upload tizen1.0 source
[kernel/linux-2.6.36.git] / drivers / net / ixgbe / ixgbe_phy.c
1 /*******************************************************************************
2
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31
32 #include "ixgbe_common.h"
33 #include "ixgbe_phy.h"
34
35 static void ixgbe_i2c_start(struct ixgbe_hw *hw);
36 static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
37 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
38 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
39 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
40 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
41 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
42 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
43 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
44 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
45 static bool ixgbe_get_i2c_data(u32 *i2cctl);
46 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
47 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
48 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
49
50 /**
51  *  ixgbe_identify_phy_generic - Get physical layer module
52  *  @hw: pointer to hardware structure
53  *
54  *  Determines the physical layer module found on the current adapter.
55  **/
56 s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
57 {
58         s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
59         u32 phy_addr;
60
61         if (hw->phy.type == ixgbe_phy_unknown) {
62                 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
63                         hw->phy.mdio.prtad = phy_addr;
64                         if (mdio45_probe(&hw->phy.mdio, phy_addr) == 0) {
65                                 ixgbe_get_phy_id(hw);
66                                 hw->phy.type =
67                                         ixgbe_get_phy_type_from_id(hw->phy.id);
68                                 status = 0;
69                                 break;
70                         }
71                 }
72                 /* clear value if nothing found */
73                 hw->phy.mdio.prtad = 0;
74         } else {
75                 status = 0;
76         }
77
78         return status;
79 }
80
81 /**
82  *  ixgbe_get_phy_id - Get the phy type
83  *  @hw: pointer to hardware structure
84  *
85  **/
86 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
87 {
88         u32 status;
89         u16 phy_id_high = 0;
90         u16 phy_id_low = 0;
91
92         status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
93                                       &phy_id_high);
94
95         if (status == 0) {
96                 hw->phy.id = (u32)(phy_id_high << 16);
97                 status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
98                                               &phy_id_low);
99                 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
100                 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
101         }
102         return status;
103 }
104
105 /**
106  *  ixgbe_get_phy_type_from_id - Get the phy type
107  *  @hw: pointer to hardware structure
108  *
109  **/
110 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
111 {
112         enum ixgbe_phy_type phy_type;
113
114         switch (phy_id) {
115         case TN1010_PHY_ID:
116                 phy_type = ixgbe_phy_tn;
117                 break;
118         case QT2022_PHY_ID:
119                 phy_type = ixgbe_phy_qt;
120                 break;
121         case ATH_PHY_ID:
122                 phy_type = ixgbe_phy_nl;
123                 break;
124         default:
125                 phy_type = ixgbe_phy_unknown;
126                 break;
127         }
128
129         return phy_type;
130 }
131
132 /**
133  *  ixgbe_reset_phy_generic - Performs a PHY reset
134  *  @hw: pointer to hardware structure
135  **/
136 s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
137 {
138         /* Don't reset PHY if it's shut down due to overtemp. */
139         if (!hw->phy.reset_if_overtemp &&
140             (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
141                 return 0;
142
143         /*
144          * Perform soft PHY reset to the PHY_XS.
145          * This will cause a soft reset to the PHY
146          */
147         return hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
148                                      MDIO_CTRL1_RESET);
149 }
150
151 /**
152  *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
153  *  @hw: pointer to hardware structure
154  *  @reg_addr: 32 bit address of PHY register to read
155  *  @phy_data: Pointer to read data from PHY register
156  **/
157 s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
158                                u32 device_type, u16 *phy_data)
159 {
160         u32 command;
161         u32 i;
162         u32 data;
163         s32 status = 0;
164         u16 gssr;
165
166         if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
167                 gssr = IXGBE_GSSR_PHY1_SM;
168         else
169                 gssr = IXGBE_GSSR_PHY0_SM;
170
171         if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
172                 status = IXGBE_ERR_SWFW_SYNC;
173
174         if (status == 0) {
175                 /* Setup and write the address cycle command */
176                 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
177                            (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
178                            (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
179                            (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
180
181                 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
182
183                 /*
184                  * Check every 10 usec to see if the address cycle completed.
