337d814b0f1716b122ace8538c18cc0cb9f4a388
[framework/graphics/cairo.git] / src / cairo-path-stroke-tristrip.c
1 /* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
2 /* cairo - a vector graphics library with display and print output
3  *
4  * Copyright © 2002 University of Southern California
5  * Copyright © 2011 Intel Corporation
6  *
7  * This library is free software; you can redistribute it and/or
8  * modify it either under the terms of the GNU Lesser General Public
9  * License version 2.1 as published by the Free Software Foundation
10  * (the "LGPL") or, at your option, under the terms of the Mozilla
11  * Public License Version 1.1 (the "MPL"). If you do not alter this
12  * notice, a recipient may use your version of this file under either
13  * the MPL or the LGPL.
14  *
15  * You should have received a copy of the LGPL along with this library
16  * in the file COPYING-LGPL-2.1; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
18  * You should have received a copy of the MPL along with this library
19  * in the file COPYING-MPL-1.1
20  *
21  * The contents of this file are subject to the Mozilla Public License
22  * Version 1.1 (the "License"); you may not use this file except in
23  * compliance with the License. You may obtain a copy of the License at
24  * http://www.mozilla.org/MPL/
25  *
26  * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
27  * OF ANY KIND, either express or implied. See the LGPL or the MPL for
28  * the specific language governing rights and limitations.
29  *
30  * The Original Code is the cairo graphics library.
31  *
32  * The Initial Developer of the Original Code is University of Southern
33  * California.
34  *
35  * Contributor(s):
36  *      Carl D. Worth <cworth@cworth.org>
37  *      Chris Wilson <chris@chris-wilson.co.uk>
38  */
39
40 #define _BSD_SOURCE /* for hypot() */
41 #include "cairoint.h"
42
43 #include "cairo-box-private.h"
44 #include "cairo-boxes-private.h"
45 #include "cairo-error-private.h"
46 #include "cairo-path-fixed-private.h"
47 #include "cairo-slope-private.h"
48 #include "cairo-tristrip-private.h"
49
50 struct stroker {
51     cairo_stroke_style_t style;
52
53     cairo_tristrip_t *strip;
54
55     const cairo_matrix_t *ctm;
56     const cairo_matrix_t *ctm_inverse;
57     double tolerance;
58     cairo_bool_t ctm_det_positive;
59
60     cairo_pen_t pen;
61
62     cairo_bool_t has_sub_path;
63
64     cairo_point_t first_point;
65
66     cairo_bool_t has_current_face;
67     cairo_stroke_face_t current_face;
68
69     cairo_bool_t has_first_face;
70     cairo_stroke_face_t first_face;
71
72     cairo_box_t limit;
73     cairo_bool_t has_limits;
74 };
75
76 static inline double
77 normalize_slope (double *dx, double *dy);
78
79 static void
80 compute_face (const cairo_point_t *point,
81               const cairo_slope_t *dev_slope,
82               struct stroker *stroker,
83               cairo_stroke_face_t *face);
84
85 static void
86 translate_point (cairo_point_t *point, const cairo_point_t *offset)
87 {
88     point->x += offset->x;
89     point->y += offset->y;
90 }
91
92 static int
93 slope_compare_sgn (double dx1, double dy1, double dx2, double dy2)
94 {
95     double  c = (dx1 * dy2 - dx2 * dy1);
96
97     if (c > 0) return 1;
98     if (c < 0) return -1;
99     return 0;
100 }
101
102 static inline int
103 range_step (int i, int step, int max)
104 {
105     i += step;
106     if (i < 0)
107         i = max - 1;
108     if (i >= max)
109         i = 0;
110     return i;
111 }
112
113 /*
114  * Construct a fan around the midpoint using the vertices from pen between
115  * inpt and outpt.
