upload tizen1.0 source
[kernel/linux-2.6.36.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/sort.h>
18 #include <linux/fs.h>
19
20 #include <asm/cputype.h>
21 #include <asm/sections.h>
22 #include <asm/cachetype.h>
23 #include <asm/setup.h>
24 #include <asm/sizes.h>
25 #include <asm/smp_plat.h>
26 #include <asm/tlb.h>
27 #include <asm/highmem.h>
28
29 #include <asm/mach/arch.h>
30 #include <asm/mach/map.h>
31
32 #include "mm.h"
33
34 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
35 extern void s5p_reserve_bootmem(void);          /* Temporary code for Bootmem */
36
37 /*
38  * empty_zero_page is a special page that is used for
39  * zero-initialized data and COW.
40  */
41 struct page *empty_zero_page;
42 EXPORT_SYMBOL(empty_zero_page);
43
44 /*
45  * The pmd table for the upper-most set of pages.
46  */
47 pmd_t *top_pmd;
48
49 #define CPOLICY_UNCACHED        0
50 #define CPOLICY_BUFFERED        1
51 #define CPOLICY_WRITETHROUGH    2
52 #define CPOLICY_WRITEBACK       3
53 #define CPOLICY_WRITEALLOC      4
54
55 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
56 static unsigned int ecc_mask __initdata = 0;
57 pgprot_t pgprot_user;
58 pgprot_t pgprot_kernel;
59
60 EXPORT_SYMBOL(pgprot_user);
61 EXPORT_SYMBOL(pgprot_kernel);
62
63 struct cachepolicy {
64         const char      policy[16];
65         unsigned int    cr_mask;
66         unsigned int    pmd;
67         unsigned int    pte;
68 };
69
70 static struct cachepolicy cache_policies[] __initdata = {
71         {
72                 .policy         = "uncached",
73                 .cr_mask        = CR_W|CR_C,
74                 .pmd            = PMD_SECT_UNCACHED,
75                 .pte            = L_PTE_MT_UNCACHED,
76         }, {
77                 .policy         = "buffered",
78                 .cr_mask        = CR_C,
79                 .pmd            = PMD_SECT_BUFFERED,
80                 .pte            = L_PTE_MT_BUFFERABLE,
81         }, {
82                 .policy         = "writethrough",
83                 .cr_mask        = 0,
84                 .pmd            = PMD_SECT_WT,
85                 .pte            = L_PTE_MT_WRITETHROUGH,
86         }, {
87                 .policy         = "writeback",
88                 .cr_mask        = 0,
89                 .pmd            = PMD_SECT_WB,
90                 .pte            = L_PTE_MT_WRITEBACK,
91         }, {
92                 .policy         = "writealloc",
93                 .cr_mask        = 0,
94                 .pmd            = PMD_SECT_WBWA,
95                 .pte            = L_PTE_MT_WRITEALLOC,
96         }
97 };
98
99 /*
100  * These are useful for identifying cache coherency
101  * problems by allowing the cache or the cache and
102  * writebuffer to be turned off.  (Note: the write
103  * buffer should not be on and the cache off).
104  */
105 static int __init early_cachepolicy(char *p)
106 {
107         int i;
108
109         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
110                 int len = strlen(cache_policies[i].policy);
111
112                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
113                         cachepolicy = i;
114                         cr_alignment &= ~cache_policies[i].cr_mask;
115                         cr_no_alignment &= ~cache_policies[i].cr_mask;
116                         break;
117                 }
118         }
119         if (i == ARRAY_SIZE(cache_policies))
120                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
121         /*
122          * This restriction is partly to do with the way we boot; it is
123          * unpredictable to have memory mapped using two different sets of
124          * memory attributes (shared, type, and cache attribs).  We can not
125          * change these attributes once the initial assembly has setup the
126          * page tables.
