upload tizen1.0 source
[kernel/linux-2.6.36.git] / drivers / net / sfc / rx.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2009 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
17 #include <net/ip.h>
18 #include <net/checksum.h>
19 #include "net_driver.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "selftest.h"
23 #include "workarounds.h"
24
25 /* Number of RX descriptors pushed at once. */
26 #define EFX_RX_BATCH  8
27
28 /* Maximum size of a buffer sharing a page */
29 #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
30
31 /* Size of buffer allocated for skb header area. */
32 #define EFX_SKB_HEADERS  64u
33
34 /*
35  * rx_alloc_method - RX buffer allocation method
36  *
37  * This driver supports two methods for allocating and using RX buffers:
38  * each RX buffer may be backed by an skb or by an order-n page.
39  *
40  * When LRO is in use then the second method has a lower overhead,
41  * since we don't have to allocate then free skbs on reassembled frames.
42  *
43  * Values:
44  *   - RX_ALLOC_METHOD_AUTO = 0
45  *   - RX_ALLOC_METHOD_SKB  = 1
46  *   - RX_ALLOC_METHOD_PAGE = 2
47  *
48  * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
49  * controlled by the parameters below.
50  *
51  *   - Since pushing and popping descriptors are separated by the rx_queue
52  *     size, so the watermarks should be ~rxd_size.
53  *   - The performance win by using page-based allocation for LRO is less
54  *     than the performance hit of using page-based allocation of non-LRO,
55  *     so the watermarks should reflect this.
56  *
57  * Per channel we maintain a single variable, updated by each channel:
58  *
59  *   rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO :
60  *                      RX_ALLOC_FACTOR_SKB)
61  * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
62  * limits the hysteresis), and update the allocation strategy:
63  *
64  *   rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ?
65  *                      RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
66  */
67 static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
68
69 #define RX_ALLOC_LEVEL_LRO 0x2000
70 #define RX_ALLOC_LEVEL_MAX 0x3000
71 #define RX_ALLOC_FACTOR_LRO 1
72 #define RX_ALLOC_FACTOR_SKB (-2)
73
74 /* This is the percentage fill level below which new RX descriptors
75  * will be added to the RX descriptor ring.
76  */
77 static unsigned int rx_refill_threshold = 90;
78
79 /* This is the percentage fill level to which an RX queue will be refilled
80  * when the "RX refill threshold" is reached.
81  */
82 static unsigned int rx_refill_limit = 95;
83
84 /*
85  * RX maximum head room required.
86  *
87  * This must be at least 1 to prevent overflow and at least 2 to allow
88  * pipelined receives.
89  */
90 #define EFX_RXD_HEAD_ROOM 2
91
92 static inline unsigned int efx_rx_buf_offset(struct efx_rx_buffer *buf)
93 {
94         /* Offset is always within one page, so we don't need to consider
95          * the page order.
96          */
97         return (__force unsigned long) buf->data & (PAGE_SIZE - 1);
98 }
99 static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
100 {
101         return PAGE_SIZE << efx->rx_buffer_order;
102 }
103
104 static inline u32 efx_rx_buf_hash(struct efx_rx_buffer *buf)
105 {
106 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
107         return __le32_to_cpup((const __le32 *)(buf->data - 4));
108 #else
109         const u8 *data = (const u8 *)(buf->data - 4);
110         return ((u32)data[0]       |
111                 (u32)data[1] << 8  |
112                 (u32)data[2] << 16 |
113                 (u32)data[3] << 24);
114 #endif
115 }
116
117 /**
118  * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
119  *
120  * @rx_queue:           Efx RX queue
121  *
122  * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
123  * struct efx_rx_buffer for each one. Return a negative error code or 0
124  * on success. May fail having only inserted fewer than EFX_RX_BATCH
125  * buffers.