116  */
117 static void
118 add_fan (struct stroker *stroker,
119          const cairo_slope_t *in_vector,
120          const cairo_slope_t *out_vector,
121          const cairo_point_t *midpt,
122          const cairo_point_t *inpt,
123          const cairo_point_t *outpt,
124          cairo_bool_t clockwise)
125 {
126     int start, stop, step, i, npoints;
127
128     if (clockwise) {
129         step  = 1;
130
131         start = _cairo_pen_find_active_cw_vertex_index (&stroker->pen,
132                                                         in_vector);
133         if (_cairo_slope_compare (&stroker->pen.vertices[start].slope_cw,
134                                   in_vector) < 0)
135             start = range_step (start, 1, stroker->pen.num_vertices);
136
137         stop  = _cairo_pen_find_active_cw_vertex_index (&stroker->pen,
138                                                         out_vector);
139         if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_ccw,
140                                   out_vector) > 0)
141         {
142             stop = range_step (stop, -1, stroker->pen.num_vertices);
143             if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_cw,
144                                       in_vector) < 0)
145                 return;
146         }
147
148         npoints = stop - start;
149     } else {
150         step  = -1;
151
152         start = _cairo_pen_find_active_ccw_vertex_index (&stroker->pen,
153                                                          in_vector);
154         if (_cairo_slope_compare (&stroker->pen.vertices[start].slope_ccw,
155                                   in_vector) < 0)
156             start = range_step (start, -1, stroker->pen.num_vertices);
157
158         stop  = _cairo_pen_find_active_ccw_vertex_index (&stroker->pen,
159                                                          out_vector);
160         if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_cw,
161                                   out_vector) > 0)
162         {
163             stop = range_step (stop, 1, stroker->pen.num_vertices);
164             if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_ccw,
165                                       in_vector) < 0)
166                 return;
167         }
168
169         npoints = start - stop;
170     }
171     stop = range_step (stop, step, stroker->pen.num_vertices);
172     if (npoints < 0)
173         npoints += stroker->pen.num_vertices;
174     if (npoints <= 1)
175         return;
176
177     for (i = start;
178          i != stop;
179         i = range_step (i, step, stroker->pen.num_vertices))
180     {
181         cairo_point_t p = *midpt;
182         translate_point (&p, &stroker->pen.vertices[i].point);
183         //contour_add_point (stroker, c, &p);
184     }
185 }
186
187 static int
188 join_is_clockwise (const cairo_stroke_face_t *in,
189                    const cairo_stroke_face_t *out)
190 {
191     return _cairo_slope_compare (&in->dev_vector, &out->dev_vector) < 0;
192 }
193
194 static void
195 inner_join (struct stroker *stroker,
196             const cairo_stroke_face_t *in,
197             const cairo_stroke_face_t *out,
198             int clockwise)
199 {
200     const cairo_point_t *outpt;
201
202     if (clockwise) {
203         outpt = &out->ccw;
204     } else {
205         outpt = &out->cw;
206     }
207     //contour_add_point (stroker, inner, &in->point);
208     //contour_add_point (stroker, inner, outpt);
209 }
210
211 static void
212 inner_close (struct stroker *stroker,
213              const cairo_stroke_face_t *in,
214              cairo_stroke_face_t *out)
215 {
216     const cairo_point_t *inpt;
217
218     if (join_is_clockwise (in, out)) {
219         inpt = &out->ccw;
220     } else {
221         inpt = &out->cw;
222     }
223
224     //contour_add_point (stroker, inner, &in->point);
225     //contour_add_point (stroker, inner, inpt);
226     //*_cairo_contour_first_point (&inner->contour) =
227         //*_cairo_contour_last_point (&inner->contour);
228 }
229
230 static void
231 outer_close (struct stroker *stroker,
232              const cairo_stroke_face_t *in,
233              const cairo_stroke_face_t *out)
234 {
235     const cairo_point_t *inpt, *outpt;
236     int clockwise;
237
238     if (in->cw.x == out->cw.x && in->cw.y == out->cw.y &&
239         in->ccw.x == out->ccw.x && out->ccw.y == out->ccw.y)
240     {
241         return;
242     }
243     clockwise = join_is_clockwise (in, out);
244     if (clockwise) {
245         inpt = &in->cw;
246         outpt = &out->cw;
247     } else {
248         inpt = &in->ccw;
249         outpt = &out->ccw;
250     }
251
252     switch (stroker->style.line_join) {
253     case CAIRO_LINE_JOIN_ROUND:
254         /* construct a fan around the common midpoint */
255         add_fan (stroker,
256                  &in->dev_vector,
257                  &out->dev_vector,
258                  &in->point, inpt, outpt,
259                  clockwise);
260         break;
261
262     case CAIRO_LINE_JOIN_MITER:
263     default: {
264         /* dot product of incoming slope vector with outgoing slope vector */
265         double  in_dot_out = -in->usr_vector.x * out->usr_vector.x +
266                              -in->usr_vector.y * out->usr_vector.y;
267         double  ml = stroker->style.miter_limit;
268
269         /* Check the miter limit -- lines meeting at an acute angle
270          * can generate long miters, the limit converts them to bevel
271          *
272          * Consider the miter join formed when two line segments
273          * meet at an angle psi:
274          *
275          *         /.\
276          *        /. .\
277          *       /./ \.\
278          *      /./psi\.\
279          *