127          */
128         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
129                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
130                 cachepolicy = CPOLICY_WRITEBACK;
131         }
132         flush_cache_all();
133         set_cr(cr_alignment);
134         return 0;
135 }
136 early_param("cachepolicy", early_cachepolicy);
137
138 static int __init early_nocache(char *__unused)
139 {
140         char *p = "buffered";
141         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
142         early_cachepolicy(p);
143         return 0;
144 }
145 early_param("nocache", early_nocache);
146
147 static int __init early_nowrite(char *__unused)
148 {
149         char *p = "uncached";
150         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
151         early_cachepolicy(p);
152         return 0;
153 }
154 early_param("nowb", early_nowrite);
155
156 static int __init early_ecc(char *p)
157 {
158         if (memcmp(p, "on", 2) == 0)
159                 ecc_mask = PMD_PROTECTION;
160         else if (memcmp(p, "off", 3) == 0)
161                 ecc_mask = 0;
162         return 0;
163 }
164 early_param("ecc", early_ecc);
165
166 static int __init noalign_setup(char *__unused)
167 {
168         cr_alignment &= ~CR_A;
169         cr_no_alignment &= ~CR_A;
170         set_cr(cr_alignment);
171         return 1;
172 }
173 __setup("noalign", noalign_setup);
174
175 #ifndef CONFIG_SMP
176 void adjust_cr(unsigned long mask, unsigned long set)
177 {
178         unsigned long flags;
179
180         mask &= ~CR_A;
181
182         set &= mask;
183
184         local_irq_save(flags);
185
186         cr_no_alignment = (cr_no_alignment & ~mask) | set;
187         cr_alignment = (cr_alignment & ~mask) | set;
188
189         set_cr((get_cr() & ~mask) | set);
190
191         local_irq_restore(flags);
192 }
193 #endif
194
195 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
196 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
197
198 static struct mem_type mem_types[] = {
199         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
200                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
201                                   L_PTE_SHARED,
202                 .prot_l1        = PMD_TYPE_TABLE,
203                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
204                 .domain         = DOMAIN_IO,
205         },
206         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
207                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
208                 .prot_l1        = PMD_TYPE_TABLE,
209                 .prot_sect      = PROT_SECT_DEVICE,
210                 .domain         = DOMAIN_IO,
211         },
212         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
213                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
214                 .prot_l1        = PMD_TYPE_TABLE,
215                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
216                 .domain         = DOMAIN_IO,
217         },      
218         [MT_DEVICE_WC] = {      /* ioremap_wc */
219                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
220                 .prot_l1        = PMD_TYPE_TABLE,
221                 .prot_sect      = PROT_SECT_DEVICE,
222                 .domain         = DOMAIN_IO,
223         },
224         [MT_UNCACHED] = {
225                 .prot_pte       = PROT_PTE_DEVICE,
226                 .prot_l1        = PMD_TYPE_TABLE,
227                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
228                 .domain         = DOMAIN_IO,
229         },
230         [MT_CACHECLEAN] = {
231                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
232                 .domain    = DOMAIN_KERNEL,
233         },
234         [MT_MINICLEAN] = {
235                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
236                 .domain    = DOMAIN_KERNEL,
237         },
238         [MT_LOW_VECTORS] = {
239                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
240                                 L_PTE_EXEC,
241                 .prot_l1   = PMD_TYPE_TABLE,
242                 .domain    = DOMAIN_USER,
243         },
244         [MT_HIGH_VECTORS] = {
245                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
246                                 L_PTE_USER | L_PTE_EXEC,
247                 .prot_l1   = PMD_TYPE_TABLE,
248                 .domain    = DOMAIN_USER,
249         },
250         [MT_MEMORY] = {
251                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
252                                 L_PTE_WRITE | L_PTE_EXEC,
253                 .prot_l1   = PMD_TYPE_TABLE,
254                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
255                 .domain    = DOMAIN_KERNEL,
256         },
257         [MT_ROM] = {
258                 .prot_sect = PMD_TYPE_SECT,
259                 .domain    = DOMAIN_KERNEL,
260         },
261         [MT_MEMORY_NONCACHED] = {
262                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
263                                 L_PTE_WRITE | L_PTE_EXEC | L_PTE_MT_BUFFERABLE,
264                 .prot_l1   = PMD_TYPE_TABLE,
265                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
266                 .domain    = DOMAIN_KERNEL,
267         },
268         [MT_MEMORY_DTCM] = {
269                 .prot_pte       = L_PTE_PRESENT | L_PTE_YOUNG |
270                                   L_PTE_DIRTY | L_PTE_WRITE,
271                 .prot_l1        = PMD_TYPE_TABLE,
272                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
273                 .domain         = DOMAIN_KERNEL,
274         },
275         [MT_MEMORY_ITCM] = {
276                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
277                                 L_PTE_USER | L_PTE_EXEC,
278                 .prot_l1   = PMD_TYPE_TABLE,
279                 .domain    = DOMAIN_IO,
280         },
281 };
282
283 const struct mem_type *get_mem_type(unsigned int type)
284 {
285         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
286 }
287 EXPORT_SYMBOL(get_mem_type);
288
289 /*
290  * Adjust the PMD section entries according to the CPU in use.