185                  * The MDI Command bit will clear when the operation is
186                  * complete
187                  */
188                 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
189                         udelay(10);
190
191                         command = IXGBE_READ_REG(hw, IXGBE_MSCA);
192
193                         if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
194                                 break;
195                 }
196
197                 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
198                         hw_dbg(hw, "PHY address command did not complete.\n");
199                         status = IXGBE_ERR_PHY;
200                 }
201
202                 if (status == 0) {
203                         /*
204                          * Address cycle complete, setup and write the read
205                          * command
206                          */
207                         command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
208                                    (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
209                                    (hw->phy.mdio.prtad <<
210                                     IXGBE_MSCA_PHY_ADDR_SHIFT) |
211                                    (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
212
213                         IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
214
215                         /*
216                          * Check every 10 usec to see if the address cycle
217                          * completed. The MDI Command bit will clear when the
218                          * operation is complete
219                          */
220                         for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
221                                 udelay(10);
222
223                                 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
224
225                                 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
226                                         break;
227                         }
228
229                         if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
230                                 hw_dbg(hw, "PHY read command didn't complete\n");
231                                 status = IXGBE_ERR_PHY;
232                         } else {
233                                 /*
234                                  * Read operation is complete.  Get the data
235                                  * from MSRWD
236                                  */
237                                 data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
238                                 data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
239                                 *phy_data = (u16)(data);
240                         }
241                 }
242
243                 ixgbe_release_swfw_sync(hw, gssr);
244         }
245
246         return status;
247 }
248
249 /**
250  *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
251  *  @hw: pointer to hardware structure
252  *  @reg_addr: 32 bit PHY register to write
253  *  @device_type: 5 bit device type
254  *  @phy_data: Data to write to the PHY register
255  **/
256 s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
257                                 u32 device_type, u16 phy_data)
258 {
259         u32 command;
260         u32 i;
261         s32 status = 0;
262         u16 gssr;
263
264         if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
265                 gssr = IXGBE_GSSR_PHY1_SM;
266         else
267                 gssr = IXGBE_GSSR_PHY0_SM;
268
269         if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
270                 status = IXGBE_ERR_SWFW_SYNC;
271
272         if (status == 0) {
273                 /* Put the data in the MDI single read and write data register*/
274                 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
275
276                 /* Setup and write the address cycle command */
277                 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
278                            (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
279                            (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
280                            (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
281
282                 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
283
284                 /*
285                  * Check every 10 usec to see if the address cycle completed.
286                  * The MDI Command bit will clear when the operation is
287                  * complete
288                  */
289                 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
290                         udelay(10);
291
292                         command = IXGBE_READ_REG(hw, IXGBE_MSCA);
293
294                         if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
295                                 break;
296                 }
297
298                 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
299                         hw_dbg(hw, "PHY address cmd didn't complete\n");
300                         status = IXGBE_ERR_PHY;
301                 }
302
303                 if (status == 0) {
304                         /*
305                          * Address cycle complete, setup and write the write
306                          * command
307                          */
308                         command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
309                                    (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
310                                    (hw->phy.mdio.prtad <<
311                                     IXGBE_MSCA_PHY_ADDR_SHIFT) |
312                                    (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
313
314                         IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
315
316                         /*
317                          * Check every 10 usec to see if the address cycle
318                          * completed. The MDI Command bit will clear when the
319                          * operation is complete
320                          */
321                         for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
322                                 udelay(10);
323
324                                 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
325
326                                 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
327                                         break;
328                         }
329
330                         if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
331                                 hw_dbg(hw, "PHY address cmd didn't complete\n");
332                                 status = IXGBE_ERR_PHY;
333                         }
334                 }
335
336                 ixgbe_release_swfw_sync(hw, gssr);
337         }
338
339         return status;
340 }
341
342 /**
343  *  ixgbe_setup_phy_link_generic - Set and restart autoneg
344  *  @hw: pointer to hardware structure
345  *
346  *  Restart autonegotiation and PHY and waits for completion.
347  **/
348 s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
349 {
350         s32 status = IXGBE_NOT_IMPLEMENTED;
351         u32 time_out;
352         u32 max_time_out = 10;
353         u16 autoneg_reg;
354
355         /*
356          * Set advertisement settings in PHY based on autoneg_advertised
357          * settings. If autoneg_advertised = 0, then advertise default values
358          * tnx devices cannot be "forced" to a autoneg 10G and fail.  But can
359          * for a 1G.
360          */
361         hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
362
363         if (hw->phy.autoneg_advertised == IXGBE_LINK_SPEED_1GB_FULL)
364                 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
365         else
366                 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
367
368         hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
369
370         /* Restart PHY autonegotiation and wait for completion */
371         hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, &autoneg_reg);
372
373         autoneg_reg |= MDIO_AN_CTRL1_RESTART;
374
375         hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, autoneg_reg);
376
377         /* Wait for autonegotiation to finish */
378         for (time_out = 0; time_out < max_time_out; time_out++) {
379                 udelay(10);
380                 /* Restart PHY autonegotiation and wait for completion */
381                 status = hw->phy.ops.read_reg(hw, MDIO_STAT1, MDIO_MMD_AN,
382                                               &autoneg_reg);
383
384                 autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
385                 if (autoneg_reg == MDIO_AN_STAT1_COMPLETE) {
386                         status = 0;
387                         break;
388                 }
389         }
390
391         if (time_out == max_time_out)
392                 status = IXGBE_ERR_LINK_SETUP;
393
394         return status;
395 }
396
397 /**
398  *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
399  *  @hw: pointer to hardware structure
400  *  @speed: new link speed
401  *  @autoneg: true if autonegotiation enabled
402  **/
403 s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
404                                        ixgbe_link_speed speed,
405                                        bool autoneg,
406                                        bool autoneg_wait_to_complete)
407 {
408
409         /*
410          * Clear autoneg_advertised and set new values based on input link
411          * speed.