126  */
127 static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
128 {
129         struct efx_nic *efx = rx_queue->efx;
130         struct net_device *net_dev = efx->net_dev;
131         struct efx_rx_buffer *rx_buf;
132         int skb_len = efx->rx_buffer_len;
133         unsigned index, count;
134
135         for (count = 0; count < EFX_RX_BATCH; ++count) {
136                 index = rx_queue->added_count & EFX_RXQ_MASK;
137                 rx_buf = efx_rx_buffer(rx_queue, index);
138
139                 rx_buf->skb = netdev_alloc_skb(net_dev, skb_len);
140                 if (unlikely(!rx_buf->skb))
141                         return -ENOMEM;
142                 rx_buf->page = NULL;
143
144                 /* Adjust the SKB for padding and checksum */
145                 skb_reserve(rx_buf->skb, NET_IP_ALIGN);
146                 rx_buf->len = skb_len - NET_IP_ALIGN;
147                 rx_buf->data = (char *)rx_buf->skb->data;
148                 rx_buf->skb->ip_summed = CHECKSUM_UNNECESSARY;
149
150                 rx_buf->dma_addr = pci_map_single(efx->pci_dev,
151                                                   rx_buf->data, rx_buf->len,
152                                                   PCI_DMA_FROMDEVICE);
153                 if (unlikely(pci_dma_mapping_error(efx->pci_dev,
154                                                    rx_buf->dma_addr))) {
155                         dev_kfree_skb_any(rx_buf->skb);
156                         rx_buf->skb = NULL;
157                         return -EIO;
158                 }
159
160                 ++rx_queue->added_count;
161                 ++rx_queue->alloc_skb_count;
162         }
163
164         return 0;
165 }
166
167 /**
168  * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
169  *
170  * @rx_queue:           Efx RX queue
171  *
172  * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
173  * and populates struct efx_rx_buffers for each one. Return a negative error
174  * code or 0 on success. If a single page can be split between two buffers,
175  * then the page will either be inserted fully, or not at at all.
176  */
177 static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
178 {
179         struct efx_nic *efx = rx_queue->efx;
180         struct efx_rx_buffer *rx_buf;
181         struct page *page;
182         void *page_addr;
183         struct efx_rx_page_state *state;
184         dma_addr_t dma_addr;
185         unsigned index, count;
186
187         /* We can split a page between two buffers */
188         BUILD_BUG_ON(EFX_RX_BATCH & 1);
189
190         for (count = 0; count < EFX_RX_BATCH; ++count) {
191                 page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
192                                    efx->rx_buffer_order);
193                 if (unlikely(page == NULL))
194                         return -ENOMEM;
195                 dma_addr = pci_map_page(efx->pci_dev, page, 0,
196                                         efx_rx_buf_size(efx),
197                                         PCI_DMA_FROMDEVICE);
198                 if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
199                         __free_pages(page, efx->rx_buffer_order);
200                         return -EIO;
201                 }
202                 page_addr = page_address(page);
203                 state = page_addr;
204                 state->refcnt = 0;
205                 state->dma_addr = dma_addr;
206
207                 page_addr += sizeof(struct efx_rx_page_state);
208                 dma_addr += sizeof(struct efx_rx_page_state);
209
210         split:
211                 index = rx_queue->added_count & EFX_RXQ_MASK;
212                 rx_buf = efx_rx_buffer(rx_queue, index);
213                 rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
214                 rx_buf->skb = NULL;
215                 rx_buf->page = page;
216                 rx_buf->data = page_addr + EFX_PAGE_IP_ALIGN;
217                 rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
218                 ++rx_queue->added_count;
219                 ++rx_queue->alloc_page_count;
220                 ++state->refcnt;
221
222                 if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) {
223                         /* Use the second half of the page */
224                         get_page(page);
225                         dma_addr += (PAGE_SIZE >> 1);
226                         page_addr += (PAGE_SIZE >> 1);
227                         ++count;
228                         goto split;
229                 }
230         }
231
