it */
1077         state.protocol = efx_tso_check_protocol(skb);
1078
1079         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1080
1081         tso_start(&state, skb);
1082
1083         /* Assume that skb header area contains exactly the headers, and
1084          * all payload is in the frag list.
1085          */
1086         if (skb_headlen(skb) == state.header_len) {
1087                 /* Grab the first payload fragment. */
1088                 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1089                 frag_i = 0;
1090                 rc = tso_get_fragment(&state, efx,
1091                                       skb_shinfo(skb)->frags + frag_i);
1092                 if (rc)
1093                         goto mem_err;
1094         } else {
1095                 rc = tso_get_head_fragment(&state, efx, skb);
1096                 if (rc)
1097                         goto mem_err;
1098                 frag_i = -1;
1099         }
1100
1101         if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1102                 goto mem_err;
1103
1104         while (1) {
1105                 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1106                 if (unlikely(rc))
1107                         goto stop;
1108
1109                 /* Move onto the next fragment? */
1110                 if (state.in_len == 0) {
1111                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
1112                                 /* End of payload reached. */
1113                                 break;
1114                         rc = tso_get_fragment(&state, efx,
1115                                               skb_shinfo(skb)->frags + frag_i);
1116                         if (rc)
1117                                 goto mem_err;
1118                 }
1119
1120                 /* Start at new packet? */
1121                 if (state.packet_space == 0 &&
1122                     tso_start_new_packet(tx_queue, skb, &state) < 0)
1123                         goto mem_err;
1124         }
1125
1126         /* Pass off to hardware */
1127         efx_nic_push_buffers(tx_queue);
1128
1129         tx_queue->tso_bursts++;
1130         return NETDEV_TX_OK;
1131
1132  mem_err:
1133         netif_err(efx, tx_err, efx->net_dev,
1134                   "Out of memory for TSO headers, or PCI mapping error\n");
1135         dev_kfree_skb_any(skb);
1136         goto unwind;
1137
1138  stop:
1139         rc2 = NETDEV_TX_BUSY;
1140
1141         /* Stop the queue if it wasn't stopped before. */
1142         if (tx_queue->stopped == 1)
1143                 efx_stop_queue(tx_queue->channel);
1144
1145  unwind:
1146         /* Free the DMA mapping we were in the process of writing out */
1147         if (state.unmap_len) {
1148                 if (state.unmap_single)
1149                         pci_unmap_single(efx->pci_dev, state.unmap_addr,
1150                                          state.unmap_len, PCI_DMA_TODEVICE);
1151                 else
1152                         pci_unmap_page(efx->pci_dev, state.unmap_addr,
1153                                        state.unmap_len, PCI_DMA_TODEVICE);
1154         }
1155
1156         efx_enqueue_unwind(tx_queue);
1157         return rc2;
1158 }
1159
1160
1161 /*
1162  * Free up all TSO datastructures associated with tx_queue. This
1163  * routine should be called only once the tx_queue is both empty and
1164  * will no longer be used.
1165  */
1166 static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1167 {
1168         unsigned i;
1169
1170         if (tx_queue->buffer) {
1171                 for (i = 0; i <= EFX_TXQ_MASK; ++i)
1172                         efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1173         }
1174
1175         while (tx_queue->tso_headers_free != NULL)
1176                 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1177                                     tx_queue->efx->pci_dev);
1178 }