daily update
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42
43 namespace gold
44 {
45
46 // Class Xindex.
47
48 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
49 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
50 // table we care about.
51
52 template<int size, bool big_endian>
53 void
54 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
55 {
56   if (!this->symtab_xindex_.empty())
57     return;
58
59   gold_assert(symtab_shndx != 0);
60
61   // Look through the sections in reverse order, on the theory that it
62   // is more likely to be near the end than the beginning.
63   unsigned int i = object->shnum();
64   while (i > 0)
65     {
66       --i;
67       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
68           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
69         {
70           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
71           return;
72         }
73     }
74
75   object->error(_("missing SHT_SYMTAB_SHNDX section"));
76 }
77
78 // Read in the symtab_xindex_ array, given the section index of the
79 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
80 // section headers.
81
82 template<int size, bool big_endian>
83 void
84 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
85                            const unsigned char* pshdrs)
86 {
87   section_size_type bytecount;
88   const unsigned char* contents;
89   if (pshdrs == NULL)
90     contents = object->section_contents(xindex_shndx, &bytecount, false);
91   else
92     {
93       const unsigned char* p = (pshdrs
94                                 + (xindex_shndx
95                                    * elfcpp::Elf_sizes<size>::shdr_size));
96       typename elfcpp::Shdr<size, big_endian> shdr(p);
97       bytecount = convert_to_section_size_type(shdr.get_sh_size());
98       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
99     }
100
101   gold_assert(this->symtab_xindex_.empty());
102   this->symtab_xindex_.reserve(bytecount / 4);
103   for (section_size_type i = 0; i < bytecount; i += 4)
104     {
105       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
106       // We preadjust the section indexes we save.
107       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
108     }
109 }
110
111 // Symbol symndx has a section of SHN_XINDEX; return the real section
112 // index.
113
114 unsigned int
115 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
116 {
117   if (symndx >= this->symtab_xindex_.size())
118     {
119       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
120                     symndx);
121       return elfcpp::SHN_UNDEF;
122     }
123   unsigned int shndx = this->symtab_xindex_[symndx];
124   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
125     {
126       object->error(_("extended index for symbol %u out of range: %u"),
127                     symndx, shndx);
128       return elfcpp::SHN_UNDEF;
129     }
130   return shndx;
131 }
132
133 // Class Object.
134
135 // Set the target based on fields in the ELF file header.
136
137 void
138 Object::set_target(int machine, int size, bool big_endian, int osabi,
139                    int abiversion)
140 {
141   Target* target = select_target(machine, size, big_endian, osabi, abiversion);
142   if (target == NULL)
143     gold_fatal(_("%s: unsupported ELF machine number %d"),
144                this->name().c_str(), machine);
145   this->target_ = target;
146 }
147
148 // Report an error for this object file.  This is used by the
149 // elfcpp::Elf_file interface, and also called by the Object code
150 // itself.
151
152 void
153 Object::error(const char* format, ...) const
154 {
155   va_list args;
156   va_start(args, format);
157   char* buf = NULL;
158   if (vasprintf(&buf, format, args) < 0)
159     gold_nomem();
160   va_end(args);
161   gold_error(_("%s: %s"), this->name().c_str(), buf);
162   free(buf);
163 }
164
165 // Return a view of the contents of a section.
166
167 const unsigned char*
168 Object::section_contents(unsigned int shndx, section_size_type* plen,
169                          bool cache)
170 {
171   Location loc(this->do_section_contents(shndx));
172   *plen = convert_to_section_size_type(loc.data_size);
173   return this->get_view(loc.file_offset, *plen, true, cache);
174 }
175
176 // Read the section data into SD.  This is code common to Sized_relobj
177 // and Sized_dynobj, so we put it into Object.
178
179 template<int size, bool big_endian>
180 void
181 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
182                           Read_symbols_data* sd)
183 {
184   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
185
186   // Read the section headers.
187   const off_t shoff = elf_file->shoff();
188   const unsigned int shnum = this->shnum();
189   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
190                                                true, true);
191
192   // Read the section names.
