upload tizen1.0 source
[kernel/linux-2.6.36.git] / arch / tile / kernel / pci-dma.c
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14
15 #include <linux/mm.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/vmalloc.h>
18 #include <asm/tlbflush.h>
19 #include <asm/homecache.h>
20
21 /* Generic DMA mapping functions: */
22
23 /*
24  * Allocate what Linux calls "coherent" memory, which for us just
25  * means uncached.
26  */
27 void *dma_alloc_coherent(struct device *dev,
28                          size_t size,
29                          dma_addr_t *dma_handle,
30                          gfp_t gfp)
31 {
32         u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32);
33         int node = dev_to_node(dev);
34         int order = get_order(size);
35         struct page *pg;
36         dma_addr_t addr;
37
38         gfp |= __GFP_ZERO;
39
40         /*
41          * By forcing NUMA node 0 for 32-bit masks we ensure that the
42          * high 32 bits of the resulting PA will be zero.  If the mask
43          * size is, e.g., 24, we may still not be able to guarantee a
44          * suitable memory address, in which case we will return NULL.
45          * But such devices are uncommon.
46          */
47         if (dma_mask <= DMA_BIT_MASK(32))
48                 node = 0;
49
50         pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_UNCACHED);
51         if (pg == NULL)
52                 return NULL;
53
54         addr = page_to_phys(pg);
55         if (addr + size > dma_mask) {
56                 homecache_free_pages(addr, order);
57                 return NULL;
58         }
59
60         *dma_handle = addr;
61         return page_address(pg);
62 }
63 EXPORT_SYMBOL(dma_alloc_coherent);
64
65 /*
66  * Free memory that was allocated with dma_alloc_coherent.
67  */
68 void dma_free_coherent(struct device *dev, size_t size,
69                   void *vaddr, dma_addr_t dma_handle)
70 {
71         homecache_free_pages((unsigned long)vaddr, get_order(size));
72 }
73 EXPORT_SYMBOL(dma_free_coherent);
74
75 /*
76  * The map routines "map" the specified address range for DMA
77  * accesses.  The memory belongs to the device after this call is
78  * issued, until it is unmapped with dma_unmap_single.
79  *
80  * We don't need to do any mapping, we just flush the address range
81  * out of the cache and return a DMA address.
82  *
83  * The unmap routines do whatever is necessary before the processor
84  * accesses the memory again, and must be called before the driver
85  * touches the memory.  We can get away with a cache invalidate if we
86  * can count on nothing having been touched.
87  */
88
89
90 /*
91  * dma_map_single can be passed any memory address, and there appear
92  * to be no alignment constraints.
93  *
94  * There is a chance that the start of the buffer will share a cache
95  * line with some other data that has been touched in the meantime.
96  */
97 dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
98                enum dma_data_direction direction)
99 {
100         struct page *page;
101         dma_addr_t dma_addr;
102         int thispage;
103
104         BUG_ON(!valid_dma_direction(direction));
105         WARN_ON(size == 0);
106
107         dma_addr = __pa(ptr);
108
109         /* We might have been handed a buffer that wraps a page boundary */
110         while ((int)size > 0) {
111                 /* The amount to flush that's on this page */
112                 thispage = PAGE_SIZE - ((unsigned long)ptr & (PAGE_SIZE - 1));
113                 thispage = min((int)thispage, (int)size);
114                 /* Is this valid for any page we could be handed? */
115                 page = pfn_to_page(kaddr_to_pfn(ptr));
116                 homecache_flush_cache(page, 0);
117                 ptr += thispage;
118                 size -= thispage;
119         }
120
121         return dma_addr;
122 }
123 EXPORT_SYMBOL(dma_map_single);
124
125 void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
126                  enum dma_data_direction direction)
127 {
128         BUG_ON(!valid_dma_direction(direction));
129 }
130 EXPORT_SYMBOL(dma_unmap_single);
131
132 int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
