tizen 2.3.1 release
[external/protobuf.git] / src / google / protobuf / dynamic_message.cc
1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc.  All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // Author: kenton@google.com (Kenton Varda)
32 //  Based on original Protocol Buffers design by
33 //  Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // DynamicMessage is implemented by constructing a data structure which
36 // has roughly the same memory layout as a generated message would have.
37 // Then, we use GeneratedMessageReflection to implement our reflection
38 // interface.  All the other operations we need to implement (e.g.
39 // parsing, copying, etc.) are already implemented in terms of
40 // Reflection, so the rest is easy.
41 //
42 // The up side of this strategy is that it's very efficient.  We don't
43 // need to use hash_maps or generic representations of fields.  The
44 // down side is that this is a low-level memory management hack which
45 // can be tricky to get right.
46 //
47 // As mentioned in the header, we only expose a DynamicMessageFactory
48 // publicly, not the DynamicMessage class itself.  This is because
49 // GenericMessageReflection wants to have a pointer to a "default"
50 // copy of the class, with all fields initialized to their default
51 // values.  We only want to construct one of these per message type,
52 // so DynamicMessageFactory stores a cache of default messages for
53 // each type it sees (each unique Descriptor pointer).  The code
54 // refers to the "default" copy of the class as the "prototype".
55 //
56 // Note on memory allocation:  This module often calls "operator new()"
57 // to allocate untyped memory, rather than calling something like
58 // "new uint8[]".  This is because "operator new()" means "Give me some
59 // space which I can use as I please." while "new uint8[]" means "Give
60 // me an array of 8-bit integers.".  In practice, the later may return
61 // a pointer that is not aligned correctly for general use.  I believe
62 // Item 8 of "More Effective C++" discusses this in more detail, though
63 // I don't have the book on me right now so I'm not sure.
64
65 #include <algorithm>
66 #include <google/protobuf/stubs/hash.h>
67
68 #include <google/protobuf/stubs/common.h>
69
70 #include <google/protobuf/dynamic_message.h>
71 #include <google/protobuf/descriptor.h>
72 #include <google/protobuf/descriptor.pb.h>
73 #include <google/protobuf/generated_message_util.h>
74 #include <google/protobuf/generated_message_reflection.h>
75 #include <google/protobuf/reflection_ops.h>
76 #include <google/protobuf/repeated_field.h>
77 #include <google/protobuf/extension_set.h>
78 #include <google/protobuf/wire_format.h>
79
80 namespace google {
81 namespace protobuf {
82
83 using internal::WireFormat;
84 using internal::ExtensionSet;
85 using internal::GeneratedMessageReflection;
86
87
88 // ===================================================================
89 // Some helper tables and functions...
90
91 namespace {
92
93 // Compute the byte size of the in-memory representation of the field.
94 int FieldSpaceUsed(const FieldDescriptor* field) {
95   typedef FieldDescriptor FD;  // avoid line wrapping
96   if (field->label() == FD::LABEL_REPEATED) {
97     switch (field->cpp_type()) {
98       case FD::CPPTYPE_INT32  : return sizeof(RepeatedField<int32   >);
99       case FD::CPPTYPE_INT64  : return sizeof(RepeatedField<int64   >);
100       case FD::CPPTYPE_UINT32 : return sizeof(RepeatedField<uint32  >);
101       case FD::CPPTYPE_UINT64 : return sizeof(RepeatedField<uint64  >);
102       case FD::CPPTYPE_DOUBLE : return sizeof(RepeatedField<double  >);
103       case FD::CPPTYPE_FLOAT  : return sizeof(RepeatedField<float   >);
104       case FD::CPPTYPE_BOOL   : return sizeof(RepeatedField<bool    >);
105       case FD::CPPTYPE_ENUM   : return sizeof(RepeatedField<int     >);
106       case FD::CPPTYPE_MESSAGE: return sizeof(RepeatedPtrField<Message>);
107
108       case FD::CPPTYPE_STRING:
109         switch (field->options().ctype()) {
110           default:  // TODO(kenton):  Support other string reps.