412          */
413         hw->phy.autoneg_advertised = 0;
414
415         if (speed & IXGBE_LINK_SPEED_10GB_FULL)
416                 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
417
418         if (speed & IXGBE_LINK_SPEED_1GB_FULL)
419                 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
420
421         /* Setup link based on the new speed settings */
422         hw->phy.ops.setup_link(hw);
423
424         return 0;
425 }
426
427 /**
428  *  ixgbe_reset_phy_nl - Performs a PHY reset
429  *  @hw: pointer to hardware structure
430  **/
431 s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
432 {
433         u16 phy_offset, control, eword, edata, block_crc;
434         bool end_data = false;
435         u16 list_offset, data_offset;
436         u16 phy_data = 0;
437         s32 ret_val = 0;
438         u32 i;
439
440         hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
441
442         /* reset the PHY and poll for completion */
443         hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
444                               (phy_data | MDIO_CTRL1_RESET));
445
446         for (i = 0; i < 100; i++) {
447                 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
448                                      &phy_data);
449                 if ((phy_data & MDIO_CTRL1_RESET) == 0)
450                         break;
451                 msleep(10);
452         }
453
454         if ((phy_data & MDIO_CTRL1_RESET) != 0) {
455                 hw_dbg(hw, "PHY reset did not complete.\n");
456                 ret_val = IXGBE_ERR_PHY;
457                 goto out;
458         }
459
460         /* Get init offsets */
461         ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
462                                                       &data_offset);
463         if (ret_val != 0)
464                 goto out;
465
466         ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
467         data_offset++;
468         while (!end_data) {
469                 /*
470                  * Read control word from PHY init contents offset
471                  */
472                 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
473                 control = (eword & IXGBE_CONTROL_MASK_NL) >>
474                            IXGBE_CONTROL_SHIFT_NL;
475                 edata = eword & IXGBE_DATA_MASK_NL;
476                 switch (control) {
477                 case IXGBE_DELAY_NL:
478                         data_offset++;
479                         hw_dbg(hw, "DELAY: %d MS\n", edata);
480                         msleep(edata);
481                         break;
482                 case IXGBE_DATA_NL:
483                         hw_dbg(hw, "DATA:\n");
484                         data_offset++;
485                         hw->eeprom.ops.read(hw, data_offset++,
486                                             &phy_offset);
487                         for (i = 0; i < edata; i++) {
488                                 hw->eeprom.ops.read(hw, data_offset, &eword);
489                                 hw->phy.ops.write_reg(hw, phy_offset,
490                                                       MDIO_MMD_PMAPMD, eword);
491                                 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
492                                        phy_offset);
493                                 data_offset++;
494                                 phy_offset++;
495                         }
496                         break;
497                 case IXGBE_CONTROL_NL:
498                         data_offset++;
499                         hw_dbg(hw, "CONTROL:\n");
500                         if (edata == IXGBE_CONTROL_EOL_NL) {
501                                 hw_dbg(hw, "EOL\n");
502                                 end_data = true;
503                         } else if (edata == IXGBE_CONTROL_SOL_NL) {
504                                 hw_dbg(hw, "SOL\n");
505                         } else {
506                                 hw_dbg(hw, "Bad control value\n");
507                                 ret_val = IXGBE_ERR_PHY;
508                                 goto out;
509                         }
510                         break;
511                 default:
512                         hw_dbg(hw, "Bad control type\n");
513                         ret_val = IXGBE_ERR_PHY;
514                         goto out;
515                 }
516         }
517
518 out:
519         return ret_val;
520 }
521
522 /**
523  *  ixgbe_identify_sfp_module_generic - Identifies SFP module and assigns
524  *                                      the PHY type.
525  *  @hw: pointer to hardware structure
526  *
527  *  Searches for and indentifies the SFP module.  Assings appropriate PHY type.
528  **/
529 s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
530 {
531         s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
532         u32 vendor_oui = 0;
533         enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
534         u8 identifier = 0;
535         u8 comp_codes_1g = 0;
536         u8 comp_codes_10g = 0;
537         u8 oui_bytes[3] = {0, 0, 0};
538         u8 cable_tech = 0;
539         u8 cable_spec = 0;
540         u16 enforce_sfp = 0;
541
542         if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
543                 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
544                 status = IXGBE_ERR_SFP_NOT_PRESENT;
545                 goto out;
546         }
547
548         status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
549                                              &identifier);
550
551         if (status == IXGBE_ERR_SFP_NOT_PRESENT || status == IXGBE_ERR_I2C) {
552                 status = IXGBE_ERR_SFP_NOT_PRESENT;
553                 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
554                 if (hw->phy.type != ixgbe_phy_nl) {
555                         hw->phy.id = 0;
556                         hw->phy.type = ixgbe_phy_unknown;
557                 }
558                 goto out;
559         }
560
561         if (identifier == IXGBE_SFF_IDENTIFIER_SFP) {
562                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_1GBE_COMP_CODES,
563                                             &comp_codes_1g);
564                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_10GBE_COMP_CODES,
565                                             &comp_codes_10g);
566                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_CABLE_TECHNOLOGY,
567                                             &cable_tech);
568
569                 /* ID Module
570                  * =========
571                  * 0    SFP_DA_CU
572                  * 1    SFP_SR
573                  * 2    SFP_LR
574                  * 3    SFP_DA_CORE0 - 82599-specific
575                  * 4    SFP_DA_CORE1 - 82599-specific
576                  * 5    SFP_SR/LR_CORE0 - 82599-specific
577                  * 6    SFP_SR/LR_CORE1 - 82599-specific
578                  * 7    SFP_act_lmt_DA_CORE0 - 82599-specific
579                  * 8    SFP_act_lmt_DA_CORE1 - 82599-specific
580                  * 9    SFP_1g_cu_CORE0 - 82599-specific
581                  * 10   SFP_1g_cu_CORE1 - 82599-specific
582                  */
583                 if (hw->mac.type == ixgbe_mac_82598EB) {
584                         if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
585                                 hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
586                         else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
587                                 hw->phy.sfp_type = ixgbe_sfp_type_sr;
588                         else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
589                                 hw->phy.sfp_type = ixgbe_sfp_type_lr;
590                         else
591                                 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
592                 } else if (hw->mac.type == ixgbe_mac_82599EB) {
593                         if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
594                                 if (hw->bus.lan_id == 0)
595                                         hw->phy.sfp_type =
596                                                      ixgbe_sfp_type_da_cu_core0;
597                                 else
598                                         hw->phy.sfp_type =
599                                                      ixgbe_sfp_type_da_cu_core1;