193   const unsigned char* pshdrs = sd->section_headers->data();
194   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
195   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
196
197   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
198     this->error(_("section name section has wrong type: %u"),
199                 static_cast<unsigned int>(shdrnames.get_sh_type()));
200
201   sd->section_names_size =
202     convert_to_section_size_type(shdrnames.get_sh_size());
203   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
204                                              sd->section_names_size, false,
205                                              false);
206 }
207
208 // If NAME is the name of a special .gnu.warning section, arrange for
209 // the warning to be issued.  SHNDX is the section index.  Return
210 // whether it is a warning section.
211
212 bool
213 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
214                                    Symbol_table* symtab)
215 {
216   const char warn_prefix[] = ".gnu.warning.";
217   const int warn_prefix_len = sizeof warn_prefix - 1;
218   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
219     {
220       // Read the section contents to get the warning text.  It would
221       // be nicer if we only did this if we have to actually issue a
222       // warning.  Unfortunately, warnings are issued as we relocate
223       // sections.  That means that we can not lock the object then,
224       // as we might try to issue the same warning multiple times
225       // simultaneously.
226       section_size_type len;
227       const unsigned char* contents = this->section_contents(shndx, &len,
228                                                              false);
229       std::string warning(reinterpret_cast<const char*>(contents), len);
230       symtab->add_warning(name + warn_prefix_len, this, warning);
231       return true;
232     }
233   return false;
234 }
235
236 // Class Relobj
237
238 // To copy the symbols data read from the file to a local data structure.
239 // This function is called from do_layout only while doing garbage 
240 // collection.
241
242 void
243 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd, 
244                           unsigned int section_header_size)
245 {
246   gc_sd->section_headers_data = 
247          new unsigned char[(section_header_size)];
248   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
249          section_header_size);
250   gc_sd->section_names_data = 
251          new unsigned char[sd->section_names_size];
252   memcpy(gc_sd->section_names_data, sd->section_names->data(),
253          sd->section_names_size);
254   gc_sd->section_names_size = sd->section_names_size;
255   if (sd->symbols != NULL)
256     {
257       gc_sd->symbols_data = 
258              new unsigned char[sd->symbols_size];
259       memcpy(gc_sd->symbols_data, sd->symbols->data(),
260             sd->symbols_size);
261     }
262   else
263     {
264       gc_sd->symbols_data = NULL;
265     }
266   gc_sd->symbols_size = sd->symbols_size;
267   gc_sd->external_symbols_offset = sd->external_symbols_offset;
268   if (sd->symbol_names != NULL)
269     {
270       gc_sd->symbol_names_data =
271              new unsigned char[sd->symbol_names_size];
272       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
273             sd->symbol_names_size);
274     }
275   else
276     {
277       gc_sd->symbol_names_data = NULL;
278     }
279   gc_sd->symbol_names_size = sd->symbol_names_size;
280 }
281
282 // This function determines if a particular section name must be included
283 // in the link.  This is used during garbage collection to determine the
284 // roots of the worklist.
285
286 bool
287 Relobj::is_section_name_included(const char* name)
288 {
289   if (is_prefix_of(".ctors", name) 
290       || is_prefix_of(".dtors", name) 
291       || is_prefix_of(".note", name) 
292       || is_prefix_of(".init", name) 
293       || is_prefix_of(".fini", name) 
294       || is_prefix_of(".gcc_except_table", name) 
295       || is_prefix_of(".jcr", name) 
296       || is_prefix_of(".preinit_array", name) 
297       || (is_prefix_of(".text", name) 
298           && strstr(name, "personality")) 
299       || (is_prefix_of(".data", name) 
300           &&  strstr(name, "personality")) 
301       || (is_prefix_of(".gnu.linkonce.d", name) && 
302             strstr(name, "personality")))
303     {
304       return true; 
305     }
306   return false;
307 }
308
309 // Class Sized_relobj.
310
311 template<int size, bool big_endian>
312 Sized_relobj<size, big_endian>::Sized_relobj(
313     const std::string& name,
314     Input_file* input_file,
315     off_t offset,
316     const elfcpp::Ehdr<size, big_endian>& ehdr)
317   : Relobj(name, input_file, offset),
318     elf_file_(this, ehdr),
319     symtab_shndx_(-1U),
320     local_symbol_count_(0),
321     output_local_symbol_count_(0),
322     output_local_dynsym_count_(0),
323     symbols_(),
324     defined_count_(0),
325     local_symbol_offset_(0),
326     local_dynsym_offset_(0),
327     local_values_(),
328     local_got_offsets_(),
329     kept_comdat_sections_(),
330     has_eh_frame_(false)
331 {
332 }
333
334 template<int size, bool big_endian>
335 Sized_relobj<size, big_endian>::~Sized_relobj()
336 {
337 }
338
339 // Set up an object file based on the file header.  This sets up the
340 // target and reads the section information.