291  */
292 static void __init build_mem_type_table(void)
293 {
294         struct cachepolicy *cp;
295         unsigned int cr = get_cr();
296         unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
297         int cpu_arch = cpu_architecture();
298         int i;
299
300         if (cpu_arch < CPU_ARCH_ARMv6) {
301 #if defined(CONFIG_CPU_DCACHE_DISABLE)
302                 if (cachepolicy > CPOLICY_BUFFERED)
303                         cachepolicy = CPOLICY_BUFFERED;
304 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
305                 if (cachepolicy > CPOLICY_WRITETHROUGH)
306                         cachepolicy = CPOLICY_WRITETHROUGH;
307 #endif
308         }
309         if (cpu_arch < CPU_ARCH_ARMv5) {
310                 if (cachepolicy >= CPOLICY_WRITEALLOC)
311                         cachepolicy = CPOLICY_WRITEBACK;
312                 ecc_mask = 0;
313         }
314 #ifdef CONFIG_SMP
315         cachepolicy = CPOLICY_WRITEALLOC;
316 #endif
317
318         /*
319          * Strip out features not present on earlier architectures.
320          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
321          * without extended page tables don't have the 'Shared' bit.
322          */
323         if (cpu_arch < CPU_ARCH_ARMv5)
324                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
325                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
326         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
327                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
328                         mem_types[i].prot_sect &= ~PMD_SECT_S;
329
330         /*
331          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
332          * "update-able on write" bit on ARM610).  However, Xscale and
333          * Xscale3 require this bit to be cleared.
334          */
335         if (cpu_is_xscale() || cpu_is_xsc3()) {
336                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
337                         mem_types[i].prot_sect &= ~PMD_BIT4;
338                         mem_types[i].prot_l1 &= ~PMD_BIT4;
339                 }
340         } else if (cpu_arch < CPU_ARCH_ARMv6) {
341                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
342                         if (mem_types[i].prot_l1)
343                                 mem_types[i].prot_l1 |= PMD_BIT4;
344                         if (mem_types[i].prot_sect)
345                                 mem_types[i].prot_sect |= PMD_BIT4;
346                 }
347         }
348
349         /*
350          * Mark the device areas according to the CPU/architecture.
351          */
352         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
353                 if (!cpu_is_xsc3()) {
354                         /*
355                          * Mark device regions on ARMv6+ as execute-never
356                          * to prevent speculative instruction fetches.
357                          */
358                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
359                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
360                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
361                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
362                 }
363                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
364                         /*
365                          * For ARMv7 with TEX remapping,
366                          * - shared device is SXCB=1100
367                          * - nonshared device is SXCB=0100
368                          * - write combine device mem is SXCB=0001
369                          * (Uncached Normal memory)
370                          */
371                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
372                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
373                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
374                 } else if (cpu_is_xsc3()) {
375                         /*
376                          * For Xscale3,
377                          * - shared device is TEXCB=00101
378                          * - nonshared device is TEXCB=01000
379                          * - write combine device mem is TEXCB=00100
380                          * (Inner/Outer Uncacheable in xsc3 parlance)
381                          */
382                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
383                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
384                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
385                 } else {
386                         /*
387                          * For ARMv6 and ARMv7 without TEX remapping,
388                          * - shared device is TEXCB=00001
389                          * - nonshared device is TEXCB=01000
390                          * - write combine device mem is TEXCB=00100
391                          * (Uncached Normal in ARMv6 parlance).