280          * We can zoom in on the right half of that to see:
281          *
282          *          |\
283          *          | \ psi/2
284          *          |  \
285          *          |   \
286          *          |    \
287          *          |     \
288          *        miter    \
289          *       length     \
290          *          |        \
291          *          |        .\
292          *          |    .     \
293          *          |.   line   \
294          *           \    width  \
295          *            \           \
296          *
297          *
298          * The right triangle in that figure, (the line-width side is
299          * shown faintly with three '.' characters), gives us the
300          * following expression relating miter length, angle and line
301          * width:
302          *
303          *      1 /sin (psi/2) = miter_length / line_width
304          *
305          * The right-hand side of this relationship is the same ratio
306          * in which the miter limit (ml) is expressed. We want to know
307          * when the miter length is within the miter limit. That is
308          * when the following condition holds:
309          *
310          *      1/sin(psi/2) <= ml
311          *      1 <= ml sin(psi/2)
312          *      1 <= ml² sin²(psi/2)
313          *      2 <= ml² 2 sin²(psi/2)
314          *                              2·sin²(psi/2) = 1-cos(psi)
315          *      2 <= ml² (1-cos(psi))
316          *
317          *                              in · out = |in| |out| cos (psi)
318          *
319          * in and out are both unit vectors, so:
320          *
321          *                              in · out = cos (psi)
322          *
323          *      2 <= ml² (1 - in · out)
324          *
325          */
326         if (2 <= ml * ml * (1 - in_dot_out)) {
327             double              x1, y1, x2, y2;
328             double              mx, my;
329             double              dx1, dx2, dy1, dy2;
330             double              ix, iy;
331             double              fdx1, fdy1, fdx2, fdy2;
332             double              mdx, mdy;
333
334             /*
335              * we've got the points already transformed to device
336              * space, but need to do some computation with them and
337              * also need to transform the slope from user space to
338              * device space
339              */
340             /* outer point of incoming line face */
341             x1 = _cairo_fixed_to_double (inpt->x);
342             y1 = _cairo_fixed_to_double (inpt->y);
343             dx1 = in->usr_vector.x;
344             dy1 = in->usr_vector.y;
345             cairo_matrix_transform_distance (stroker->ctm, &dx1, &dy1);
346
347             /* outer point of outgoing line face */
348             x2 = _cairo_fixed_to_double (outpt->x);
349             y2 = _cairo_fixed_to_double (outpt->y);
350             dx2 = out->usr_vector.x;
351             dy2 = out->usr_vector.y;
352             cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2);
353
354             /*
355              * Compute the location of the outer corner of the miter.
356              * That's pretty easy -- just the intersection of the two
357              * outer edges.  We've got slopes and points on each
358              * of those edges.  Compute my directly, then compute
359              * mx by using the edge with the larger dy; that avoids
360              * dividing by values close to zero.
361              */
362             my = (((x2 - x1) * dy1 * dy2 - y2 * dx2 * dy1 + y1 * dx1 * dy2) /
363                   (dx1 * dy2 - dx2 * dy1));
364             if (fabs (dy1) >= fabs (dy2))
365                 mx = (my - y1) * dx1 / dy1 + x1;
366             else
367                 mx = (my - y2) * dx2 / dy2 + x2;
368
369             /*
370              * When the two outer edges are nearly parallel, slight
371              * perturbations in the position of the outer points of the lines
372              * caused by representing them in fixed point form can cause the
373              * intersection point of the miter to move a large amount. If
374              * that moves the miter intersection from between the two faces,
375              * then draw a bevel instead.
376              */
377
378             ix = _cairo_fixed_to_double (in->point.x);
379             iy = _cairo_fixed_to_double (in->point.y);
380
381             /* slope of one face */
382             fdx1 = x1 - ix; fdy1 = y1 - iy;
383
384             /* slope of the other face */
385             fdx2 = x2 - ix; fdy2 = y2 - iy;
386
387             /* slope from the intersection to the miter point */
388             mdx = mx - ix; mdy = my - iy;
389
390             /*
391              * Make sure the miter point line lies between the two
392              * faces by comparing the slopes
393              */
394             if (slope_compare_sgn (fdx1, fdy1, mdx, mdy) !=
395                 slope_compare_sgn (fdx2, fdy2, mdx, mdy))
396             {
397                 cairo_point_t p;
398
399                 p.x = _cairo_fixed_from_double (mx);
400                 p.y = _cairo_fixed_from_double (my);
401
402                 //*_cairo_contour_last_point (&outer->contour) = p;
403                 //*_cairo_contour_first_point (&outer->contour) = p;
404                 return;
405             }
406         }
407         break;
408     }
409
410     case CAIRO_LINE_JOIN_BEVEL:
411         break;
412     }
413     //contour_add_point (stroker, outer, outpt);
414 }
415
416 static void
417 outer_join (struct stroker *stroker,
418             const cairo_stroke_face_t *in,
419             const cairo_stroke_face_t *out,
420             int clockwise)
421 {