111           case FieldOptions::STRING:
112             return sizeof(RepeatedPtrField<string>);
113         }
114         break;
115     }
116   } else {
117     switch (field->cpp_type()) {
118       case FD::CPPTYPE_INT32  : return sizeof(int32   );
119       case FD::CPPTYPE_INT64  : return sizeof(int64   );
120       case FD::CPPTYPE_UINT32 : return sizeof(uint32  );
121       case FD::CPPTYPE_UINT64 : return sizeof(uint64  );
122       case FD::CPPTYPE_DOUBLE : return sizeof(double  );
123       case FD::CPPTYPE_FLOAT  : return sizeof(float   );
124       case FD::CPPTYPE_BOOL   : return sizeof(bool    );
125       case FD::CPPTYPE_ENUM   : return sizeof(int     );
126
127       case FD::CPPTYPE_MESSAGE:
128         return sizeof(Message*);
129
130       case FD::CPPTYPE_STRING:
131         switch (field->options().ctype()) {
132           default:  // TODO(kenton):  Support other string reps.
133           case FieldOptions::STRING:
134             return sizeof(string*);
135         }
136         break;
137     }
138   }
139
140   GOOGLE_LOG(DFATAL) << "Can't get here.";
141   return 0;
142 }
143
144 // Compute the byte size of in-memory representation of the oneof fields
145 // in default oneof instance.
146 int OneofFieldSpaceUsed(const FieldDescriptor* field) {
147   typedef FieldDescriptor FD;  // avoid line wrapping
148   switch (field->cpp_type()) {
149     case FD::CPPTYPE_INT32  : return sizeof(int32   );
150     case FD::CPPTYPE_INT64  : return sizeof(int64   );
151     case FD::CPPTYPE_UINT32 : return sizeof(uint32  );
152     case FD::CPPTYPE_UINT64 : return sizeof(uint64  );
153     case FD::CPPTYPE_DOUBLE : return sizeof(double  );
154     case FD::CPPTYPE_FLOAT  : return sizeof(float   );
155     case FD::CPPTYPE_BOOL   : return sizeof(bool    );
156     case FD::CPPTYPE_ENUM   : return sizeof(int     );
157
158     case FD::CPPTYPE_MESSAGE:
159       return sizeof(Message*);
160
161     case FD::CPPTYPE_STRING:
162       switch (field->options().ctype()) {
163         default:
164         case FieldOptions::STRING:
165           return sizeof(string*);
166       }
167       break;
168   }
169
170   GOOGLE_LOG(DFATAL) << "Can't get here.";
171   return 0;
172 }
173
174 inline int DivideRoundingUp(int i, int j) {
175   return (i + (j - 1)) / j;
176 }
177
178 static const int kSafeAlignment = sizeof(uint64);
179 static const int kMaxOneofUnionSize = sizeof(uint64);
180
181 inline int AlignTo(int offset, int alignment) {
182   return DivideRoundingUp(offset, alignment) * alignment;
183 }
184
185 // Rounds the given byte offset up to the next offset aligned such that any
186 // type may be stored at it.
187 inline int AlignOffset(int offset) {
188   return AlignTo(offset, kSafeAlignment);
189 }
190
191 #define bitsizeof(T) (sizeof(T) * 8)
192
193 }  // namespace
194
195 // ===================================================================
196
197 class DynamicMessage : public Message {
198  public:
199   struct TypeInfo {
200     int size;
201     int has_bits_offset;
202     int oneof_case_offset;
203     int unknown_fields_offset;
204     int extensions_offset;
205
206     // Not owned by the TypeInfo.
207     DynamicMessageFactory* factory;  // The factory that created this object.
208     const DescriptorPool* pool;      // The factory's DescriptorPool.
209     const Descriptor* type;          // Type of this DynamicMessage.
210
211     // Warning:  The order in which the following pointers are defined is
212     //   important (the prototype must be deleted *before* the offsets).
213     scoped_array<int> offsets;
214     scoped_ptr<const GeneratedMessageReflection> reflection;
215     // Don't use a scoped_ptr to hold the prototype: the destructor for
216     // DynamicMessage needs to know whether it is the prototype, and does so by
217     // looking back at this field. This would assume details about the
218     // implementation of scoped_ptr.