392                          */
393                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
394                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
395                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
396                 }
397         } else {
398                 /*
399                  * On others, write combining is "Uncached/Buffered"
400                  */
401                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
402         }
403
404         /*
405          * Now deal with the memory-type mappings
406          */
407         cp = &cache_policies[cachepolicy];
408         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
409
410 #ifndef CONFIG_SMP
411         /*
412          * Only use write-through for non-SMP systems
413          */
414         if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
415                 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
416 #endif
417
418         /*
419          * Enable CPU-specific coherency if supported.
420          * (Only available on XSC3 at the moment.)
421          */
422         if (arch_is_coherent() && cpu_is_xsc3()) {
423                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
424                 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
425                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
426                 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
427         }
428         /*
429          * ARMv6 and above have extended page tables.
430          */
431         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
432                 /*
433                  * Mark cache clean areas and XIP ROM read only
434                  * from SVC mode and no access from userspace.
435                  */
436                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
437                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
438                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
439
440 #ifdef CONFIG_SMP
441                 /*
442                  * Mark memory with the "shared" attribute for SMP systems
443                  */
444                 user_pgprot |= L_PTE_SHARED;
445                 kern_pgprot |= L_PTE_SHARED;
446                 vecs_pgprot |= L_PTE_SHARED;
447                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
448                 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
449                 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
450                 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
451                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
452                 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
453                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
454                 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
455 #endif
456         }
457
458         /*
459          * Non-cacheable Normal - intended for memory areas that must
460          * not cause dirty cache line writebacks when used
461          */
462         if (cpu_arch >= CPU_ARCH_ARMv6) {
463                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
464                         /* Non-cacheable Normal is XCB = 001 */
465                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
466                                 PMD_SECT_BUFFERED;
467                 } else {
468                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
469                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
470                                 PMD_SECT_TEX(1);
471                 }
472         } else {
473                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
474         }
475
476         for (i = 0; i < 16; i++) {
477                 unsigned long v = pgprot_val(protection_map[i]);
478                 protection_map[i] = __pgprot(v | user_pgprot);
479         }
480
481         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
482         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
483
484         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
485         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
486                                  L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
487
488         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
489         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
490         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
491         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
492         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
493         mem_types[MT_ROM].prot_sect |= cp->pmd;
494
495         switch (cp->pmd) {
496         case PMD_SECT_WT:
497                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
498                 break;
499         case PMD_SECT_WB:
500         case PMD_SECT_WBWA:
501                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
502                 break;
503         }
504         printk("Memory policy: ECC %sabled, Data cache %s\n",
505                 ecc_mask ? "en" : "dis", cp->policy);
506
507         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
508                 struct mem_type *t = &mem_types[i];
509                 if (t->prot_l1)
510                         t->prot_l1 |= PMD_DOMAIN(t->domain);
511                 if (t->prot_sect)
512                         t->prot_sect |= PMD_DOMAIN(t->domain);
513         }
514 }
515
516 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
517 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
518                               unsigned long size, pgprot_t vma_prot)
519 {
520         if (!pfn_valid(pfn))
521                 return pgprot_noncached(vma_prot);
522         else if (file->f_flags & O_SYNC)
523                 return pgprot_writecombine(vma_prot);
524         return vma_prot;
525 }
526 EXPORT_SYMBOL(phys_mem_access_prot);
527 #endif
528
529 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
530
531 static void __init *early_alloc(unsigned long sz)
532 {
533         void *ptr = __va(memblock_alloc(sz, sz));
534         memset(ptr, 0, sz);
535         return ptr;
536 }
537
538 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
539 {
540         if (pmd_none(*pmd)) {
541                 pte_t *pte = early_alloc(2 * PTRS_PER_PTE * sizeof(pte_t));
542                 __pmd_populate(pmd, __pa(pte) | prot);
543         }
544         BUG_ON(pmd_bad(*pmd));
545         return pte_offset_kernel(pmd, addr);
546 }
547
548 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
549                                   unsigned long end, unsigned long pfn,
550                                   const struct mem_type *type)
551 {
552         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
553         do {
554                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
555                 pfn++;
556         } while (pte++, addr += PAGE_SIZE, addr != end);
557 }
558
559 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
560                                       unsigned long end, unsigned long phys,
561                                       const struct mem_type *type)
562 {
563         pmd_t *pmd = pmd_offset(pgd, addr);
564
565         /*
566          * Try a section mapping - end, addr and phys must all be aligned
567          * to a section boundary.  Note that PMDs refer to the individual
568          * L1 entries, whereas PGDs refer to a group of L1 entries making
569          * up one logical pointer to an L2 table.