232         return 0;
233 }
234
235 static void efx_unmap_rx_buffer(struct efx_nic *efx,
236                                 struct efx_rx_buffer *rx_buf)
237 {
238         if (rx_buf->page) {
239                 struct efx_rx_page_state *state;
240
241                 EFX_BUG_ON_PARANOID(rx_buf->skb);
242
243                 state = page_address(rx_buf->page);
244                 if (--state->refcnt == 0) {
245                         pci_unmap_page(efx->pci_dev,
246                                        state->dma_addr,
247                                        efx_rx_buf_size(efx),
248                                        PCI_DMA_FROMDEVICE);
249                 }
250         } else if (likely(rx_buf->skb)) {
251                 pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
252                                  rx_buf->len, PCI_DMA_FROMDEVICE);
253         }
254 }
255
256 static void efx_free_rx_buffer(struct efx_nic *efx,
257                                struct efx_rx_buffer *rx_buf)
258 {
259         if (rx_buf->page) {
260                 __free_pages(rx_buf->page, efx->rx_buffer_order);
261                 rx_buf->page = NULL;
262         } else if (likely(rx_buf->skb)) {
263                 dev_kfree_skb_any(rx_buf->skb);
264                 rx_buf->skb = NULL;
265         }
266 }
267
268 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
269                                struct efx_rx_buffer *rx_buf)
270 {
271         efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
272         efx_free_rx_buffer(rx_queue->efx, rx_buf);
273 }
274
275 /* Attempt to resurrect the other receive buffer that used to share this page,
276  * which had previously been passed up to the kernel and freed. */
277 static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
278                                     struct efx_rx_buffer *rx_buf)
279 {
280         struct efx_rx_page_state *state = page_address(rx_buf->page);
281         struct efx_rx_buffer *new_buf;
282         unsigned fill_level, index;
283
284         /* +1 because efx_rx_packet() incremented removed_count. +1 because
285          * we'd like to insert an additional descriptor whilst leaving
286          * EFX_RXD_HEAD_ROOM for the non-recycle path */
287         fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
288         if (unlikely(fill_level >= EFX_RXQ_SIZE - EFX_RXD_HEAD_ROOM)) {
289                 /* We could place "state" on a list, and drain the list in
290                  * efx_fast_push_rx_descriptors(). For now, this will do. */
291                 return;
292         }
293
294         ++state->refcnt;
295         get_page(rx_buf->page);
296
297         index = rx_queue->added_count & EFX_RXQ_MASK;
298         new_buf = efx_rx_buffer(rx_queue, index);
299         new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
300         new_buf->skb = NULL;
301         new_buf->page = rx_buf->page;
302         new_buf->data = (void *)
303                 ((__force unsigned long)rx_buf->data ^ (PAGE_SIZE >> 1));
304         new_buf->len = rx_buf->len;
305         ++rx_queue->added_count;
306 }
307
308 /* Recycle the given rx buffer directly back into the rx_queue. There is
309  * always room to add this buffer, because we've just popped a buffer. */
310 static void efx_recycle_rx_buffer(struct efx_channel *channel,
311                                   struct efx_rx_buffer *rx_buf)
312 {
313         struct efx_nic *efx = channel->efx;
314         struct efx_rx_queue *rx_queue = &efx->rx_queue[channel->channel];
315         struct efx_rx_buffer *new_buf;
316         unsigned index;
317
318         if (rx_buf->page != NULL && efx->rx_buffer_len <= EFX_RX_HALF_PAGE &&
319             page_count(rx_buf->page) == 1)
320                 efx_resurrect_rx_buffer(rx_queue, rx_buf);
321
322         index = rx_queue->added_count & EFX_RXQ_MASK;
323         new_buf = efx_rx_buffer(rx_queue, index);
324
325         memcpy(new_buf, rx_buf, sizeof(*new_buf));
326         rx_buf->page = NULL;
327         rx_buf->skb = NULL;
328         ++rx_queue->added_count;
329 }
330
331 /**
332  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
333  * @rx_queue:           RX descriptor queue
334  * This will aim to fill the RX descriptor queue up to
335  * @rx_queue->@fast_fill_limit. If there is insufficient atomic
336  * memory to do so, a slow fill will be scheduled.
337  *
338  * The caller must provide serialisation (none is used here). In practise,
339  * this means this function must run from the NAPI handler, or be called
340  * when NAPI is disabled.
