upload tizen1.0 source
[kernel/linux-2.6.36.git] / drivers / mtd / nand / jz4740_nand.c
1 /*
2  *  Copyright (C) 2009-2010, Lars-Peter Clausen <lars@metafoo.de>
3  *  JZ4740 SoC NAND controller driver
4  *
5  *  This program is free software; you can redistribute it and/or modify it
6  *  under  the terms of the GNU General  Public License as published by the
7  *  Free Software Foundation;  either version 2 of the License, or (at your
8  *  option) any later version.
9  *
10  *  You should have received a copy of the GNU General Public License along
11  *  with this program; if not, write to the Free Software Foundation, Inc.,
12  *  675 Mass Ave, Cambridge, MA 02139, USA.
13  *
14  */
15
16 #include <linux/ioport.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21
22 #include <linux/mtd/mtd.h>
23 #include <linux/mtd/nand.h>
24 #include <linux/mtd/partitions.h>
25
26 #include <linux/gpio.h>
27
28 #include <asm/mach-jz4740/jz4740_nand.h>
29
30 #define JZ_REG_NAND_CTRL        0x50
31 #define JZ_REG_NAND_ECC_CTRL    0x100
32 #define JZ_REG_NAND_DATA        0x104
33 #define JZ_REG_NAND_PAR0        0x108
34 #define JZ_REG_NAND_PAR1        0x10C
35 #define JZ_REG_NAND_PAR2        0x110
36 #define JZ_REG_NAND_IRQ_STAT    0x114
37 #define JZ_REG_NAND_IRQ_CTRL    0x118
38 #define JZ_REG_NAND_ERR(x)      (0x11C + ((x) << 2))
39
40 #define JZ_NAND_ECC_CTRL_PAR_READY      BIT(4)
41 #define JZ_NAND_ECC_CTRL_ENCODING       BIT(3)
42 #define JZ_NAND_ECC_CTRL_RS             BIT(2)
43 #define JZ_NAND_ECC_CTRL_RESET          BIT(1)
44 #define JZ_NAND_ECC_CTRL_ENABLE         BIT(0)
45
46 #define JZ_NAND_STATUS_ERR_COUNT        (BIT(31) | BIT(30) | BIT(29))
47 #define JZ_NAND_STATUS_PAD_FINISH       BIT(4)
48 #define JZ_NAND_STATUS_DEC_FINISH       BIT(3)
49 #define JZ_NAND_STATUS_ENC_FINISH       BIT(2)
50 #define JZ_NAND_STATUS_UNCOR_ERROR      BIT(1)
51 #define JZ_NAND_STATUS_ERROR            BIT(0)
52
53 #define JZ_NAND_CTRL_ENABLE_CHIP(x) BIT((x) << 1)
54 #define JZ_NAND_CTRL_ASSERT_CHIP(x) BIT(((x) << 1) + 1)
55
56 #define JZ_NAND_MEM_ADDR_OFFSET 0x10000
57 #define JZ_NAND_MEM_CMD_OFFSET 0x08000
58
59 struct jz_nand {
60         struct mtd_info mtd;
61         struct nand_chip chip;
62         void __iomem *base;
63         struct resource *mem;
64
65         void __iomem *bank_base;
66         struct resource *bank_mem;
67
68         struct jz_nand_platform_data *pdata;
69         bool is_reading;
70 };
71
72 static inline struct jz_nand *mtd_to_jz_nand(struct mtd_info *mtd)
73 {
74         return container_of(mtd, struct jz_nand, mtd);
75 }
76
77 static void jz_nand_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
78 {
79         struct jz_nand *nand = mtd_to_jz_nand(mtd);
80         struct nand_chip *chip = mtd->priv;
81         uint32_t reg;
82
83         if (ctrl & NAND_CTRL_CHANGE) {
84                 BUG_ON((ctrl & NAND_ALE) && (ctrl & NAND_CLE));
85                 if (ctrl & NAND_ALE)
86                         chip->IO_ADDR_W = nand->bank_base + JZ_NAND_MEM_ADDR_OFFSET;
87                 else if (ctrl & NAND_CLE)
88                         chip->IO_ADDR_W = nand->bank_base + JZ_NAND_MEM_CMD_OFFSET;
89                 else
90                         chip->IO_ADDR_W = nand->bank_base;
91
92                 reg = readl(nand->base + JZ_REG_NAND_CTRL);
93                 if (ctrl & NAND_NCE)
94                         reg |= JZ_NAND_CTRL_ASSERT_CHIP(0);
95                 else
96                         reg &= ~JZ_NAND_CTRL_ASSERT_CHIP(0);
97                 writel(reg, nand->base + JZ_REG_NAND_CTRL);
98         }
99         if (dat != NAND_CMD_NONE)
100                 writeb(dat, chip->IO_ADDR_W);