422     const cairo_point_t *inpt, *outpt;
423
424     if (in->cw.x == out->cw.x && in->cw.y == out->cw.y &&
425         in->ccw.x == out->ccw.x && out->ccw.y == out->ccw.y)
426     {
427         return;
428     }
429     if (clockwise) {
430         inpt = &in->cw;
431         outpt = &out->cw;
432     } else {
433         inpt = &in->ccw;
434         outpt = &out->ccw;
435     }
436
437     switch (stroker->style.line_join) {
438     case CAIRO_LINE_JOIN_ROUND:
439         /* construct a fan around the common midpoint */
440         add_fan (stroker,
441                  &in->dev_vector,
442                  &out->dev_vector,
443                  &in->point, inpt, outpt,
444                  clockwise);
445         break;
446
447     case CAIRO_LINE_JOIN_MITER:
448     default: {
449         /* dot product of incoming slope vector with outgoing slope vector */
450         double  in_dot_out = -in->usr_vector.x * out->usr_vector.x +
451                              -in->usr_vector.y * out->usr_vector.y;
452         double  ml = stroker->style.miter_limit;
453
454         /* Check the miter limit -- lines meeting at an acute angle
455          * can generate long miters, the limit converts them to bevel
456          *
457          * Consider the miter join formed when two line segments
458          * meet at an angle psi:
459          *
460          *         /.\
461          *        /. .\
462          *       /./ \.\
463          *      /./psi\.\
464          *
465          * We can zoom in on the right half of that to see:
466          *
467          *          |\
468          *          | \ psi/2
469          *          |  \
470          *          |   \
471          *          |    \
472          *          |     \
473          *        miter    \
474          *       length     \
475          *          |        \
476          *          |        .\
477          *          |    .     \
478          *          |.   line   \
479          *           \    width  \
480          *            \           \
481          *
482          *
483          * The right triangle in that figure, (the line-width side is
484          * shown faintly with three '.' characters), gives us the
485          * following expression relating miter length, angle and line
486          * width:
487          *
488          *      1 /sin (psi/2) = miter_length / line_width
489          *
490          * The right-hand side of this relationship is the same ratio
491          * in which the miter limit (ml) is expressed. We want to know
492          * when the miter length is within the miter limit. That is
493          * when the following condition holds:
494          *
495          *      1/sin(psi/2) <= ml
496          *      1 <= ml sin(psi/2)
497          *      1 <= ml² sin²(psi/2)
498          *      2 <= ml² 2 sin²(psi/2)
499          *                              2·sin²(psi/2) = 1-cos(psi)
500          *      2 <= ml² (1-cos(psi))
501          *
502          *                              in · out = |in| |out| cos (psi)
503          *
504          * in and out are both unit vectors, so:
505          *
506          *                              in · out = cos (psi)
507          *
508          *      2 <= ml² (1 - in · out)
509          *
510          */
511         if (2 <= ml * ml * (1 - in_dot_out)) {
512             double              x1, y1, x2, y2;
513             double              mx, my;
514             double              dx1, dx2, dy1, dy2;
515             double              ix, iy;
516             double              fdx1, fdy1, fdx2, fdy2;
517             double              mdx, mdy;
518
519             /*
520              * we've got the points already transformed to device
521              * space, but need to do some computation with them and
522              * also need to transform the slope from user space to
523              * device space
524              */
525             /* outer point of incoming line face */
526             x1 = _cairo_fixed_to_double (inpt->x);
527             y1 = _cairo_fixed_to_double (inpt->y);
528             dx1 = in->usr_vector.x;
529             dy1 = in->usr_vector.y;
530             cairo_matrix_transform_distance (stroker->ctm, &dx1, &dy1);
531
532             /* outer point of outgoing line face */
533             x2 = _cairo_fixed_to_double (outpt->x);
534             y2 = _cairo_fixed_to_double (outpt->y);
535             dx2 = out->usr_vector.x;
536             dy2 = out->usr_vector.y;
537             cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2);
538
539             /*
540              * Compute the location of the outer corner of the miter.
541              * That's pretty easy -- just the intersection of the two
542              * outer edges.  We've got slopes and points on each
543              * of those edges.  Compute my directly, then compute
544              * mx by using the edge with the larger dy; that avoids
545              * dividing by values close to zero.
546              */
547             my = (((x2 - x1) * dy1 * dy2 - y2 * dx2 * dy1 + y1 * dx1 * dy2) /
548                   (dx1 * dy2 - dx2 * dy1));
549             if (fabs (dy1) >= fabs (dy2))
550                 mx = (my - y1) * dx1 / dy1 + x1;
551             else
552                 mx = (my - y2) * dx2 / dy2 + x2;
553
554             /*
555              * When the two outer edges are nearly parallel, slight
556              * perturbations in the position of the outer points of the lines
557              * caused by representing them in fixed point form can cause the
558              * intersection point of the miter to move a large amount. If
559              * that moves the miter intersection from between the two faces,
560              * then draw a bevel instead.