341  */
342 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
343 {
344         struct efx_channel *channel = rx_queue->channel;
345         unsigned fill_level;
346         int space, rc = 0;
347
348         /* Calculate current fill level, and exit if we don't need to fill */
349         fill_level = (rx_queue->added_count - rx_queue->removed_count);
350         EFX_BUG_ON_PARANOID(fill_level > EFX_RXQ_SIZE);
351         if (fill_level >= rx_queue->fast_fill_trigger)
352                 goto out;
353
354         /* Record minimum fill level */
355         if (unlikely(fill_level < rx_queue->min_fill)) {
356                 if (fill_level)
357                         rx_queue->min_fill = fill_level;
358         }
359
360         space = rx_queue->fast_fill_limit - fill_level;
361         if (space < EFX_RX_BATCH)
362                 goto out;
363
364         netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
365                    "RX queue %d fast-filling descriptor ring from"
366                    " level %d to level %d using %s allocation\n",
367                    rx_queue->queue, fill_level, rx_queue->fast_fill_limit,
368                    channel->rx_alloc_push_pages ? "page" : "skb");
369
370         do {
371                 if (channel->rx_alloc_push_pages)
372                         rc = efx_init_rx_buffers_page(rx_queue);
373                 else
374                         rc = efx_init_rx_buffers_skb(rx_queue);
375                 if (unlikely(rc)) {
376                         /* Ensure that we don't leave the rx queue empty */
377                         if (rx_queue->added_count == rx_queue->removed_count)
378                                 efx_schedule_slow_fill(rx_queue);
379                         goto out;
380                 }
381         } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
382
383         netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
384                    "RX queue %d fast-filled descriptor ring "
385                    "to level %d\n", rx_queue->queue,
386                    rx_queue->added_count - rx_queue->removed_count);
387
388  out:
389         if (rx_queue->notified_count != rx_queue->added_count)
390                 efx_nic_notify_rx_desc(rx_queue);
391 }
392
393 void efx_rx_slow_fill(unsigned long context)
394 {
395         struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
396         struct efx_channel *channel = rx_queue->channel;
397
398         /* Post an event to cause NAPI to run and refill the queue */
399         efx_nic_generate_fill_event(channel);
400         ++rx_queue->slow_fill_count;
401 }
402
403 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
404                                      struct efx_rx_buffer *rx_buf,
405                                      int len, bool *discard,
406                                      bool *leak_packet)
407 {
408         struct efx_nic *efx = rx_queue->efx;
409         unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
410
411         if (likely(len <= max_len))
412                 return;
413
414         /* The packet must be discarded, but this is only a fatal error
415          * if the caller indicated it was
416          */
417         *discard = true;
418
419         if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
420                 if (net_ratelimit())
421                         netif_err(efx, rx_err, efx->net_dev,
422                                   " RX queue %d seriously overlength "
423                                   "RX event (0x%x > 0x%x+0x%x). Leaking\n",
424                                   rx_queue->queue, len, max_len,
425                                   efx->type->rx_buffer_padding);
426                 /* If this buffer was skb-allocated, then the meta
427                  * data at the end of the skb will be trashed. So
428                  * we have no choice but to leak the fragment.
429                  */
430                 *leak_packet = (rx_buf->skb != NULL);
431                 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
432         } else {
433                 if (net_ratelimit())
434                         netif_err(efx, rx_err, efx->net_dev,
435                                   " RX queue %d overlength RX event "
436                                   "(0x%x > 0x%x)\n",
437                                   rx_queue->queue, len, max_len);
438         }
439
440         rx_queue->channel->n_rx_overlength++;
441 }
442
443 /* Pass a received packet up through the generic LRO stack
444  *
445  * Handles driverlink veto, and passes the fragment up via
446  * the appropriate LRO method
447  */
448 static void efx_rx_packet_lro(struct efx_channel *channel,
449                               struct efx_rx_buffer *rx_buf,
450                               bool checksummed)
451 {
452         struct napi_struct *napi = &channel->napi_str;
453         gro_result_t gro_result;
454
455         /* Pass the skb/page into the LRO engine */
456         if (rx_buf->page) {
457                 struct efx_nic *efx = channel->efx;
458                 struct page *page = rx_buf->page;
459                 struct sk_buff *skb;
460
461                 EFX_BUG_ON_PARANOID(rx_buf->skb);
462                 rx_buf->page = NULL;
463
464                 skb = napi_get_frags(napi);
465                 if (!skb) {
466                         put_page(page);
467                         return;
468                 }
469
470                 if (efx->net_dev->features & NETIF_F_RXHASH)
471                         skb->rxhash = efx_rx_buf_hash(rx_buf);
472
473                 skb_shinfo(skb)->frags[0].page = page;
474                 skb_shinfo(skb)->frags[0].page_offset =
475                         efx_rx_buf_offset(rx_buf);
476                 skb_shinfo(skb)->frags[0].size = rx_buf->len;
477                 skb_shinfo(skb)->nr_frags = 1;
478
479                 skb->len = rx_buf->len;
480                 skb->data_len = rx_buf->len;
481                 skb->truesize += rx_buf->len;
482                 skb->ip_summed =
483                         checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE;
484
485                 skb_record_rx_queue(skb, channel->channel);
486
487                 gro_result = napi_gro_frags(napi);
488         } else {
489                 struct sk_buff *skb = rx_buf->skb;
490
491                 EFX_BUG_ON_PARANOID(!skb);
492                 EFX_BUG_ON_PARANOID(!checksummed);
493                 rx_buf->skb = NULL;
494
495                 gro_result = napi_gro_receive(napi, skb);
496         }
497
498         if (gro_result == GRO_NORMAL) {
499                 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
500         } else if (gro_result != GRO_DROP) {
501                 channel->rx_alloc_level += RX_ALLOC_FACTOR_LRO;
502                 channel->irq_mod_score += 2;
503         }
504 }
505
506 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
507                    unsigned int len, bool checksummed, bool discard)
508 {
509         struct efx_nic *efx = rx_queue->efx;
510         struct efx_channel *channel = rx_queue->channel;
511         struct efx_rx_buffer *rx_buf;
512         bool leak_packet = false;
513
514         rx_buf = efx_rx_buffer(rx_queue, index);
515         EFX_BUG_ON_PARANOID(!rx_buf->data);
516         EFX_BUG_ON_PARANOID(rx_buf->skb && rx_buf->page);
517         EFX_BUG_ON_PARANOID(!(rx_buf->skb || rx_buf->page));
518
519         /* This allows the refill path to post another buffer.