570          */
571         if (((addr | end | phys) & ~SECTION_MASK) == 0) {
572                 pmd_t *p = pmd;
573
574                 if (addr & SECTION_SIZE)
575                         pmd++;
576
577                 do {
578                         *pmd = __pmd(phys | type->prot_sect);
579                         phys += SECTION_SIZE;
580                 } while (pmd++, addr += SECTION_SIZE, addr != end);
581
582                 flush_pmd_entry(p);
583         } else {
584                 /*
585                  * No need to loop; pte's aren't interested in the
586                  * individual L1 entries.
587                  */
588                 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
589         }
590 }
591
592 static void __init create_36bit_mapping(struct map_desc *md,
593                                         const struct mem_type *type)
594 {
595         unsigned long phys, addr, length, end;
596         pgd_t *pgd;
597
598         addr = md->virtual;
599         phys = (unsigned long)__pfn_to_phys(md->pfn);
600         length = PAGE_ALIGN(md->length);
601
602         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
603                 printk(KERN_ERR "MM: CPU does not support supersection "
604                        "mapping for 0x%08llx at 0x%08lx\n",
605                        __pfn_to_phys((u64)md->pfn), addr);
606                 return;
607         }
608
609         /* N.B. ARMv6 supersections are only defined to work with domain 0.
610          *      Since domain assignments can in fact be arbitrary, the
611          *      'domain == 0' check below is required to insure that ARMv6
612          *      supersections are only allocated for domain 0 regardless
613          *      of the actual domain assignments in use.
614          */
615         if (type->domain) {
616                 printk(KERN_ERR "MM: invalid domain in supersection "
617                        "mapping for 0x%08llx at 0x%08lx\n",
618                        __pfn_to_phys((u64)md->pfn), addr);
619                 return;
620         }
621
622         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
623                 printk(KERN_ERR "MM: cannot create mapping for "
624                        "0x%08llx at 0x%08lx invalid alignment\n",
625                        __pfn_to_phys((u64)md->pfn), addr);
626                 return;
627         }
628
629         /*
630          * Shift bits [35:32] of address into bits [23:20] of PMD
631          * (See ARMv6 spec).
632          */
633         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
634
635         pgd = pgd_offset_k(addr);
636         end = addr + length;
637         do {
638                 pmd_t *pmd = pmd_offset(pgd, addr);
639                 int i;
640
641                 for (i = 0; i < 16; i++)
642                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
643
644                 addr += SUPERSECTION_SIZE;
645                 phys += SUPERSECTION_SIZE;
646                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
647         } while (addr != end);
648 }
649
650 /*
651  * Create the page directory entries and any necessary
652  * page tables for the mapping specified by `md'.  We
653  * are able to cope here with varying sizes and address
654  * offsets, and we take full advantage of sections and
655  * supersections.