101 }
102
103 static int jz_nand_dev_ready(struct mtd_info *mtd)
104 {
105         struct jz_nand *nand = mtd_to_jz_nand(mtd);
106         return gpio_get_value_cansleep(nand->pdata->busy_gpio);
107 }
108
109 static void jz_nand_hwctl(struct mtd_info *mtd, int mode)
110 {
111         struct jz_nand *nand = mtd_to_jz_nand(mtd);
112         uint32_t reg;
113
114         writel(0, nand->base + JZ_REG_NAND_IRQ_STAT);
115         reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
116
117         reg |= JZ_NAND_ECC_CTRL_RESET;
118         reg |= JZ_NAND_ECC_CTRL_ENABLE;
119         reg |= JZ_NAND_ECC_CTRL_RS;
120
121         switch (mode) {
122         case NAND_ECC_READ:
123                 reg &= ~JZ_NAND_ECC_CTRL_ENCODING;
124                 nand->is_reading = true;
125                 break;
126         case NAND_ECC_WRITE:
127                 reg |= JZ_NAND_ECC_CTRL_ENCODING;
128                 nand->is_reading = false;
129                 break;
130         default:
131                 break;
132         }
133
134         writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
135 }
136
137 static int jz_nand_calculate_ecc_rs(struct mtd_info *mtd, const uint8_t *dat,
138         uint8_t *ecc_code)
139 {
140         struct jz_nand *nand = mtd_to_jz_nand(mtd);
141         uint32_t reg, status;
142         int i;
143         unsigned int timeout = 1000;
144         static uint8_t empty_block_ecc[] = {0xcd, 0x9d, 0x90, 0x58, 0xf4,
145                                                 0x8b, 0xff, 0xb7, 0x6f};
146
147         if (nand->is_reading)
148                 return 0;
149
150         do {
151                 status = readl(nand->base + JZ_REG_NAND_IRQ_STAT);
152         } while (!(status & JZ_NAND_STATUS_ENC_FINISH) && --timeout);
153
154         if (timeout == 0)
155             return -1;
156
157         reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
158         reg &= ~JZ_NAND_ECC_CTRL_ENABLE;
159         writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
160
161         for (i = 0; i < 9; ++i)
162                 ecc_code[i] = readb(nand->base + JZ_REG_NAND_PAR0 + i);
163
164         /* If the written data is completly 0xff, we also want to write 0xff as
165          * ecc, otherwise we will get in trouble when doing subpage writes. */
166         if (memcmp(ecc_code, empty_block_ecc, 9) == 0)
167                 memset(ecc_code, 0xff, 9);
168
169         return 0;
170 }
171
172 static void jz_nand_correct_data(uint8_t *dat, int index, int mask)
173 {
174         int offset = index & 0x7;
175         uint16_t data;
176
177         index += (index >> 3);
178
179         data = dat[index];
180         data |= dat[index+1] << 8;
181
182         mask ^= (data >> offset) & 0x1ff;
183         data &= ~(0x1ff << offset);
184         data |= (mask << offset);
185
186         dat[index] = data & 0xff;
187         dat[index+1] = (data >> 8) & 0xff;
188 }
189
190 static int jz_nand_correct_ecc_rs(struct mtd_info *mtd, uint8_t *dat,
191         uint8_t *read_ecc, uint8_t *calc_ecc)
192 {
193         struct jz_nand *nand = mtd_to_jz_nand(mtd);
194         int i, error_count, index;
195         uint32_t reg, status, error;
196         uint32_t t;
197         unsigned int timeout = 1000;
198
199         t = read_ecc[0];
200
201         if (t == 0xff) {
202                 for (i = 1; i < 9; ++i)
203                         t &= read_ecc[i];
204
205                 t &= dat[0];
206                 t &= dat[nand->chip.ecc.size / 2];
207                 t &= dat[nand->chip.ecc.size - 1];
208
209                 if (t == 0xff) {