600                         } else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
601                                 hw->phy.ops.read_i2c_eeprom(
602                                                 hw, IXGBE_SFF_CABLE_SPEC_COMP,
603                                                 &cable_spec);
604                                 if (cable_spec &
605                                     IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
606                                         if (hw->bus.lan_id == 0)
607                                                 hw->phy.sfp_type =
608                                                 ixgbe_sfp_type_da_act_lmt_core0;
609                                         else
610                                                 hw->phy.sfp_type =
611                                                 ixgbe_sfp_type_da_act_lmt_core1;
612                                 } else {
613                                         hw->phy.sfp_type =
614                                                 ixgbe_sfp_type_unknown;
615                                 }
616                         } else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
617                                 if (hw->bus.lan_id == 0)
618                                         hw->phy.sfp_type =
619                                                       ixgbe_sfp_type_srlr_core0;
620                                 else
621                                         hw->phy.sfp_type =
622                                                       ixgbe_sfp_type_srlr_core1;
623                         else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
624                                 if (hw->bus.lan_id == 0)
625                                         hw->phy.sfp_type =
626                                                       ixgbe_sfp_type_srlr_core0;
627                                 else
628                                         hw->phy.sfp_type =
629                                                       ixgbe_sfp_type_srlr_core1;
630                         else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE)
631                                 if (hw->bus.lan_id == 0)
632                                         hw->phy.sfp_type =
633                                                 ixgbe_sfp_type_1g_cu_core0;
634                                 else
635                                         hw->phy.sfp_type =
636                                                 ixgbe_sfp_type_1g_cu_core1;
637                         else
638                                 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
639                 }
640
641                 if (hw->phy.sfp_type != stored_sfp_type)
642                         hw->phy.sfp_setup_needed = true;
643
644                 /* Determine if the SFP+ PHY is dual speed or not. */
645                 hw->phy.multispeed_fiber = false;
646                 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
647                    (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
648                    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
649                    (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
650                         hw->phy.multispeed_fiber = true;
651
652                 /* Determine PHY vendor */
653                 if (hw->phy.type != ixgbe_phy_nl) {
654                         hw->phy.id = identifier;
655                         hw->phy.ops.read_i2c_eeprom(hw,
656                                                     IXGBE_SFF_VENDOR_OUI_BYTE0,
657                                                     &oui_bytes[0]);
658                         hw->phy.ops.read_i2c_eeprom(hw,
659                                                     IXGBE_SFF_VENDOR_OUI_BYTE1,
660                                                     &oui_bytes[1]);
661                         hw->phy.ops.read_i2c_eeprom(hw,
662                                                     IXGBE_SFF_VENDOR_OUI_BYTE2,
663                                                     &oui_bytes[2]);
664
665                         vendor_oui =
666                           ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
667                            (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
668                            (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
669
670                         switch (vendor_oui) {
671                         case IXGBE_SFF_VENDOR_OUI_TYCO:
672                                 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
673                                         hw->phy.type =
674                                                 ixgbe_phy_sfp_passive_tyco;
675                                 break;
676                         case IXGBE_SFF_VENDOR_OUI_FTL:
677                                 if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
678                                         hw->phy.type = ixgbe_phy_sfp_ftl_active;
679                                 else
680                                         hw->phy.type = ixgbe_phy_sfp_ftl;
681                                 break;
682                         case IXGBE_SFF_VENDOR_OUI_AVAGO:
683                                 hw->phy.type = ixgbe_phy_sfp_avago;
684                                 break;
685                         case IXGBE_SFF_VENDOR_OUI_INTEL:
686                                 hw->phy.type = ixgbe_phy_sfp_intel;
687                                 break;
688                         default:
689                                 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
690                                         hw->phy.type =
691                                                 ixgbe_phy_sfp_passive_unknown;
692                                 else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
693                                         hw->phy.type =
694                                                 ixgbe_phy_sfp_active_unknown;
695                                 else
696                                         hw->phy.type = ixgbe_phy_sfp_unknown;
697                                 break;
698                         }
699                 }
700
701                 /* All passive DA cables are supported */
702                 if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
703                     IXGBE_SFF_DA_ACTIVE_CABLE)) {
704                         status = 0;
705                         goto out;
706                 }
707
708                 /* Verify supported 1G SFP modules */
709                 if (comp_codes_10g == 0 &&
710                     !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
711                       hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0)) {
712                         hw->phy.type = ixgbe_phy_sfp_unsupported;
713                         status = IXGBE_ERR_SFP_NOT_SUPPORTED;
714                         goto out;
715                 }
716
717                 /* Anything else 82598-based is supported */
718                 if (hw->mac.type == ixgbe_mac_82598EB) {
719                         status = 0;
720                         goto out;
721                 }
722
723                 /* This is guaranteed to be 82599, no need to check for NULL */
724                 hw->mac.ops.get_device_caps(hw, &enforce_sfp);
725                 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
726                     !((hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0) ||
727                       (hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1))) {
728                         /* Make sure we're a supported PHY type */
729                         if (hw->phy.type == ixgbe_phy_sfp_intel) {
730                                 status = 0;
731                         } else {
732                                 hw_dbg(hw, "SFP+ module not supported\n");
733                                 hw->phy.type = ixgbe_phy_sfp_unsupported;
734                                 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
735                         }
736                 } else {
737                         status = 0;
738                 }
739         }
740
741 out:
742         return status;
743 }
744
745 /**
746  *  ixgbe_get_sfp_init_sequence_offsets - Checks the MAC's EEPROM to see
747  *  if it supports a given SFP+ module type, if so it returns the offsets to the
748  *  phy init sequence block.