219     const DynamicMessage* prototype;
220     void* default_oneof_instance;
221
222     TypeInfo() : prototype(NULL), default_oneof_instance(NULL) {}
223
224     ~TypeInfo() {
225       delete prototype;
226       operator delete(default_oneof_instance);
227     }
228   };
229
230   DynamicMessage(const TypeInfo* type_info);
231   ~DynamicMessage();
232
233   // Called on the prototype after construction to initialize message fields.
234   void CrossLinkPrototypes();
235
236   // implements Message ----------------------------------------------
237
238   Message* New() const;
239
240   int GetCachedSize() const;
241   void SetCachedSize(int size) const;
242
243   Metadata GetMetadata() const;
244
245
246  private:
247   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(DynamicMessage);
248
249   inline bool is_prototype() const {
250     return type_info_->prototype == this ||
251            // If type_info_->prototype is NULL, then we must be constructing
252            // the prototype now, which means we must be the prototype.
253            type_info_->prototype == NULL;
254   }
255
256   inline void* OffsetToPointer(int offset) {
257     return reinterpret_cast<uint8*>(this) + offset;
258   }
259   inline const void* OffsetToPointer(int offset) const {
260     return reinterpret_cast<const uint8*>(this) + offset;
261   }
262
263   const TypeInfo* type_info_;
264
265   // TODO(kenton):  Make this an atomic<int> when C++ supports it.
266   mutable int cached_byte_size_;
267 };
268
269 DynamicMessage::DynamicMessage(const TypeInfo* type_info)
270   : type_info_(type_info),
271     cached_byte_size_(0) {
272   // We need to call constructors for various fields manually and set
273   // default values where appropriate.  We use placement new to call
274   // constructors.  If you haven't heard of placement new, I suggest Googling
275   // it now.  We use placement new even for primitive types that don't have
276   // constructors for consistency.  (In theory, placement new should be used
277   // any time you are trying to convert untyped memory to typed memory, though
278   // in practice that's not strictly necessary for types that don't have a
279   // constructor.)
280
281   const Descriptor* descriptor = type_info_->type;
282
283   // Initialize oneof cases.
284   for (int i = 0 ; i < descriptor->oneof_decl_count(); ++i) {
285     new(OffsetToPointer(type_info_->oneof_case_offset + sizeof(uint32) * i))
286         uint32(0);
287   }
288
289   new(OffsetToPointer(type_info_->unknown_fields_offset)) UnknownFieldSet;
290
291   if (type_info_->extensions_offset != -1) {
292     new(OffsetToPointer(type_info_->extensions_offset)) ExtensionSet;
293   }
294
295   for (int i = 0; i < descriptor->field_count(); i++) {
296     const FieldDescriptor* field = descriptor->field(i);
297     void* field_ptr = OffsetToPointer(type_info_->offsets[i]);
298     if (field->containing_oneof()) {
299       continue;
300     }
301     switch (field->cpp_type()) {
302 #define HANDLE_TYPE(CPPTYPE, TYPE)                                           \
303       case FieldDescriptor::CPPTYPE_##CPPTYPE:                               \
304         if (!field->is_repeated()) {                                         \
305           new(field_ptr) TYPE(field->default_value_##TYPE());                \
306         } else {                                                             \
307           new(field_ptr) RepeatedField<TYPE>();                              \
308         }                                                                    \
309         break;
310
311       HANDLE_TYPE(INT32 , int32 );
312       HANDLE_TYPE(INT64 , int64 );
313       HANDLE_TYPE(UINT32, uint32);
314       HANDLE_TYPE(UINT64, uint64);
315       HANDLE_TYPE(DOUBLE, double);
316       HANDLE_TYPE(FLOAT , float );
317       HANDLE_TYPE(BOOL  , bool  );
318 #undef HANDLE_TYPE
319
320       case FieldDescriptor::CPPTYPE_ENUM:
321         if (!field->is_repeated()) {
322           new(field_ptr) int(field->default_value_enum()->number());
323         } else {
324           new(field_ptr) RepeatedField<int>();
325         }
326         break;
327
328       case FieldDescriptor::CPPTYPE_STRING:
329         switch (field->options().ctype()) {
330           default:  // TODO(kenton):  Support other string reps.