210                         for (i = 1; i < nand->chip.ecc.size - 1; ++i)
211                                 t &= dat[i];
212                         if (t == 0xff)
213                                 return 0;
214                 }
215         }
216
217         for (i = 0; i < 9; ++i)
218                 writeb(read_ecc[i], nand->base + JZ_REG_NAND_PAR0 + i);
219
220         reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
221         reg |= JZ_NAND_ECC_CTRL_PAR_READY;
222         writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
223
224         do {
225                 status = readl(nand->base + JZ_REG_NAND_IRQ_STAT);
226         } while (!(status & JZ_NAND_STATUS_DEC_FINISH) && --timeout);
227
228         if (timeout == 0)
229             return -1;
230
231         reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
232         reg &= ~JZ_NAND_ECC_CTRL_ENABLE;
233         writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
234
235         if (status & JZ_NAND_STATUS_ERROR) {
236                 if (status & JZ_NAND_STATUS_UNCOR_ERROR)
237                         return -1;
238
239                 error_count = (status & JZ_NAND_STATUS_ERR_COUNT) >> 29;
240
241                 for (i = 0; i < error_count; ++i) {
242                         error = readl(nand->base + JZ_REG_NAND_ERR(i));
243                         index = ((error >> 16) & 0x1ff) - 1;
244                         if (index >= 0 && index < 512)
245                                 jz_nand_correct_data(dat, index, error & 0x1ff);
246                 }
247
248                 return error_count;
249         }
250
251         return 0;
252 }
253
254
255 /* Copy paste of nand_read_page_hwecc_oob_first except for different eccpos
256  * handling. The ecc area is for 4k chips 72 bytes long and thus does not fit
257  * into the eccpos array. */
258 static int jz_nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
259         struct nand_chip *chip, uint8_t *buf, int page)
260 {
261         int i, eccsize = chip->ecc.size;
262         int eccbytes = chip->ecc.bytes;
263         int eccsteps = chip->ecc.steps;
264         uint8_t *p = buf;
265         unsigned int ecc_offset = chip->page_shift;
266
267         /* Read the OOB area first */
268         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
269         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
270         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
271
272         for (i = ecc_offset; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
273                 int stat;
274
275                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
276                 chip->read_buf(mtd, p, eccsize);
277
278                 stat = chip->ecc.correct(mtd, p, &chip->oob_poi[i], NULL);
279                 if (stat < 0)
280                         mtd->ecc_stats.failed++;
281                 else
282                         mtd->ecc_stats.corrected += stat;
283         }
284         return 0;
285 }
286
287 /* Copy-and-paste of nand_write_page_hwecc with different eccpos handling. */
288 static void jz_nand_write_page_hwecc(struct mtd_info *mtd,
289         struct nand_chip *chip, const uint8_t *buf)
290 {
291         int i, eccsize = chip->ecc.size;
292         int eccbytes = chip->ecc.bytes;
293         int eccsteps = chip->ecc.steps;
294         const uint8_t *p = buf;
295         unsigned int ecc_offset = chip->page_shift;
296
297         for (i = ecc_offset; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
298                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
299                 chip->write_buf(mtd, p, eccsize);