749  *  @hw: pointer to hardware structure
750  *  @list_offset: offset to the SFP ID list
751  *  @data_offset: offset to the SFP data block
752  **/
753 s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
754                                         u16 *list_offset,
755                                         u16 *data_offset)
756 {
757         u16 sfp_id;
758         u16 sfp_type = hw->phy.sfp_type;
759
760         if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
761                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
762
763         if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
764                 return IXGBE_ERR_SFP_NOT_PRESENT;
765
766         if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
767             (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
768                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
769
770         /*
771          * Limiting active cables and 1G Phys must be initialized as
772          * SR modules
773          */
774         if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
775             sfp_type == ixgbe_sfp_type_1g_cu_core0)
776                 sfp_type = ixgbe_sfp_type_srlr_core0;
777         else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
778                  sfp_type == ixgbe_sfp_type_1g_cu_core1)
779                 sfp_type = ixgbe_sfp_type_srlr_core1;
780
781         /* Read offset to PHY init contents */
782         hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset);
783
784         if ((!*list_offset) || (*list_offset == 0xFFFF))
785                 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
786
787         /* Shift offset to first ID word */
788         (*list_offset)++;
789
790         /*
791          * Find the matching SFP ID in the EEPROM
792          * and program the init sequence
793          */
794         hw->eeprom.ops.read(hw, *list_offset, &sfp_id);
795
796         while (sfp_id != IXGBE_PHY_INIT_END_NL) {
797                 if (sfp_id == sfp_type) {
798                         (*list_offset)++;
799                         hw->eeprom.ops.read(hw, *list_offset, data_offset);
800                         if ((!*data_offset) || (*data_offset == 0xFFFF)) {
801                                 hw_dbg(hw, "SFP+ module not supported\n");
802                                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
803                         } else {
804                                 break;
805                         }
806                 } else {
807                         (*list_offset) += 2;
808                         if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
809                                 return IXGBE_ERR_PHY;
810                 }
811         }
812
813         if (sfp_id == IXGBE_PHY_INIT_END_NL) {
814                 hw_dbg(hw, "No matching SFP+ module found\n");
815                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
816         }
817
818         return 0;
819 }
820
821 /**
822  *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
823  *  @hw: pointer to hardware structure
824  *  @byte_offset: EEPROM byte offset to read
825  *  @eeprom_data: value read
826  *
827  *  Performs byte read operation to SFP module's EEPROM over I2C interface.
828  **/
829 s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
830                                   u8 *eeprom_data)
831 {
832         return hw->phy.ops.read_i2c_byte(hw, byte_offset,
833                                          IXGBE_I2C_EEPROM_DEV_ADDR,
834                                          eeprom_data);
835 }
836
837 /**
838  *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
839  *  @hw: pointer to hardware structure
840  *  @byte_offset: EEPROM byte offset to write
841  *  @eeprom_data: value to write
842  *
843  *  Performs byte write operation to SFP module's EEPROM over I2C interface.
844  **/
845 s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
846                                    u8 eeprom_data)
847 {
848         return hw->phy.ops.write_i2c_byte(hw, byte_offset,
849                                           IXGBE_I2C_EEPROM_DEV_ADDR,
850                                           eeprom_data);
851 }
852
853 /**
854  *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
855  *  @hw: pointer to hardware structure
856  *  @byte_offset: byte offset to read
857  *  @data: value read
858  *
859  *  Performs byte read operation to SFP module's EEPROM over I2C interface at
860  *  a specified deivce address.