561              */
562
563             ix = _cairo_fixed_to_double (in->point.x);
564             iy = _cairo_fixed_to_double (in->point.y);
565
566             /* slope of one face */
567             fdx1 = x1 - ix; fdy1 = y1 - iy;
568
569             /* slope of the other face */
570             fdx2 = x2 - ix; fdy2 = y2 - iy;
571
572             /* slope from the intersection to the miter point */
573             mdx = mx - ix; mdy = my - iy;
574
575             /*
576              * Make sure the miter point line lies between the two
577              * faces by comparing the slopes
578              */
579             if (slope_compare_sgn (fdx1, fdy1, mdx, mdy) !=
580                 slope_compare_sgn (fdx2, fdy2, mdx, mdy))
581             {
582                 cairo_point_t p;
583
584                 p.x = _cairo_fixed_from_double (mx);
585                 p.y = _cairo_fixed_from_double (my);
586
587                 //*_cairo_contour_last_point (&outer->contour) = p;
588                 return;
589             }
590         }
591         break;
592     }
593
594     case CAIRO_LINE_JOIN_BEVEL:
595         break;
596     }
597     //contour_add_point (stroker,outer, outpt);
598 }
599
600 static void
601 add_cap (struct stroker *stroker,
602          const cairo_stroke_face_t *f)
603 {
604     switch (stroker->style.line_cap) {
605     case CAIRO_LINE_CAP_ROUND: {
606         cairo_slope_t slope;
607
608         slope.dx = -f->dev_vector.dx;
609         slope.dy = -f->dev_vector.dy;
610
611         add_fan (stroker, &f->dev_vector, &slope,
612                  &f->point, &f->ccw, &f->cw,
613                  FALSE);
614         break;
615     }
616
617     case CAIRO_LINE_CAP_SQUARE: {
618         double dx, dy;
619         cairo_slope_t   fvector;
620         cairo_point_t   quad[4];
621
622         dx = f->usr_vector.x;
623         dy = f->usr_vector.y;
624         dx *= stroker->style.line_width / 2.0;
625         dy *= stroker->style.line_width / 2.0;
626         cairo_matrix_transform_distance (stroker->ctm, &dx, &dy);
627         fvector.dx = _cairo_fixed_from_double (dx);
628         fvector.dy = _cairo_fixed_from_double (dy);
629
630         quad[0] = f->ccw;
631         quad[1].x = f->ccw.x + fvector.dx;
632         quad[1].y = f->ccw.y + fvector.dy;
633         quad[2].x = f->cw.x + fvector.dx;
634         quad[2].y = f->cw.y + fvector.dy;
635         quad[3] = f->cw;
636
637         //contour_add_point (stroker, c, &quad[1]);
638         //contour_add_point (stroker, c, &quad[2]);
639     }
640
641     case CAIRO_LINE_CAP_BUTT:
642     default:
643         break;
644     }
645     //contour_add_point (stroker, c, &f->cw);
646 }
647
648 static void
649 add_leading_cap (struct stroker *stroker,
650                  const cairo_stroke_face_t *face)
651 {
652     cairo_stroke_face_t reversed;
653     cairo_point_t t;
654
655     reversed = *face;
656
657     /* The initial cap needs an outward facing vector. Reverse everything */
658     reversed.usr_vector.x = -reversed.usr_vector.x;
659     reversed.usr_vector.y = -reversed.usr_vector.y;
660     reversed.dev_vector.dx = -reversed.dev_vector.dx;
661     reversed.dev_vector.dy = -reversed.dev_vector.dy;
662
663     t = reversed.cw;
664     reversed.cw = reversed.ccw;
665     reversed.ccw = t;
666
667     add_cap (stroker, &reversed);
668 }
669
670 static void
671 add_trailing_cap (struct stroker *stroker,
672                   const cairo_stroke_face_t *face)
673 {
674     add_cap (stroker, face);
675 }
676
677 static inline double
678 normalize_slope (double *dx, double *dy)
679 {
680     double dx0 = *dx, dy0 = *dy;
681     double mag;
682
683     assert (dx0 != 0.0 || dy0 != 0.0);
684
685     if (dx0 == 0.0) {
686         *dx = 0.0;
687         if (dy0 > 0.0) {
688             mag = dy0;
689             *dy = 1.0;
690         } else {
691             mag = -dy0;
692             *dy = -1.0;
693         }
694     } else if (dy0 == 0.0) {
695         *dy = 0.0;
696         if (dx0 > 0.0) {
697             mag = dx0;
698             *dx = 1.0;
699         } else {
700             mag = -dx0;
701             *dx = -1.0;
702         }
703     } else {
704         mag = hypot (dx0, dy0);
705         *dx = dx0 / mag;
706         *dy = dy0 / mag;
707     }
708
709     return mag;
710 }
711
712 static void
713 compute_face (const cairo_point_t *point,
714               const cairo_slope_t *dev_slope,
715               struct stroker *stroker,
716               cairo_stroke_face_t *face)
717 {
718     double face_dx, face_dy;
719     cairo_point_t offset_ccw, offset_cw;
720     double slope_dx, slope_dy;
721
722     slope_dx = _cairo_fixed_to_double (dev_slope->dx);
723     slope_dy = _cairo_fixed_to_double (dev_slope->dy);
724     face->length = normalize_slope (&slope_dx, &slope_dy);
725     face->dev_slope.x = slope_dx;
726     face->dev_slope.y = slope_dy;
727
728     /*
729      * rotate to get a line_width/2 vector along the face, note that
730      * the vector must be rotated the right direction in device space,
731      * but by 90° in user space. So, the rotation depends on
732      * whether the ctm reflects or not, and that can be determined
733      * by looking at the determinant of the matrix.