300                 chip->ecc.calculate(mtd, p, &chip->oob_poi[i]);
301         }
302
303         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
304 }
305
306 #ifdef CONFIG_MTD_CMDLINE_PARTS
307 static const char *part_probes[] = {"cmdline", NULL};
308 #endif
309
310 static int jz_nand_ioremap_resource(struct platform_device *pdev,
311         const char *name, struct resource **res, void __iomem **base)
312 {
313         int ret;
314
315         *res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
316         if (!*res) {
317                 dev_err(&pdev->dev, "Failed to get platform %s memory\n", name);
318                 ret = -ENXIO;
319                 goto err;
320         }
321
322         *res = request_mem_region((*res)->start, resource_size(*res),
323                                 pdev->name);
324         if (!*res) {
325                 dev_err(&pdev->dev, "Failed to request %s memory region\n", name);
326                 ret = -EBUSY;
327                 goto err;
328         }
329
330         *base = ioremap((*res)->start, resource_size(*res));
331         if (!*base) {
332                 dev_err(&pdev->dev, "Failed to ioremap %s memory region\n", name);
333                 ret = -EBUSY;
334                 goto err_release_mem;
335         }
336
337         return 0;
338
339 err_release_mem:
340         release_mem_region((*res)->start, resource_size(*res));
341 err:
342         *res = NULL;
343         *base = NULL;
344         return ret;
345 }
346
347 static int __devinit jz_nand_probe(struct platform_device *pdev)
348 {
349         int ret;
350         struct jz_nand *nand;
351         struct nand_chip *chip;
352         struct mtd_info *mtd;
353         struct jz_nand_platform_data *pdata = pdev->dev.platform_data;
354 #ifdef CONFIG_MTD_PARTITIONS
355         struct mtd_partition *partition_info;
356         int num_partitions = 0;
357 #endif
358
359         nand = kzalloc(sizeof(*nand), GFP_KERNEL);
360         if (!nand) {
361                 dev_err(&pdev->dev, "Failed to allocate device structure.\n");
362                 return -ENOMEM;
363         }
364
365         ret = jz_nand_ioremap_resource(pdev, "mmio", &nand->mem, &nand->base);
366         if (ret)
367                 goto err_free;
368         ret = jz_nand_ioremap_resource(pdev, "bank", &nand->bank_mem,
369                         &nand->bank_base);
370         if (ret)
371                 goto err_iounmap_mmio;
372
373         if (pdata && gpio_is_valid(pdata->busy_gpio)) {
374                 ret = gpio_request(pdata->busy_gpio, "NAND busy pin");
375                 if (ret) {
376                         dev_err(&pdev->dev,
377                                 "Failed to request busy gpio %d: %d\n",
378                                 pdata->busy_gpio, ret);
379                         goto err_iounmap_mem;
380                 }
381         }
382
383         mtd             = &nand->mtd;
384         chip            = &nand->chip;
385         mtd->priv       = chip;
386         mtd->owner      = THIS_MODULE;
387         mtd->name       = "jz4740-nand";
388
389         chip->ecc.hwctl         = jz_nand_hwctl;
390         chip->ecc.calculate     = jz_nand_calculate_ecc_rs;
391         chip->ecc.correct       = jz_nand_correct_ecc_rs;
392         chip->ecc.mode          = NAND_ECC_HW_OOB_FIRST;
393         chip->ecc.size          = 512;
394         chip->ecc.bytes         = 9;
395
396         chip->ecc.read_page     = jz_nand_read_page_hwecc_oob_first;
397         chip->ecc.write_page    = jz_nand_write_page_hwecc;
398
399         if (pdata)
400                 chip->ecc.layout = pdata->ecc_layout;
401