861  **/
862 s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
863                                 u8 dev_addr, u8 *data)
864 {
865         s32 status = 0;
866         u32 max_retry = 1;
867         u32 retry = 0;
868         bool nack = 1;
869
870         do {
871                 ixgbe_i2c_start(hw);
872
873                 /* Device Address and write indication */
874                 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
875                 if (status != 0)
876                         goto fail;
877
878                 status = ixgbe_get_i2c_ack(hw);
879                 if (status != 0)
880                         goto fail;
881
882                 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
883                 if (status != 0)
884                         goto fail;
885
886                 status = ixgbe_get_i2c_ack(hw);
887                 if (status != 0)
888                         goto fail;
889
890                 ixgbe_i2c_start(hw);
891
892                 /* Device Address and read indication */
893                 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
894                 if (status != 0)
895                         goto fail;
896
897                 status = ixgbe_get_i2c_ack(hw);
898                 if (status != 0)
899                         goto fail;
900
901                 status = ixgbe_clock_in_i2c_byte(hw, data);
902                 if (status != 0)
903                         goto fail;
904
905                 status = ixgbe_clock_out_i2c_bit(hw, nack);
906                 if (status != 0)
907                         goto fail;
908
909                 ixgbe_i2c_stop(hw);
910                 break;
911
912 fail:
913                 ixgbe_i2c_bus_clear(hw);
914                 retry++;
915                 if (retry < max_retry)
916                         hw_dbg(hw, "I2C byte read error - Retrying.\n");
917                 else
918                         hw_dbg(hw, "I2C byte read error.\n");
919
920         } while (retry < max_retry);
921
922         return status;
923 }
924
925 /**
926  *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
927  *  @hw: pointer to hardware structure
928  *  @byte_offset: byte offset to write
929  *  @data: value to write
930  *
931  *  Performs byte write operation to SFP module's EEPROM over I2C interface at
932  *  a specified device address.
933  **/
934 s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
935                                  u8 dev_addr, u8 data)
936 {
937         s32 status = 0;
938         u32 max_retry = 1;
939         u32 retry = 0;
940
941         do {
942                 ixgbe_i2c_start(hw);
943
944                 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
945                 if (status != 0)
946                         goto fail;
947
948                 status = ixgbe_get_i2c_ack(hw);
949                 if (status != 0)
950                         goto fail;
951
952                 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
953                 if (status != 0)
954                         goto fail;
955
956                 status = ixgbe_get_i2c_ack(hw);
957                 if (status != 0)
958                         goto fail;
959
960                 status = ixgbe_clock_out_i2c_byte(hw, data);
961                 if (status != 0)
962                         goto fail;
963
964                 status = ixgbe_get_i2c_ack(hw);
965                 if (status != 0)
966                         goto fail;
967
968                 ixgbe_i2c_stop(hw);
969                 break;
970
971 fail:
972                 ixgbe_i2c_bus_clear(hw);
973                 retry++;
974                 if (retry < max_retry)
975                         hw_dbg(hw, "I2C byte write error - Retrying.\n");
976                 else
977                         hw_dbg(hw, "I2C byte write error.\n");
978         } while (retry < max_retry);
979
980         return status;
981 }
982
983 /**
984  *  ixgbe_i2c_start - Sets I2C start condition
985  *  @hw: pointer to hardware structure
986  *
987  *  Sets I2C start condition (High -> Low on SDA while SCL is High)
988  **/
989 static void ixgbe_i2c_start(struct ixgbe_hw *hw)
990 {
991         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
992
993         /* Start condition must begin with data and clock high */
994         ixgbe_set_i2c_data(hw, &i2cctl, 1);
995         ixgbe_raise_i2c_clk(hw, &i2cctl);
996
997         /* Setup time for start condition (4.7us) */
998         udelay(IXGBE_I2C_T_SU_STA);
999
1000         ixgbe_set_i2c_data(hw, &i2cctl, 0);
1001
1002         /* Hold time for start condition (4us) */
1003         udelay(IXGBE_I2C_T_HD_STA);
1004
1005         ixgbe_lower_i2c_clk(hw, &i2cctl);
1006
1007         /* Minimum low period of clock is 4.7 us */
1008         udelay(IXGBE_I2C_T_LOW);
1009
1010 }
1011
1012 /**
1013  *  ixgbe_i2c_stop - Sets I2C stop condition
1014  *  @hw: pointer to hardware structure
1015  *
1016  *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
1017  **/
1018 static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
1019 {
1020         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1021