341
342 template<int size, bool big_endian>
343 void
344 Sized_relobj<size, big_endian>::setup(
345     const elfcpp::Ehdr<size, big_endian>& ehdr)
346 {
347   this->set_target(ehdr.get_e_machine(), size, big_endian,
348                    ehdr.get_e_ident()[elfcpp::EI_OSABI],
349                    ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
350
351   const unsigned int shnum = this->elf_file_.shnum();
352   this->set_shnum(shnum);
353 }
354
355 // Find the SHT_SYMTAB section, given the section headers.  The ELF
356 // standard says that maybe in the future there can be more than one
357 // SHT_SYMTAB section.  Until somebody figures out how that could
358 // work, we assume there is only one.
359
360 template<int size, bool big_endian>
361 void
362 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
363 {
364   const unsigned int shnum = this->shnum();
365   this->symtab_shndx_ = 0;
366   if (shnum > 0)
367     {
368       // Look through the sections in reverse order, since gas tends
369       // to put the symbol table at the end.
370       const unsigned char* p = pshdrs + shnum * This::shdr_size;
371       unsigned int i = shnum;
372       unsigned int xindex_shndx = 0;
373       unsigned int xindex_link = 0;
374       while (i > 0)
375         {
376           --i;
377           p -= This::shdr_size;
378           typename This::Shdr shdr(p);
379           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
380             {
381               this->symtab_shndx_ = i;
382               if (xindex_shndx > 0 && xindex_link == i)
383                 {
384                   Xindex* xindex =
385                     new Xindex(this->elf_file_.large_shndx_offset());
386                   xindex->read_symtab_xindex<size, big_endian>(this,
387                                                                xindex_shndx,
388                                                                pshdrs);
389                   this->set_xindex(xindex);
390                 }
391               break;
392             }
393
394           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
395           // one.  This will work if it follows the SHT_SYMTAB
396           // section.
397           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
398             {
399               xindex_shndx = i;
400               xindex_link = this->adjust_shndx(shdr.get_sh_link());
401             }
402         }
403     }
404 }
405
406 // Return the Xindex structure to use for object with lots of
407 // sections.
408
409 template<int size, bool big_endian>
410 Xindex*
411 Sized_relobj<size, big_endian>::do_initialize_xindex()
412 {
413   gold_assert(this->symtab_shndx_ != -1U);
414   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
415   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
416   return xindex;
417 }
418
419 // Return whether SHDR has the right type and flags to be a GNU
420 // .eh_frame section.
421
422 template<int size, bool big_endian>
423 bool
424 Sized_relobj<size, big_endian>::check_eh_frame_flags(
425     const elfcpp::Shdr<size, big_endian>* shdr) const
426 {
427   return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
428           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
429 }
430
431 // Return whether there is a GNU .eh_frame section, given the section
432 // headers and the section names.
433
434 template<int size, bool big_endian>
435 bool
436 Sized_relobj<size, big_endian>::find_eh_frame(
437     const unsigned char* pshdrs,
438     const char* names,
439     section_size_type names_size) const
440 {
441   const unsigned int shnum = this->shnum();
442   const unsigned char* p = pshdrs + This::shdr_size;
443   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
444     {
445       typename This::Shdr shdr(p);
446       if (this->check_eh_frame_flags(&shdr))
447         {
448           if (shdr.get_sh_name() >= names_size)
449             {
450               this->error(_("bad section name offset for section %u: %lu"),
451                           i, static_cast<unsigned long>(shdr.get_sh_name()));
452               continue;
453             }
454
455           const char* name = names + shdr.get_sh_name();
456           if (strcmp(name, ".eh_frame") == 0)
457             return true;
458         }
459     }
460   return false;
461 }
462
463 // Read the sections and symbols from an object file.