520          * EFX_RXD_HEAD_ROOM ensures that the slot we are using
521          * isn't overwritten yet.
522          */
523         rx_queue->removed_count++;
524
525         /* Validate the length encoded in the event vs the descriptor pushed */
526         efx_rx_packet__check_len(rx_queue, rx_buf, len,
527                                  &discard, &leak_packet);
528
529         netif_vdbg(efx, rx_status, efx->net_dev,
530                    "RX queue %d received id %x at %llx+%x %s%s\n",
531                    rx_queue->queue, index,
532                    (unsigned long long)rx_buf->dma_addr, len,
533                    (checksummed ? " [SUMMED]" : ""),
534                    (discard ? " [DISCARD]" : ""));
535
536         /* Discard packet, if instructed to do so */
537         if (unlikely(discard)) {
538                 if (unlikely(leak_packet))
539                         channel->n_skbuff_leaks++;
540                 else
541                         efx_recycle_rx_buffer(channel, rx_buf);
542
543                 /* Don't hold off the previous receive */
544                 rx_buf = NULL;
545                 goto out;
546         }
547
548         /* Release card resources - assumes all RX buffers consumed in-order
549          * per RX queue
550          */
551         efx_unmap_rx_buffer(efx, rx_buf);
552
553         /* Prefetch nice and early so data will (hopefully) be in cache by
554          * the time we look at it.
555          */
556         prefetch(rx_buf->data);
557
558         /* Pipeline receives so that we give time for packet headers to be
559          * prefetched into cache.
560          */
561         rx_buf->len = len;
562 out:
563         if (rx_queue->channel->rx_pkt)
564                 __efx_rx_packet(rx_queue->channel,
565                                 rx_queue->channel->rx_pkt,
566                                 rx_queue->channel->rx_pkt_csummed);
567         rx_queue->channel->rx_pkt = rx_buf;
568         rx_queue->channel->rx_pkt_csummed = checksummed;
569 }
570
571 /* Handle a received packet.  Second half: Touches packet payload. */
572 void __efx_rx_packet(struct efx_channel *channel,
573                      struct efx_rx_buffer *rx_buf, bool checksummed)
574 {
575         struct efx_nic *efx = channel->efx;
576         struct sk_buff *skb;
577
578         rx_buf->data += efx->type->rx_buffer_hash_size;
579         rx_buf->len -= efx->type->rx_buffer_hash_size;
580
581         /* If we're in loopback test, then pass the packet directly to the
582          * loopback layer, and free the rx_buf here
583          */
584         if (unlikely(efx->loopback_selftest)) {
585                 efx_loopback_rx_packet(efx, rx_buf->data, rx_buf->len);
586                 efx_free_rx_buffer(efx, rx_buf);
587                 return;
588         }
589
590         if (rx_buf->skb) {
591                 prefetch(skb_shinfo(rx_buf->skb));
592
593                 skb_reserve(rx_buf->skb, efx->type->rx_buffer_hash_size);
594                 skb_put(rx_buf->skb, rx_buf->len);
595
596                 if (efx->net_dev->features & NETIF_F_RXHASH)
597                         rx_buf->skb->rxhash = efx_rx_buf_hash(rx_buf);
598
599                 /* Move past the ethernet header. rx_buf->data still points
600                  * at the ethernet header */
601                 rx_buf->skb->protocol = eth_type_trans(rx_buf->skb,
602                                                        efx->net_dev);
603
604                 skb_record_rx_queue(rx_buf->skb, channel->channel);
605         }
606
607         if (likely(checksummed || rx_buf->page)) {
608                 efx_rx_packet_lro(channel, rx_buf, checksummed);
609                 return;
610         }
611
612         /* We now own the SKB */
613         skb = rx_buf->skb;
614         rx_buf->skb = NULL;
615         EFX_BUG_ON_PARANOID(!skb);
616
617         /* Set the SKB flags */
618         skb->ip_summed = CHECKSUM_NONE;
619
620         /* Pass the packet up */
621         netif_receive_skb(skb);
622
623         /* Update allocation strategy method */
624         channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