1022         /* Stop condition must begin with data low and clock high */
1023         ixgbe_set_i2c_data(hw, &i2cctl, 0);
1024         ixgbe_raise_i2c_clk(hw, &i2cctl);
1025
1026         /* Setup time for stop condition (4us) */
1027         udelay(IXGBE_I2C_T_SU_STO);
1028
1029         ixgbe_set_i2c_data(hw, &i2cctl, 1);
1030
1031         /* bus free time between stop and start (4.7us)*/
1032         udelay(IXGBE_I2C_T_BUF);
1033 }
1034
1035 /**
1036  *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
1037  *  @hw: pointer to hardware structure
1038  *  @data: data byte to clock in
1039  *
1040  *  Clocks in one byte data via I2C data/clock
1041  **/
1042 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
1043 {
1044         s32 status = 0;
1045         s32 i;
1046         bool bit = 0;
1047
1048         for (i = 7; i >= 0; i--) {
1049                 status = ixgbe_clock_in_i2c_bit(hw, &bit);
1050                 *data |= bit << i;
1051
1052                 if (status != 0)
1053                         break;
1054         }
1055
1056         return status;
1057 }
1058
1059 /**
1060  *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
1061  *  @hw: pointer to hardware structure
1062  *  @data: data byte clocked out
1063  *
1064  *  Clocks out one byte data via I2C data/clock
1065  **/
1066 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
1067 {
1068         s32 status = 0;
1069         s32 i;
1070         u32 i2cctl;
1071         bool bit = 0;
1072
1073         for (i = 7; i >= 0; i--) {
1074                 bit = (data >> i) & 0x1;
1075                 status = ixgbe_clock_out_i2c_bit(hw, bit);
1076
1077                 if (status != 0)
1078                         break;
1079         }
1080
1081         /* Release SDA line (set high) */
1082         i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1083         i2cctl |= IXGBE_I2C_DATA_OUT;
1084         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
1085
1086         return status;
1087 }
1088
1089 /**
1090  *  ixgbe_get_i2c_ack - Polls for I2C ACK
1091  *  @hw: pointer to hardware structure
1092  *
1093  *  Clocks in/out one bit via I2C data/clock
1094  **/
1095 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
1096 {
1097         s32 status;
1098         u32 i = 0;
1099         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1100         u32 timeout = 10;
1101         bool ack = 1;
1102
1103         status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1104
1105         if (status != 0)
1106                 goto out;
1107
1108         /* Minimum high period of clock is 4us */
1109         udelay(IXGBE_I2C_T_HIGH);
1110
1111         /* Poll for ACK.  Note that ACK in I2C spec is
1112          * transition from 1 to 0 */
1113         for (i = 0; i < timeout; i++) {
1114                 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1115                 ack = ixgbe_get_i2c_data(&i2cctl);
1116
1117                 udelay(1);
1118                 if (ack == 0)
1119                         break;
1120         }
1121
1122         if (ack == 1) {
1123                 hw_dbg(hw, "I2C ack was not received.\n");
1124                 status = IXGBE_ERR_I2C;
1125         }
1126
1127         ixgbe_lower_i2c_clk(hw, &i2cctl);
1128
1129         /* Minimum low period of clock is 4.7 us */
1130         udelay(IXGBE_I2C_T_LOW);
1131
1132 out:
1133         return status;
1134 }
1135
1136 /**
1137  *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
1138  *  @hw: pointer to hardware structure
1139  *  @data: read data value
1140  *
1141  *  Clocks in one bit via I2C data/clock
1142  **/
1143 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
1144 {
1145         s32 status;
1146         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1147
1148         status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1149
1150         /* Minimum high period of clock is 4us */
1151         udelay(IXGBE_I2C_T_HIGH);
1152
1153         i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1154         *data = ixgbe_get_i2c_data(&i2cctl);
1155
1156         ixgbe_lower_i2c_clk(hw, &i2cctl);
1157
1158         /* Minimum low period of clock is 4.7 us */
1159         udelay(IXGBE_I2C_T_LOW);
1160
1161         return status;
1162 }
1163
1164 /**
1165  *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
1166  *  @hw: pointer to hardware structure
1167  *  @data: data value to write
1168  *
1169  *  Clocks out one bit via I2C data/clock
1170  **/
1171 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
1172 {
1173         s32 status;
1174         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1175
1176         status = ixgbe_set_i2c_data(hw, &i2cctl, data);
1177         if (status == 0) {
1178                 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1179
1180                 /* Minimum high period of clock is 4us */
1181                 udelay(IXGBE_I2C_T_HIGH);
1182
1183                 ixgbe_lower_i2c_clk(hw, &i2cctl);
1184
1185                 /* Minimum low period of clock is 4.7 us.
1186                  * This also takes care of the data hold time.