656  */
657 static void __init create_mapping(struct map_desc *md)
658 {
659         unsigned long phys, addr, length, end;
660         const struct mem_type *type;
661         pgd_t *pgd;
662
663         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
664                 printk(KERN_WARNING "BUG: not creating mapping for "
665                        "0x%08llx at 0x%08lx in user region\n",
666                        __pfn_to_phys((u64)md->pfn), md->virtual);
667                 return;
668         }
669
670         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
671             md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
672                 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
673                        "overlaps vmalloc space\n",
674                        __pfn_to_phys((u64)md->pfn), md->virtual);
675         }
676
677         type = &mem_types[md->type];
678
679         /*
680          * Catch 36-bit addresses
681          */
682         if (md->pfn >= 0x100000) {
683                 create_36bit_mapping(md, type);
684                 return;
685         }
686
687         addr = md->virtual & PAGE_MASK;
688         phys = (unsigned long)__pfn_to_phys(md->pfn);
689         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
690
691         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
692                 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
693                        "be mapped using pages, ignoring.\n",
694                        __pfn_to_phys(md->pfn), addr);
695                 return;
696         }
697
698         pgd = pgd_offset_k(addr);
699         end = addr + length;
700         do {
701                 unsigned long next = pgd_addr_end(addr, end);
702
703                 alloc_init_section(pgd, addr, next, phys, type);
704
705                 phys += next - addr;
706                 addr = next;
707         } while (pgd++, addr != end);
708 }
709
710 /*
711  * Create the architecture specific mappings
712  */
713 void __init iotable_init(struct map_desc *io_desc, int nr)
714 {
715         int i;
716
717         for (i = 0; i < nr; i++)
718                 create_mapping(io_desc + i);
719 }
720
721 static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
722
723 /*
724  * vmalloc=size forces the vmalloc area to be exactly 'size'
725  * bytes. This can be used to increase (or decrease) the vmalloc
726  * area - the default is 128m.
727  */
728 static int __init early_vmalloc(char *arg)
729 {
730         unsigned long vmalloc_reserve = memparse(arg, NULL);
731
732         if (vmalloc_reserve < SZ_16M) {
733                 vmalloc_reserve = SZ_16M;
734                 printk(KERN_WARNING
735                         "vmalloc area too small, limiting to %luMB\n",
736                         vmalloc_reserve >> 20);
737         }
738
739         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
740                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
741                 printk(KERN_WARNING
742                         "vmalloc area is too big, limiting to %luMB\n",
743                         vmalloc_reserve >> 20);
744         }
745
746         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
747         return 0;
748 }
749 early_param("vmalloc", early_vmalloc);
750
751 phys_addr_t lowmem_end_addr;
752
753 static void __init sanity_check_meminfo(void)
754 {
755         int i, j, highmem = 0;
756
757
758         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
759                 struct membank *bank = &meminfo.bank[j];
760                 *bank = meminfo.bank[i];
761
762 #ifdef CONFIG_HIGHMEM
763                 if (__va(bank->start) > vmalloc_min ||
764                     __va(bank->start) < (void *)PAGE_OFFSET)
765                         highmem = 1;
766
767                 bank->highmem = highmem;
768
769                 /*
770                  * Split those memory banks which are partially overlapping
771                  * the vmalloc area greatly simplifying things later.
772                  */
773                 if (__va(bank->start) < vmalloc_min &&
774                     bank->size > vmalloc_min - __va(bank->start)) {
775                         if (meminfo.nr_banks >= NR_BANKS) {
776                                 printk(KERN_CRIT "NR_BANKS too low, "
777                                                  "ignoring high memory\n");
778                         } else {
779                                 memmove(bank + 1, bank,
780                                         (meminfo.nr_banks - i) * sizeof(*bank));
781                                 meminfo.nr_banks++;
782                                 i++;
783                                 bank[1].size -= vmalloc_min - __va(bank->start);
784                                 bank[1].start = __pa(vmalloc_min - 1) + 1;
785                                 bank[1].highmem = highmem = 1;
786                                 j++;
787                         }
788                         bank->size = vmalloc_min - __va(bank->start);
789                 }
790 #else
791                 bank->highmem = highmem;
792
793                 /*
794                  * Check whether this memory bank would entirely overlap
795                  * the vmalloc area.
796                  */
797                 if (__va(bank->start) >= vmalloc_min ||
798                     __va(bank->start) < (void *)PAGE_OFFSET) {
799                         printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
800                                "(vmalloc region overlap).\n",
801                                bank->start, bank->start + bank->size - 1);
802                         continue;
803                 }
804
805                 /*
806                  * Check whether this memory bank would partially overlap
807                  * the vmalloc area.