734      */
735     if (! _cairo_matrix_is_identity (stroker->ctm_inverse)) {
736         /* Normalize the matrix! */
737         cairo_matrix_transform_distance (stroker->ctm_inverse,
738                                          &slope_dx, &slope_dy);
739         normalize_slope (&slope_dx, &slope_dy);
740
741         if (stroker->ctm_det_positive) {
742             face_dx = - slope_dy * (stroker->style.line_width / 2.0);
743             face_dy = slope_dx * (stroker->style.line_width / 2.0);
744         } else {
745             face_dx = slope_dy * (stroker->style.line_width / 2.0);
746             face_dy = - slope_dx * (stroker->style.line_width / 2.0);
747         }
748
749         /* back to device space */
750         cairo_matrix_transform_distance (stroker->ctm, &face_dx, &face_dy);
751     } else {
752         face_dx = - slope_dy * (stroker->style.line_width / 2.0);
753         face_dy = slope_dx * (stroker->style.line_width / 2.0);
754     }
755
756     offset_ccw.x = _cairo_fixed_from_double (face_dx);
757     offset_ccw.y = _cairo_fixed_from_double (face_dy);
758     offset_cw.x = -offset_ccw.x;
759     offset_cw.y = -offset_ccw.y;
760
761     face->ccw = *point;
762     translate_point (&face->ccw, &offset_ccw);
763
764     face->point = *point;
765
766     face->cw = *point;
767     translate_point (&face->cw, &offset_cw);
768
769     face->usr_vector.x = slope_dx;
770     face->usr_vector.y = slope_dy;
771
772     face->dev_vector = *dev_slope;
773 }
774
775 static void
776 add_caps (struct stroker *stroker)
777 {
778     /* check for a degenerative sub_path */
779     if (stroker->has_sub_path &&
780         ! stroker->has_first_face &&
781         ! stroker->has_current_face &&
782         stroker->style.line_cap == CAIRO_LINE_CAP_ROUND)
783     {
784         /* pick an arbitrary slope to use */
785         cairo_slope_t slope = { CAIRO_FIXED_ONE, 0 };
786         cairo_stroke_face_t face;
787
788         /* arbitrarily choose first_point */
789         compute_face (&stroker->first_point, &slope, stroker, &face);
790
791         add_leading_cap (stroker, &face);
792         add_trailing_cap (stroker, &face);
793
794         /* ensure the circle is complete */
795         //_cairo_contour_add_point (&stroker->ccw.contour,
796                                   //_cairo_contour_first_point (&stroker->ccw.contour));
797     } else {
798         if (stroker->has_current_face)
799             add_trailing_cap (stroker, &stroker->current_face);
800
801         //_cairo_polygon_add_contour (stroker->polygon, &stroker->ccw.contour);
802         //_cairo_contour_reset (&stroker->ccw.contour);
803
804         if (stroker->has_first_face) {
805             //_cairo_contour_add_point (&stroker->ccw.contour,
806                                       //&stroker->first_face.cw);
807             add_leading_cap (stroker, &stroker->first_face);
808             //_cairo_polygon_add_contour (stroker->polygon,
809                                         //&stroker->ccw.contour);
810             //_cairo_contour_reset (&stroker->ccw.contour);
811         }
812     }
813 }
814
815 static cairo_status_t
816 move_to (void *closure,
817          const cairo_point_t *point)
818 {
819     struct stroker *stroker = closure;
820
821     /* Cap the start and end of the previous sub path as needed */
822     add_caps (stroker);
823
824     stroker->has_first_face = FALSE;
825     stroker->has_current_face = FALSE;
826     stroker->has_sub_path = FALSE;
827
828     stroker->first_point = *point;
829
830     stroker->current_face.point = *point;
831
832     return CAIRO_STATUS_SUCCESS;
833 }
834
835 static cairo_status_t
836 line_to (void *closure,
837          const cairo_point_t *point)
838 {
839     struct stroker *stroker = closure;
840     cairo_stroke_face_t start;
841     cairo_point_t *p1 = &stroker->current_face.point;
842     cairo_slope_t dev_slope;
843
844     stroker->has_sub_path = TRUE;
845
846     if (p1->x == point->x && p1->y == point->y)
847         return CAIRO_STATUS_SUCCESS;
848
849     _cairo_slope_init (&dev_slope, p1, point);
850     compute_face (p1, &dev_slope, stroker, &start);
851
852     if (stroker->has_current_face) {
853         int clockwise = join_is_clockwise (&stroker->current_face, &start);
854         /* Join with final face from previous segment */
855         outer_join (stroker, &stroker->current_face, &start, clockwise);