402         chip->chip_delay = 50;
403         chip->cmd_ctrl = jz_nand_cmd_ctrl;
404
405         if (pdata && gpio_is_valid(pdata->busy_gpio))
406                 chip->dev_ready = jz_nand_dev_ready;
407
408         chip->IO_ADDR_R = nand->bank_base;
409         chip->IO_ADDR_W = nand->bank_base;
410
411         nand->pdata = pdata;
412         platform_set_drvdata(pdev, nand);
413
414         writel(JZ_NAND_CTRL_ENABLE_CHIP(0), nand->base + JZ_REG_NAND_CTRL);
415
416         ret = nand_scan_ident(mtd, 1, NULL);
417         if (ret) {
418                 dev_err(&pdev->dev,  "Failed to scan nand\n");
419                 goto err_gpio_free;
420         }
421
422         if (pdata && pdata->ident_callback) {
423                 pdata->ident_callback(pdev, chip, &pdata->partitions,
424                                         &pdata->num_partitions);
425         }
426
427         ret = nand_scan_tail(mtd);
428         if (ret) {
429                 dev_err(&pdev->dev,  "Failed to scan nand\n");
430                 goto err_gpio_free;
431         }
432
433 #ifdef CONFIG_MTD_PARTITIONS
434 #ifdef CONFIG_MTD_CMDLINE_PARTS
435         num_partitions = parse_mtd_partitions(mtd, part_probes,
436                                                 &partition_info, 0);
437 #endif
438         if (num_partitions <= 0 && pdata) {
439                 num_partitions = pdata->num_partitions;
440                 partition_info = pdata->partitions;
441         }
442
443         if (num_partitions > 0)
444                 ret = add_mtd_partitions(mtd, partition_info, num_partitions);
445         else
446 #endif
447         ret = add_mtd_device(mtd);
448
449         if (ret) {
450                 dev_err(&pdev->dev, "Failed to add mtd device\n");
451                 goto err_nand_release;
452         }
453
454         dev_info(&pdev->dev, "Successfully registered JZ4740 NAND driver\n");
455
456         return 0;
457
458 err_nand_release:
459         nand_release(&nand->mtd);
460 err_gpio_free:
461         platform_set_drvdata(pdev, NULL);
462         gpio_free(pdata->busy_gpio);
463 err_iounmap_mem:
464         iounmap(nand->bank_base);
465 err_iounmap_mmio:
466         iounmap(nand->base);
467 err_free:
468         kfree(nand);
469         return ret;
470 }
471
472 static int __devexit jz_nand_remove(struct platform_device *pdev)
473 {
474         struct jz_nand *nand = platform_get_drvdata(pdev);
475
476         nand_release(&nand->mtd);
477
478         /* Deassert and disable all chips */
479         writel(0, nand->base + JZ_REG_NAND_CTRL);
480
481         iounmap(nand->bank_base);
482         release_mem_region(nand->bank_mem->start, resource_size(nand->bank_mem));
483         iounmap(nand->base);
484         release_mem_region(nand->mem->start, resource_size(nand->mem));
485
486         platform_set_drvdata(pdev, NULL);
487         kfree(nand);
488
489         return 0;
490 }
491
492 struct platform_driver jz_nand_driver = {
493         .probe = jz_nand_probe,
494         .remove = __devexit_p(jz_nand_remove),
495         .driver = {
496                 .name = "jz4740-nand",
497                 .owner = THIS_MODULE,
498         },
499 };
500
501 static int __init jz_nand_init(void)
502 {
503         return platform_driver_register(&jz_nand_driver);
504 }
505 module_init(jz_nand_init);
506
507 static void __exit jz_nand_exit(void)
508 {
509         platform_driver_unregister(&jz_nand_driver);
510 }
511 module_exit(jz_nand_exit);
512
513 MODULE_LICENSE("GPL");
514 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
515 MODULE_DESCRIPTION("NAND controller driver for JZ4740 SoC");
516 MODULE_ALIAS("platform:jz4740-nand");