808                  */
809                 if (__va(bank->start + bank->size) > vmalloc_min ||
810                     __va(bank->start + bank->size) < __va(bank->start)) {
811                         unsigned long newsize = vmalloc_min - __va(bank->start);
812                         printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
813                                "to -%.8lx (vmalloc region overlap).\n",
814                                bank->start, bank->start + bank->size - 1,
815                                bank->start + newsize - 1);
816                         bank->size = newsize;
817                 }
818 #endif
819                 j++;
820         }
821 #ifdef CONFIG_HIGHMEM
822         if (highmem) {
823                 const char *reason = NULL;
824
825                 if (cache_is_vipt_aliasing()) {
826                         /*
827                          * Interactions between kmap and other mappings
828                          * make highmem support with aliasing VIPT caches
829                          * rather difficult.
830                          */
831                         reason = "with VIPT aliasing cache";
832 #ifdef CONFIG_SMP
833                 } else if (tlb_ops_need_broadcast()) {
834                         /*
835                          * kmap_high needs to occasionally flush TLB entries,
836                          * however, if the TLB entries need to be broadcast
837                          * we may deadlock:
838                          *  kmap_high(irqs off)->flush_all_zero_pkmaps->
839                          *  flush_tlb_kernel_range->smp_call_function_many
840                          *   (must not be called with irqs off)
841                          */
842                         reason = "without hardware TLB ops broadcasting";
843 #endif
844                 }
845                 if (reason) {
846                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
847                                 reason);
848                         while (j > 0 && meminfo.bank[j - 1].highmem)
849                                 j--;
850                 }
851         }
852 #endif
853         meminfo.nr_banks = j;
854 }
855
856 static inline void prepare_page_table(void)
857 {
858         unsigned long addr;
859
860         /*
861          * Clear out all the mappings below the kernel image.
862          */
863         for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
864                 pmd_clear(pmd_off_k(addr));
865
866 #ifdef CONFIG_XIP_KERNEL
867         /* The XIP kernel is mapped in the module area -- skip over it */
868         addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
869 #endif
870         for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
871                 pmd_clear(pmd_off_k(addr));
872
873         /*
874          * Clear out all the kernel space mappings, except for the first
875          * memory bank, up to the end of the vmalloc region.
876          */
877         for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
878              addr < VMALLOC_END; addr += PGDIR_SIZE)
879                 pmd_clear(pmd_off_k(addr));
880 }
881
882 /*
883  * Reserve the special regions of memory
884  */
885 void __init arm_mm_memblock_reserve(void)
886 {
887         /*
888          * Reserve the page tables.  These are already in use,
889          * and can only be in node 0.
890          */
891         memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
892
893 #ifdef CONFIG_SA1111
894         /*
895          * Because of the SA1111 DMA bug, we want to preserve our
896          * precious DMA-able memory...
897          */
898         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
899 #endif
900         lowmem_end_addr = __pa(vmalloc_min - 1) + 1;
901 }
902
903 /*
904  * Set up device the mappings.  Since we clear out the page tables for all
905  * mappings above VMALLOC_END, we will remove any debug device mappings.
906  * This means you have to be careful how you debug this function, or any
907  * called function.  This means you can't use any function or debugging
908  * method which may touch any device, otherwise the kernel _will_ crash.
909  */
910 static void __init devicemaps_init(struct machine_desc *mdesc)
911 {
912         struct map_desc map;
913         unsigned long addr;
914         void *vectors;
915
916         /*
917          * Allocate the vector page early.
918          */
919         vectors = early_alloc(PAGE_SIZE);
920
921         for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
922                 pmd_clear(pmd_off_k(addr));
923
924         /*
925          * Map the kernel if it is XIP.
926          * It is always first in the modulearea.
927          */
928 #ifdef CONFIG_XIP_KERNEL
929         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
930         map.virtual = MODULES_VADDR;
931         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
932         map.type = MT_ROM;
933         create_mapping(&map);
934 #endif
935
936         /*
937          * Map the cache flushing regions.
938          */
939 #ifdef FLUSH_BASE
940         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
941         map.virtual = FLUSH_BASE;
942         map.length = SZ_1M;
943         map.type = MT_CACHECLEAN;
944         create_mapping(&map);
945 #endif
946 #ifdef FLUSH_BASE_MINICACHE
947         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
948         map.virtual = FLUSH_BASE_MINICACHE;
949         map.length = SZ_1M;
950         map.type = MT_MINICLEAN;
951         create_mapping(&map);
952 #endif
953
954         /*
955          * Create a mapping for the machine vectors at the high-vectors
956          * location (0xffff0000).  If we aren't using high-vectors, also
957          * create a mapping at the low-vectors virtual address.