331           case FieldOptions::STRING:
332             if (!field->is_repeated()) {
333               if (is_prototype()) {
334                 new(field_ptr) const string*(&field->default_value_string());
335               } else {
336                 string* default_value =
337                   *reinterpret_cast<string* const*>(
338                     type_info_->prototype->OffsetToPointer(
339                       type_info_->offsets[i]));
340                 new(field_ptr) string*(default_value);
341               }
342             } else {
343               new(field_ptr) RepeatedPtrField<string>();
344             }
345             break;
346         }
347         break;
348
349       case FieldDescriptor::CPPTYPE_MESSAGE: {
350         if (!field->is_repeated()) {
351           new(field_ptr) Message*(NULL);
352         } else {
353           new(field_ptr) RepeatedPtrField<Message>();
354         }
355         break;
356       }
357     }
358   }
359 }
360
361 DynamicMessage::~DynamicMessage() {
362   const Descriptor* descriptor = type_info_->type;
363
364   reinterpret_cast<UnknownFieldSet*>(
365     OffsetToPointer(type_info_->unknown_fields_offset))->~UnknownFieldSet();
366
367   if (type_info_->extensions_offset != -1) {
368     reinterpret_cast<ExtensionSet*>(
369       OffsetToPointer(type_info_->extensions_offset))->~ExtensionSet();
370   }
371
372   // We need to manually run the destructors for repeated fields and strings,
373   // just as we ran their constructors in the the DynamicMessage constructor.
374   // We also need to manually delete oneof fields if it is set and is string
375   // or message.
376   // Additionally, if any singular embedded messages have been allocated, we
377   // need to delete them, UNLESS we are the prototype message of this type,
378   // in which case any embedded messages are other prototypes and shouldn't
379   // be touched.
380   for (int i = 0; i < descriptor->field_count(); i++) {
381     const FieldDescriptor* field = descriptor->field(i);
382     if (field->containing_oneof()) {
383       void* field_ptr = OffsetToPointer(
384           type_info_->oneof_case_offset
385           + sizeof(uint32) * field->containing_oneof()->index());
386       if (*(reinterpret_cast<const uint32*>(field_ptr)) ==
387           field->number()) {
388         field_ptr = OffsetToPointer(type_info_->offsets[
389             descriptor->field_count() + field->containing_oneof()->index()]);
390         if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) {
391           switch (field->options().ctype()) {
392             default:
393             case FieldOptions::STRING:
394               delete *reinterpret_cast<string**>(field_ptr);
395               break;
396           }
397         } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
398             delete *reinterpret_cast<Message**>(field_ptr);
399         }
400       }
401       continue;
402     }
403     void* field_ptr = OffsetToPointer(type_info_->offsets[i]);
404
405     if (field->is_repeated()) {
406       switch (field->cpp_type()) {
407 #define HANDLE_TYPE(UPPERCASE, LOWERCASE)                                     \
408         case FieldDescriptor::CPPTYPE_##UPPERCASE :                           \
409           reinterpret_cast<RepeatedField<LOWERCASE>*>(field_ptr)              \
410               ->~RepeatedField<LOWERCASE>();                                  \
411           break
412
413         HANDLE_TYPE( INT32,  int32);
414         HANDLE_TYPE( INT64,  int64);
415         HANDLE_TYPE(UINT32, uint32);
416         HANDLE_TYPE(UINT64, uint64);
417         HANDLE_TYPE(DOUBLE, double);
418         HANDLE_TYPE( FLOAT,  float);
419         HANDLE_TYPE(  BOOL,   bool);
420         HANDLE_TYPE(  ENUM,    int);
421 #undef HANDLE_TYPE
422
423         case FieldDescriptor::CPPTYPE_STRING:
424           switch (field->options().ctype()) {
425             default:  // TODO(kenton):  Support other string reps.