1187                  */
1188                 udelay(IXGBE_I2C_T_LOW);
1189         } else {
1190                 status = IXGBE_ERR_I2C;
1191                 hw_dbg(hw, "I2C data was not set to %X\n", data);
1192         }
1193
1194         return status;
1195 }
1196 /**
1197  *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
1198  *  @hw: pointer to hardware structure
1199  *  @i2cctl: Current value of I2CCTL register
1200  *
1201  *  Raises the I2C clock line '0'->'1'
1202  **/
1203 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1204 {
1205         s32 status = 0;
1206
1207         *i2cctl |= IXGBE_I2C_CLK_OUT;
1208
1209         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1210
1211         /* SCL rise time (1000ns) */
1212         udelay(IXGBE_I2C_T_RISE);
1213
1214         return status;
1215 }
1216
1217 /**
1218  *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
1219  *  @hw: pointer to hardware structure
1220  *  @i2cctl: Current value of I2CCTL register
1221  *
1222  *  Lowers the I2C clock line '1'->'0'
1223  **/
1224 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1225 {
1226
1227         *i2cctl &= ~IXGBE_I2C_CLK_OUT;
1228
1229         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1230
1231         /* SCL fall time (300ns) */
1232         udelay(IXGBE_I2C_T_FALL);
1233 }
1234
1235 /**
1236  *  ixgbe_set_i2c_data - Sets the I2C data bit
1237  *  @hw: pointer to hardware structure
1238  *  @i2cctl: Current value of I2CCTL register
1239  *  @data: I2C data value (0 or 1) to set
1240  *
1241  *  Sets the I2C data bit
1242  **/
1243 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
1244 {
1245         s32 status = 0;
1246
1247         if (data)
1248                 *i2cctl |= IXGBE_I2C_DATA_OUT;
1249         else
1250                 *i2cctl &= ~IXGBE_I2C_DATA_OUT;
1251
1252         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1253
1254         /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
1255         udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
1256
1257         /* Verify data was set correctly */
1258         *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1259         if (data != ixgbe_get_i2c_data(i2cctl)) {
1260                 status = IXGBE_ERR_I2C;
1261                 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
1262         }
1263
1264         return status;
1265 }
1266
1267 /**
1268  *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
1269  *  @hw: pointer to hardware structure
1270  *  @i2cctl: Current value of I2CCTL register
1271  *
1272  *  Returns the I2C data bit value
1273  **/
1274 static bool ixgbe_get_i2c_data(u32 *i2cctl)
1275 {
1276         bool data;
1277
1278         if (*i2cctl & IXGBE_I2C_DATA_IN)
1279                 data = 1;
1280         else
1281                 data = 0;
1282
1283         return data;
1284 }
1285
1286 /**
1287  *  ixgbe_i2c_bus_clear - Clears the I2C bus
1288  *  @hw: pointer to hardware structure
1289  *
1290  *  Clears the I2C bus by sending nine clock pulses.
1291  *  Used when data line is stuck low.
1292  **/
1293 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
1294 {
1295         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1296         u32 i;
1297
1298         ixgbe_set_i2c_data(hw, &i2cctl, 1);
1299
1300         for (i = 0; i < 9; i++) {
1301                 ixgbe_raise_i2c_clk(hw, &i2cctl);
1302
1303                 /* Min high period of clock is 4us */
1304                 udelay(IXGBE_I2C_T_HIGH);
1305
1306                 ixgbe_lower_i2c_clk(hw, &i2cctl);
1307
1308                 /* Min low period of clock is 4.7us*/
1309                 udelay(IXGBE_I2C_T_LOW);
1310         }
1311
1312         /* Put the i2c bus back to default state */
1313         ixgbe_i2c_stop(hw);
1314 }
1315
1316 /**
1317  *  ixgbe_check_phy_link_tnx - Determine link and speed status
1318  *  @hw: pointer to hardware structure
1319  *
1320  *  Reads the VS1 register to determine if link is up and the current speed for
1321  *  the PHY.
1322  **/
1323 s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1324                              bool *link_up)
1325 {
1326         s32 status = 0;
1327         u32 time_out;
1328         u32 max_time_out = 10;
1329         u16 phy_link = 0;
1330         u16 phy_speed = 0;
1331         u16 phy_data = 0;
1332
1333         /* Initialize speed and link to default case */
1334         *link_up = false;
1335         *speed = IXGBE_LINK_SPEED_10GB_FULL;
1336
1337         /*
1338          * Check current speed and link status of the PHY register.
1339          * This is a vendor specific register and may have to
1340          * be changed for other copper PHYs.
1341          */
1342         for (time_out = 0; time_out < max_time_out; time_out++) {
1343                 udelay(10);
1344                 status = hw->phy.ops.read_reg(hw,
1345                                         IXGBE_MDIO_VENDOR_SPECIFIC_1_STATUS,
1346                                         MDIO_MMD_VEND1,
1347                                         &phy_data);
1348                 phy_link = phy_data &
1349                            IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1350                 phy_speed = phy_data &
1351                             IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1352                 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1353                         *link_up = true;
1354                         if (phy_speed ==
1355                             IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1356                                 *speed = IXGBE_LINK_SPEED_1GB_FULL;
1357                         break;
1358                 }
1359         }
1360
1361         return status;
1362 }
1363
1364 /**
1365  *  ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
1366  *  @hw: pointer to hardware structure
1367  *  @firmware_version: pointer to the PHY Firmware Version
1368  **/
1369 s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
1370                                        u16 *firmware_version)
1371 {
1372         s32 status = 0;
1373
1374         status = hw->phy.ops.read_reg(hw, TNX_FW_REV, MDIO_MMD_VEND1,
1375                                       firmware_version);
1376
1377         return status;
1378 }
1379
1380 /**
1381  *  ixgbe_tn_check_overtemp - Checks if an overtemp occured.
1382  *  @hw: pointer to hardware structure
1383  *
1384  *  Checks if the LASI temp alarm status was triggered due to overtemp
1385  **/
1386 s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
1387 {
1388         s32 status = 0;
1389         u16 phy_data = 0;
1390
1391         if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
1392                 goto out;
1393
1394         /* Check that the LASI temp alarm status was triggered */
1395         hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
1396                              MDIO_MMD_PMAPMD, &phy_data);
1397
1398         if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
1399                 goto out;
1400
1401         status = IXGBE_ERR_OVERTEMP;
1402 out:
1403         return status;
1404 }