856         inner_join (stroker, &stroker->current_face, &start, clockwise);
857     } else {
858         if (! stroker->has_first_face) {
859             /* Save sub path's first face in case needed for closing join */
860             stroker->first_face = start;
861             _cairo_tristrip_move_to (stroker->strip, &start.cw);
862             stroker->has_first_face = TRUE;
863         }
864         stroker->has_current_face = TRUE;
865
866         _cairo_tristrip_add_point (stroker->strip, &start.cw);
867         _cairo_tristrip_add_point (stroker->strip, &start.ccw);
868     }
869
870     stroker->current_face = start;
871     stroker->current_face.point = *point;
872     stroker->current_face.ccw.x += dev_slope.dx;
873     stroker->current_face.ccw.y += dev_slope.dy;
874     stroker->current_face.cw.x += dev_slope.dx;
875     stroker->current_face.cw.y += dev_slope.dy;
876
877     _cairo_tristrip_add_point (stroker->strip, &stroker->current_face.cw);
878     _cairo_tristrip_add_point (stroker->strip, &stroker->current_face.ccw);
879
880     return CAIRO_STATUS_SUCCESS;
881 }
882
883 static cairo_status_t
884 spline_to (void *closure,
885            const cairo_point_t *point,
886            const cairo_slope_t *tangent)
887 {
888     struct stroker *stroker = closure;
889     cairo_stroke_face_t face;
890
891     if (tangent->dx == 0 && tangent->dy == 0) {
892         const cairo_point_t *inpt, *outpt;
893         cairo_point_t t;
894         int clockwise;
895
896         face = stroker->current_face;
897
898         face.usr_vector.x = -face.usr_vector.x;
899         face.usr_vector.y = -face.usr_vector.y;
900         face.dev_vector.dx = -face.dev_vector.dx;
901         face.dev_vector.dy = -face.dev_vector.dy;
902
903         t = face.cw;
904         face.cw = face.ccw;
905         face.ccw = t;
906
907         clockwise = join_is_clockwise (&stroker->current_face, &face);
908         if (clockwise) {
909             inpt = &stroker->current_face.cw;
910             outpt = &face.cw;
911         } else {
912             inpt = &stroker->current_face.ccw;
913             outpt = &face.ccw;
914         }
915
916         add_fan (stroker,
917                  &stroker->current_face.dev_vector,
918                  &face.dev_vector,
919                  &stroker->current_face.point, inpt, outpt,
920                  clockwise);
921     } else {
922         compute_face (point, tangent, stroker, &face);
923
924         if (face.dev_slope.x * stroker->current_face.dev_slope.x +
925             face.dev_slope.y * stroker->current_face.dev_slope.y < 0)
926         {
927             const cairo_point_t *inpt, *outpt;
928             int clockwise = join_is_clockwise (&stroker->current_face, &face);
929
930             stroker->current_face.cw.x += face.point.x - stroker->current_face.point.x;
931             stroker->current_face.cw.y += face.point.y - stroker->current_face.point.y;
932             //contour_add_point (stroker, &stroker->cw, &stroker->current_face.cw);
933
934             stroker->current_face.ccw.x += face.point.x - stroker->current_face.point.x;
935             stroker->current_face.ccw.y += face.point.y - stroker->current_face.point.y;
936             //contour_add_point (stroker, &stroker->ccw, &stroker->current_face.ccw);
937
938             if (clockwise) {
939                 inpt = &stroker->current_face.cw;
940                 outpt = &face.cw;
941             } else {
942                 inpt = &stroker->current_face.ccw;
943                 outpt = &face.ccw;
944             }
945             add_fan (stroker,
946                      &stroker->current_face.dev_vector,
947                      &face.dev_vector,
948                      &stroker->current_face.point, inpt, outpt,
949                      clockwise);
950         }
951
952         _cairo_tristrip_add_point (stroker->strip, &face.cw);
953         _cairo_tristrip_add_point (stroker->strip, &face.ccw);
954     }
955
956     stroker->current_face = face;
957
958     return CAIRO_STATUS_SUCCESS;
959 }
960
961 static cairo_status_t
962 curve_to (void *closure,
963           const cairo_point_t *b,
964           const cairo_point_t *c,
965           const cairo_point_t *d)
966 {
967     struct stroker *stroker = closure;
968     cairo_spline_t spline;
969     cairo_stroke_face_t face;
970
971     if (stroker->has_limits) {
972         if (! _cairo_spline_intersects (&stroker->current_face.point, b, c, d,