426             case FieldOptions::STRING:
427               reinterpret_cast<RepeatedPtrField<string>*>(field_ptr)
428                   ->~RepeatedPtrField<string>();
429               break;
430           }
431           break;
432
433         case FieldDescriptor::CPPTYPE_MESSAGE:
434           reinterpret_cast<RepeatedPtrField<Message>*>(field_ptr)
435               ->~RepeatedPtrField<Message>();
436           break;
437       }
438
439     } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) {
440       switch (field->options().ctype()) {
441         default:  // TODO(kenton):  Support other string reps.
442         case FieldOptions::STRING: {
443           string* ptr = *reinterpret_cast<string**>(field_ptr);
444           if (ptr != &field->default_value_string()) {
445             delete ptr;
446           }
447           break;
448         }
449       }
450     } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
451       if (!is_prototype()) {
452         Message* message = *reinterpret_cast<Message**>(field_ptr);
453         if (message != NULL) {
454           delete message;
455         }
456       }
457     }
458   }
459 }
460
461 void DynamicMessage::CrossLinkPrototypes() {
462   // This should only be called on the prototype message.
463   GOOGLE_CHECK(is_prototype());
464
465   DynamicMessageFactory* factory = type_info_->factory;
466   const Descriptor* descriptor = type_info_->type;
467
468   // Cross-link default messages.
469   for (int i = 0; i < descriptor->field_count(); i++) {
470     const FieldDescriptor* field = descriptor->field(i);
471     void* field_ptr = OffsetToPointer(type_info_->offsets[i]);
472     if (field->containing_oneof()) {
473       field_ptr = reinterpret_cast<uint8*>(
474           type_info_->default_oneof_instance) + type_info_->offsets[i];
475     }
476
477     if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE &&
478         !field->is_repeated()) {
479       // For fields with message types, we need to cross-link with the
480       // prototype for the field's type.
481       // For singular fields, the field is just a pointer which should
482       // point to the prototype.
483       *reinterpret_cast<const Message**>(field_ptr) =
484         factory->GetPrototypeNoLock(field->message_type());
485     }
486   }
487 }
488
489 Message* DynamicMessage::New() const {
490   void* new_base = operator new(type_info_->size);
491   memset(new_base, 0, type_info_->size);
492   return new(new_base) DynamicMessage(type_info_);
493 }
494
495 int DynamicMessage::GetCachedSize() const {
496   return cached_byte_size_;
497 }
498
499 void DynamicMessage::SetCachedSize(int size) const {
500   // This is theoretically not thread-compatible, but in practice it works
501   // because if multiple threads write this simultaneously, they will be
502   // writing the exact same value.
503   GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN();
504   cached_byte_size_ = size;
505   GOOGLE_SAFE_CONCURRENT_WRITES_END();
506 }
507
508 Metadata DynamicMessage::GetMetadata() const {
509   Metadata metadata;
510   metadata.descriptor = type_info_->type;
511   metadata.reflection = type_info_->reflection.get();
512   return metadata;
513 }
514
515 // ===================================================================
516
517 struct DynamicMessageFactory::PrototypeMap {
518   typedef hash_map<const Descriptor*, const DynamicMessage::TypeInfo*> Map;
519   Map map_;
520 };
521
522 DynamicMessageFactory::DynamicMessageFactory()
523   : pool_(NULL), delegate_to_generated_factory_(false),
524     prototypes_(new PrototypeMap) {
525 }
526
527 DynamicMessageFactory::DynamicMessageFactory(const DescriptorPool* pool)
528   : pool_(pool), delegate_to_generated_factory_(false),
529     prototypes_(new PrototypeMap) {
530 }
531
532 DynamicMessageFactory::~DynamicMessageFactory() {
533   for (PrototypeMap::Map::iterator iter = prototypes_->map_.begin();
534        iter != prototypes_->map_.end(); ++iter) {
535     DeleteDefaultOneofInstance(iter->second->type,
536                                iter->second->offsets.get(),
537                                iter->second->default_oneof_instance);
538     delete iter->second;
539   }
540 }
541
542 const Message* DynamicMessageFactory::GetPrototype(const Descriptor* type) {
543   MutexLock lock(&prototypes_mutex_);
544   return GetPrototypeNoLock(type);
545 }
546
547 const Message* DynamicMessageFactory::GetPrototypeNoLock(
548     const Descriptor* type) {
549   if (delegate_to_generated_factory_ &&
550       type->file()->pool() == DescriptorPool::generated_pool()) {
551     return MessageFactory::generated_factory()->GetPrototype(type);
552   }
553
554   const DynamicMessage::TypeInfo** target = &prototypes_->map_[type];
555   if (*target != NULL) {
556     // Already exists.