958          */
959         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
960         map.virtual = 0xffff0000;
961         map.length = PAGE_SIZE;
962         map.type = MT_HIGH_VECTORS;
963         create_mapping(&map);
964
965         if (!vectors_high()) {
966                 map.virtual = 0;
967                 map.type = MT_LOW_VECTORS;
968                 create_mapping(&map);
969         }
970
971         /*
972          * Ask the machine support to map in the statically mapped devices.
973          */
974         if (mdesc->map_io)
975                 mdesc->map_io();
976
977         /*
978          * Finally flush the caches and tlb to ensure that we're in a
979          * consistent state wrt the writebuffer.  This also ensures that
980          * any write-allocated cache lines in the vector page are written
981          * back.  After this point, we can start to touch devices again.
982          */
983         local_flush_tlb_all();
984         flush_cache_all();
985 }
986
987 static void __init kmap_init(void)
988 {
989 #ifdef CONFIG_HIGHMEM
990         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
991                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
992 #endif
993 }
994
995 static inline void map_memory_bank(struct membank *bank)
996 {
997         struct map_desc map;
998
999         map.pfn = bank_pfn_start(bank);
1000         map.virtual = __phys_to_virt(bank_phys_start(bank));
1001         map.length = bank_phys_size(bank);
1002         map.type = MT_MEMORY;
1003
1004         create_mapping(&map);
1005 }
1006
1007 static void __init map_lowmem(void)
1008 {
1009         struct meminfo *mi = &meminfo;
1010         int i;
1011
1012         /* Map all the lowmem memory banks. */
1013         for (i = 0; i < mi->nr_banks; i++) {
1014                 struct membank *bank = &mi->bank[i];
1015
1016                 if (!bank->highmem)
1017                         map_memory_bank(bank);
1018         }
1019 }
1020
1021 static int __init meminfo_cmp(const void *_a, const void *_b)
1022 {
1023         const struct membank *a = _a, *b = _b;
1024         long cmp = bank_pfn_start(a) - bank_pfn_start(b);
1025         return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
1026 }
1027
1028 /*
1029  * paging_init() sets up the page tables, initialises the zone memory
1030  * maps, and sets up the zero page, bad page and bad page tables.
1031  */
1032 void __init paging_init(struct machine_desc *mdesc)
1033 {
1034         void *zero_page;
1035
1036         sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
1037
1038         build_mem_type_table();
1039         sanity_check_meminfo();
1040         prepare_page_table();
1041         map_lowmem();
1042         devicemaps_init(mdesc);
1043         kmap_init();
1044
1045         top_pmd = pmd_off_k(0xffff0000);
1046
1047         /* allocate the zero page. */
1048         zero_page = early_alloc(PAGE_SIZE);
1049
1050         bootmem_init();
1051
1052         empty_zero_page = virt_to_page(zero_page);
1053         __flush_dcache_page(NULL, empty_zero_page);
1054 }
1055
1056 /*
1057  * In order to soft-boot, we need to insert a 1:1 mapping in place of
1058  * the user-mode pages.  This will then ensure that we have predictable
1059  * results when turning the mmu off
1060  */
1061 void setup_mm_for_reboot(char mode)
1062 {
1063         unsigned long base_pmdval;
1064         pgd_t *pgd;
1065         int i;
1066
1067         /*
1068          * We need to access to user-mode page tables here. For kernel threads
1069          * we don't have any user-mode mappings so we use the context that we
1070          * "borrowed".
1071          */
1072         pgd = current->active_mm->pgd;
1073
1074         base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1075         if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1076                 base_pmdval |= PMD_BIT4;
1077
1078         for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1079                 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1080                 pmd_t *pmd;
1081
1082                 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1083                 pmd[0] = __pmd(pmdval);
1084                 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1085                 flush_pmd_entry(pmd);
1086         }
1087
1088         local_flush_tlb_all();
1089 }