973                                         &stroker->limit))
974             return line_to (closure, d);
975     }
976
977     if (! _cairo_spline_init (&spline, spline_to, stroker,
978                               &stroker->current_face.point, b, c, d))
979         return line_to (closure, d);
980
981     compute_face (&stroker->current_face.point, &spline.initial_slope,
982                   stroker, &face);
983
984     if (stroker->has_current_face) {
985         int clockwise = join_is_clockwise (&stroker->current_face, &face);
986         /* Join with final face from previous segment */
987         outer_join (stroker, &stroker->current_face, &face, clockwise);
988         inner_join (stroker, &stroker->current_face, &face, clockwise);
989     } else {
990         if (! stroker->has_first_face) {
991             /* Save sub path's first face in case needed for closing join */
992             stroker->first_face = face;
993             _cairo_tristrip_move_to (stroker->strip, &face.cw);
994             stroker->has_first_face = TRUE;
995         }
996         stroker->has_current_face = TRUE;
997
998         _cairo_tristrip_add_point (stroker->strip, &face.cw);
999         _cairo_tristrip_add_point (stroker->strip, &face.ccw);
1000     }
1001     stroker->current_face = face;
1002
1003     return _cairo_spline_decompose (&spline, stroker->tolerance);
1004 }
1005
1006 static cairo_status_t
1007 close_path (void *closure)
1008 {
1009     struct stroker *stroker = closure;
1010     cairo_status_t status;
1011
1012     status = line_to (stroker, &stroker->first_point);
1013     if (unlikely (status))
1014         return status;
1015
1016     if (stroker->has_first_face && stroker->has_current_face) {
1017         /* Join first and final faces of sub path */
1018         outer_close (stroker, &stroker->current_face, &stroker->first_face);
1019         inner_close (stroker, &stroker->current_face, &stroker->first_face);
1020     } else {
1021         /* Cap the start and end of the sub path as needed */
1022         add_caps (stroker);
1023     }
1024
1025     stroker->has_sub_path = FALSE;
1026     stroker->has_first_face = FALSE;
1027     stroker->has_current_face = FALSE;
1028
1029     return CAIRO_STATUS_SUCCESS;
1030 }
1031
1032 cairo_int_status_t
1033 _cairo_path_fixed_stroke_to_tristrip (const cairo_path_fixed_t  *path,
1034                                       const cairo_stroke_style_t*style,
1035                                       const cairo_matrix_t      *ctm,
1036                                       const cairo_matrix_t      *ctm_inverse,
1037                                       double                     tolerance,
1038                                       cairo_tristrip_t           *strip)
1039 {
1040     struct stroker stroker;
1041     cairo_int_status_t status;
1042     int i;
1043
1044     if (style->num_dashes)
1045         return CAIRO_INT_STATUS_UNSUPPORTED;
1046
1047     stroker.style = *style;
1048     stroker.ctm = ctm;
1049     stroker.ctm_inverse = ctm_inverse;
1050     stroker.tolerance = tolerance;
1051
1052     stroker.ctm_det_positive =
1053         _cairo_matrix_compute_determinant (ctm) >= 0.0;
1054
1055     status = _cairo_pen_init (&stroker.pen,
1056                               style->line_width / 2.0,
1057                               tolerance, ctm);
1058     if (unlikely (status))
1059         return status;
1060
1061     if (stroker.pen.num_vertices <= 1)
1062         return CAIRO_INT_STATUS_NOTHING_TO_DO;
1063
1064     stroker.has_current_face = FALSE;
1065     stroker.has_first_face = FALSE;
1066     stroker.has_sub_path = FALSE;
1067
1068     stroker.has_limits = strip->num_limits > 0;
1069     stroker.limit = strip->limits[0];
1070     for (i = 1; i < strip->num_limits; i++)
1071         _cairo_box_add_box (&stroker.limit, &strip->limits[i]);
1072
1073     stroker.strip = strip;
1074
1075     status = _cairo_path_fixed_interpret (path,
1076                                           move_to,
1077                                           line_to,
1078                                           curve_to,
1079                                           close_path,
1080                                           &stroker);
1081     /* Cap the start and end of the final sub path as needed */
1082     if (likely (status == CAIRO_INT_STATUS_SUCCESS))
1083         add_caps (&stroker);
1084
1085     _cairo_pen_fini (&stroker.pen);
1086
1087     return status;
1088 }