557     return (*target)->prototype;
558   }
559
560   DynamicMessage::TypeInfo* type_info = new DynamicMessage::TypeInfo;
561   *target = type_info;
562
563   type_info->type = type;
564   type_info->pool = (pool_ == NULL) ? type->file()->pool() : pool_;
565   type_info->factory = this;
566
567   // We need to construct all the structures passed to
568   // GeneratedMessageReflection's constructor.  This includes:
569   // - A block of memory that contains space for all the message's fields.
570   // - An array of integers indicating the byte offset of each field within
571   //   this block.
572   // - A big bitfield containing a bit for each field indicating whether
573   //   or not that field is set.
574
575   // Compute size and offsets.
576   int* offsets = new int[type->field_count() + type->oneof_decl_count()];
577   type_info->offsets.reset(offsets);
578
579   // Decide all field offsets by packing in order.
580   // We place the DynamicMessage object itself at the beginning of the allocated
581   // space.
582   int size = sizeof(DynamicMessage);
583   size = AlignOffset(size);
584
585   // Next the has_bits, which is an array of uint32s.
586   type_info->has_bits_offset = size;
587   int has_bits_array_size =
588     DivideRoundingUp(type->field_count(), bitsizeof(uint32));
589   size += has_bits_array_size * sizeof(uint32);
590   size = AlignOffset(size);
591
592   // The oneof_case, if any. It is an array of uint32s.
593   if (type->oneof_decl_count() > 0) {
594     type_info->oneof_case_offset = size;
595     size += type->oneof_decl_count() * sizeof(uint32);
596     size = AlignOffset(size);
597   }
598
599   // The ExtensionSet, if any.
600   if (type->extension_range_count() > 0) {
601     type_info->extensions_offset = size;
602     size += sizeof(ExtensionSet);
603     size = AlignOffset(size);
604   } else {
605     // No extensions.
606     type_info->extensions_offset = -1;
607   }
608
609   // All the fields.
610   for (int i = 0; i < type->field_count(); i++) {
611     // Make sure field is aligned to avoid bus errors.
612     // Oneof fields do not use any space.
613     if (!type->field(i)->containing_oneof()) {
614       int field_size = FieldSpaceUsed(type->field(i));
615       size = AlignTo(size, min(kSafeAlignment, field_size));
616       offsets[i] = size;
617       size += field_size;
618     }
619   }
620
621   // The oneofs.
622   for (int i = 0; i < type->oneof_decl_count(); i++) {
623     size = AlignTo(size, kSafeAlignment);
624     offsets[type->field_count() + i] = size;
625     size += kMaxOneofUnionSize;
626   }
627
628   // Add the UnknownFieldSet to the end.
629   size = AlignOffset(size);
630   type_info->unknown_fields_offset = size;
631   size += sizeof(UnknownFieldSet);
632
633   // Align the final size to make sure no clever allocators think that
634   // alignment is not necessary.
635   size = AlignOffset(size);
636   type_info->size = size;
637
638   // Allocate the prototype.
639   void* base = operator new(size);
640   memset(base, 0, size);
641   DynamicMessage* prototype = new(base) DynamicMessage(type_info);
642   type_info->prototype = prototype;
643
644   // Construct the reflection object.
645   if (type->oneof_decl_count() > 0) {
646     // Compute the size of default oneof instance and offsets of default
647     // oneof fields.