625 }
626
627 void efx_rx_strategy(struct efx_channel *channel)
628 {
629         enum efx_rx_alloc_method method = rx_alloc_method;
630
631         /* Only makes sense to use page based allocation if LRO is enabled */
632         if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
633                 method = RX_ALLOC_METHOD_SKB;
634         } else if (method == RX_ALLOC_METHOD_AUTO) {
635                 /* Constrain the rx_alloc_level */
636                 if (channel->rx_alloc_level < 0)
637                         channel->rx_alloc_level = 0;
638                 else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
639                         channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
640
641                 /* Decide on the allocation method */
642                 method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_LRO) ?
643                           RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
644         }
645
646         /* Push the option */
647         channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
648 }
649
650 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
651 {
652         struct efx_nic *efx = rx_queue->efx;
653         unsigned int rxq_size;
654         int rc;
655
656         netif_dbg(efx, probe, efx->net_dev,
657                   "creating RX queue %d\n", rx_queue->queue);
658
659         /* Allocate RX buffers */
660         rxq_size = EFX_RXQ_SIZE * sizeof(*rx_queue->buffer);
661         rx_queue->buffer = kzalloc(rxq_size, GFP_KERNEL);
662         if (!rx_queue->buffer)
663                 return -ENOMEM;
664
665         rc = efx_nic_probe_rx(rx_queue);
666         if (rc) {
667                 kfree(rx_queue->buffer);
668                 rx_queue->buffer = NULL;
669         }
670         return rc;
671 }
672
673 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
674 {
675         unsigned int max_fill, trigger, limit;
676
677         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
678                   "initialising RX queue %d\n", rx_queue->queue);
679
680         /* Initialise ptr fields */
681         rx_queue->added_count = 0;
682         rx_queue->notified_count = 0;
683         rx_queue->removed_count = 0;
684         rx_queue->min_fill = -1U;
685         rx_queue->min_overfill = -1U;
686
687         /* Initialise limit fields */
688         max_fill = EFX_RXQ_SIZE - EFX_RXD_HEAD_ROOM;
689         trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
690         limit = max_fill * min(rx_refill_limit, 100U) / 100U;
691
692         rx_queue->max_fill = max_fill;
693         rx_queue->fast_fill_trigger = trigger;
694         rx_queue->fast_fill_limit = limit;
695
696         /* Set up RX descriptor ring */
697         efx_nic_init_rx(rx_queue);
698 }
699
700 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
701 {
702         int i;
703         struct efx_rx_buffer *rx_buf;
704
705         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
706                   "shutting down RX queue %d\n", rx_queue->queue);
707
708         del_timer_sync(&rx_queue->slow_fill);
709         efx_nic_fini_rx(rx_queue);
710
711         /* Release RX buffers NB start at index 0 not current HW ptr */
712         if (rx_queue->buffer) {
713                 for (i = 0; i <= EFX_RXQ_MASK; i++) {
714                         rx_buf = efx_rx_buffer(rx_queue, i);
715                         efx_fini_rx_buffer(rx_queue, rx_buf);
716                 }
717         }
718 }
719
720 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
721 {
722         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
723                   "destroying RX queue %d\n", rx_queue->queue);
724
725         efx_nic_remove_rx(rx_queue);
726
727         kfree(rx_queue->buffer);
728         rx_queue->buffer = NULL;
729 }
730
731
732 module_param(rx_alloc_method, int, 0644);
733 MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
734
735 module_param(rx_refill_threshold, uint, 0444);
736 MODULE_PARM_DESC(rx_refill_threshold,
737                  "RX descriptor ring fast/slow fill threshold (%)");
738