133            enum dma_data_direction direction)
134 {
135         struct scatterlist *sg;
136         int i;
137
138         BUG_ON(!valid_dma_direction(direction));
139
140         WARN_ON(nents == 0 || sglist->length == 0);
141
142         for_each_sg(sglist, sg, nents, i) {
143                 struct page *page;
144                 sg->dma_address = sg_phys(sg);
145                 page = pfn_to_page(sg->dma_address >> PAGE_SHIFT);
146                 homecache_flush_cache(page, 0);
147         }
148
149         return nents;
150 }
151 EXPORT_SYMBOL(dma_map_sg);
152
153 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
154              enum dma_data_direction direction)
155 {
156         BUG_ON(!valid_dma_direction(direction));
157 }
158 EXPORT_SYMBOL(dma_unmap_sg);
159
160 dma_addr_t dma_map_page(struct device *dev, struct page *page,
161                         unsigned long offset, size_t size,
162                         enum dma_data_direction direction)
163 {
164         BUG_ON(!valid_dma_direction(direction));
165
166         homecache_flush_cache(page, 0);
167
168         return page_to_pa(page) + offset;
169 }
170 EXPORT_SYMBOL(dma_map_page);
171
172 void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
173                enum dma_data_direction direction)
174 {
175         BUG_ON(!valid_dma_direction(direction));
176 }
177 EXPORT_SYMBOL(dma_unmap_page);
178
179 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
180                              size_t size, enum dma_data_direction direction)
181 {
182         BUG_ON(!valid_dma_direction(direction));
183 }
184 EXPORT_SYMBOL(dma_sync_single_for_cpu);
185
186 void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
187                                 size_t size, enum dma_data_direction direction)
188 {
189         unsigned long start = PFN_DOWN(dma_handle);
190         unsigned long end = PFN_DOWN(dma_handle + size - 1);
191         unsigned long i;
192
193         BUG_ON(!valid_dma_direction(direction));
194         for (i = start; i <= end; ++i)
195                 homecache_flush_cache(pfn_to_page(i), 0);
196 }
197 EXPORT_SYMBOL(dma_sync_single_for_device);
198
199 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
200                     enum dma_data_direction direction)
201 {
202         BUG_ON(!valid_dma_direction(direction));
203         WARN_ON(nelems == 0 || sg[0].length == 0);
204 }
205 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
206
207 /*
208  * Flush and invalidate cache for scatterlist.
209  */
210 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
211                             int nelems, enum dma_data_direction direction)
212 {
213         struct scatterlist *sg;
214         int i;
215
216         BUG_ON(!valid_dma_direction(direction));
217         WARN_ON(nelems == 0 || sglist->length == 0);
218
219         for_each_sg(sglist, sg, nelems, i) {
220                 dma_sync_single_for_device(dev, sg->dma_address,
221                                            sg_dma_len(sg), direction);
222         }
223 }
224 EXPORT_SYMBOL(dma_sync_sg_for_device);
225
226 void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
227                                    unsigned long offset, size_t size,
228                                    enum dma_data_direction direction)
229 {
230         dma_sync_single_for_cpu(dev, dma_handle + offset, size, direction);
231 }
232 EXPORT_SYMBOL(dma_sync_single_range_for_cpu);
233
234 void dma_sync_single_range_for_device(struct device *dev,
235                                       dma_addr_t dma_handle,
236                                       unsigned long offset, size_t size,
237                                       enum dma_data_direction direction)
238 {
239         dma_sync_single_for_device(dev, dma_handle + offset, size, direction);
240 }
241 EXPORT_SYMBOL(dma_sync_single_range_for_device);
242
243 /*
244  * dma_alloc_noncoherent() returns non-cacheable memory, so there's no
245  * need to do any flushing here.
246  */
247 void dma_cache_sync(void *vaddr, size_t size,
248                     enum dma_data_direction direction)
249 {
250 }
251 EXPORT_SYMBOL(dma_cache_sync);