648     int oneof_size = 0;
649     for (int i = 0; i < type->oneof_decl_count(); i++) {
650       for (int j = 0; j < type->oneof_decl(i)->field_count(); j++) {
651         const FieldDescriptor* field = type->oneof_decl(i)->field(j);
652         int field_size = OneofFieldSpaceUsed(field);
653         oneof_size = AlignTo(oneof_size, min(kSafeAlignment, field_size));
654         offsets[field->index()] = oneof_size;
655         oneof_size += field_size;
656       }
657     }
658     // Construct default oneof instance.
659     type_info->default_oneof_instance = ::operator new(oneof_size);
660     ConstructDefaultOneofInstance(type_info->type,
661                                   type_info->offsets.get(),
662                                   type_info->default_oneof_instance);
663     type_info->reflection.reset(
664         new GeneratedMessageReflection(
665             type_info->type,
666             type_info->prototype,
667             type_info->offsets.get(),
668             type_info->has_bits_offset,
669             type_info->unknown_fields_offset,
670             type_info->extensions_offset,
671             type_info->default_oneof_instance,
672             type_info->oneof_case_offset,
673             type_info->pool,
674             this,
675             type_info->size));
676   } else {
677     type_info->reflection.reset(
678         new GeneratedMessageReflection(
679             type_info->type,
680             type_info->prototype,
681             type_info->offsets.get(),
682             type_info->has_bits_offset,
683             type_info->unknown_fields_offset,
684             type_info->extensions_offset,
685             type_info->pool,
686             this,
687             type_info->size));
688   }
689   // Cross link prototypes.
690   prototype->CrossLinkPrototypes();
691
692   return prototype;
693 }
694
695 void DynamicMessageFactory::ConstructDefaultOneofInstance(
696     const Descriptor* type,
697     const int offsets[],
698     void* default_oneof_instance) {
699   for (int i = 0; i < type->oneof_decl_count(); i++) {
700     for (int j = 0; j < type->oneof_decl(i)->field_count(); j++) {
701       const FieldDescriptor* field = type->oneof_decl(i)->field(j);
702       void* field_ptr = reinterpret_cast<uint8*>(
703           default_oneof_instance) + offsets[field->index()];
704       switch (field->cpp_type()) {
705 #define HANDLE_TYPE(CPPTYPE, TYPE)                                      \
706         case FieldDescriptor::CPPTYPE_##CPPTYPE:                        \
707           new(field_ptr) TYPE(field->default_value_##TYPE());           \
708           break;
709
710         HANDLE_TYPE(INT32 , int32 );
711         HANDLE_TYPE(INT64 , int64 );
712         HANDLE_TYPE(UINT32, uint32);
713         HANDLE_TYPE(UINT64, uint64);
714         HANDLE_TYPE(DOUBLE, double);
715         HANDLE_TYPE(FLOAT , float );
716         HANDLE_TYPE(BOOL  , bool  );
717 #undef HANDLE_TYPE
718
719         case FieldDescriptor::CPPTYPE_ENUM:
720           new(field_ptr) int(field->default_value_enum()->number());
721           break;
722         case FieldDescriptor::CPPTYPE_STRING:
723           switch (field->options().ctype()) {
724             default:
725             case FieldOptions::STRING:
726               if (field->has_default_value()) {
727                 new(field_ptr) const string*(&field->default_value_string());
728               } else {
729                 new(field_ptr) string*(
730                     const_cast<string*>(&internal::GetEmptyString()));
731               }
732               break;
733           }
734           break;
735
736         case FieldDescriptor::CPPTYPE_MESSAGE: {
737           new(field_ptr) Message*(NULL);
738           break;
739         }
740       }
741     }
742   }
743 }
744
745 void DynamicMessageFactory::DeleteDefaultOneofInstance(
746     const Descriptor* type,
747     const int offsets[],
748     void* default_oneof_instance) {
749   for (int i = 0; i < type->oneof_decl_count(); i++) {
750     for (int j = 0; j < type->oneof_decl(i)->field_count(); j++) {
751       const FieldDescriptor* field = type->oneof_decl(i)->field(j);
752       if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) {
753         switch (field->options().ctype()) {
754           default:
755           case FieldOptions::STRING:
756             break;
757         }
758       }
759     }
760   }
761 }
762
763 }  // namespace protobuf
764 }  // namespace google