464
465 template<int size, bool big_endian>
466 void
467 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
468 {
469   this->read_section_data(&this->elf_file_, sd);
470
471   const unsigned char* const pshdrs = sd->section_headers->data();
472
473   this->find_symtab(pshdrs);
474
475   const unsigned char* namesu = sd->section_names->data();
476   const char* names = reinterpret_cast<const char*>(namesu);
477   if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
478     {
479       if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
480         this->has_eh_frame_ = true;
481     }
482
483   sd->symbols = NULL;
484   sd->symbols_size = 0;
485   sd->external_symbols_offset = 0;
486   sd->symbol_names = NULL;
487   sd->symbol_names_size = 0;
488
489   if (this->symtab_shndx_ == 0)
490     {
491       // No symbol table.  Weird but legal.
492       return;
493     }
494
495   // Get the symbol table section header.
496   typename This::Shdr symtabshdr(pshdrs
497                                  + this->symtab_shndx_ * This::shdr_size);
498   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
499
500   // If this object has a .eh_frame section, we need all the symbols.
501   // Otherwise we only need the external symbols.  While it would be
502   // simpler to just always read all the symbols, I've seen object
503   // files with well over 2000 local symbols, which for a 64-bit
504   // object file format is over 5 pages that we don't need to read
505   // now.
506
507   const int sym_size = This::sym_size;
508   const unsigned int loccount = symtabshdr.get_sh_info();
509   this->local_symbol_count_ = loccount;
510   this->local_values_.resize(loccount);
511   section_offset_type locsize = loccount * sym_size;
512   off_t dataoff = symtabshdr.get_sh_offset();
513   section_size_type datasize =
514     convert_to_section_size_type(symtabshdr.get_sh_size());
515   off_t extoff = dataoff + locsize;
516   section_size_type extsize = datasize - locsize;
517
518   off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
519   section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
520
521   if (readsize == 0)
522     {
523       // No external symbols.  Also weird but also legal.
524       return;
525     }
526
527   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
528
529   // Read the section header for the symbol names.
530   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
531   if (strtab_shndx >= this->shnum())
532     {
533       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
534       return;
535     }
536   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
537   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
538     {
539       this->error(_("symbol table name section has wrong type: %u"),
540                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
541       return;
542     }
543
544   // Read the symbol names.
545   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
546                                                strtabshdr.get_sh_size(),
547                                                false, true);
548
549   sd->symbols = fvsymtab;
550   sd->symbols_size = readsize;
551   sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
552   sd->symbol_names = fvstrtab;
553   sd->symbol_names_size =
554     convert_to_section_size_type(strtabshdr.get_sh_size());
555 }
556
557 // Return the section index of symbol SYM.  Set *VALUE to its value in
558 // the object file.  Set *IS_ORDINARY if this is an ordinary section
559 // index.  not a special cod between SHN_LORESERVE and SHN_HIRESERVE.
560 // Note that for a symbol which is not defined in this object file,
561 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
562 // the final value of the symbol in the link.
563
564 template<int size, bool big_endian>
565 unsigned int
566 Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym,
567                                                          Address* value,
568                                                          bool* is_ordinary)
569 {
570   section_size_type symbols_size;
571   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
572                                                         &symbols_size,
573                                                         false);
574
575   const size_t count = symbols_size / This::sym_size;
576   gold_assert(sym < count);
577
578   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
579   *value = elfsym.get_st_value();
580
581   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
582 }
583
584 // Return whether to include a section group in the link.  LAYOUT is
585 // used to keep track of which section groups we have already seen.
586 // INDEX is the index of the section group and SHDR is the section
587 // header.  If we do not want to include this group, we set bits in
588 // OMIT for each section which should be discarded.
589
590 template<int size, bool big_endian>
591 bool
592 Sized_relobj<size, big_endian>::include_section_group(
593     Symbol_table* symtab,
594     Layout* layout,
595     unsigned int index,
596     const char* name,
597     const unsigned char* shdrs,
598     const char* section_names,
599     section_size_type section_names_size,
600     std::vector<bool>* omit)
601 {
602   // Read the section contents.
603   typename This::Shdr shdr(shdrs + index * This::shdr_size);
604   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
605                                              shdr.get_sh_size(), true, false);
606   const elfcpp::Elf_Word* pword =
607     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
608
609   // The first word contains flags.  We only care about COMDAT section
610   // groups.  Other section groups are always included in the link
611   // just like ordinary sections.
612   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
613
614   // Look up the group signature, which is the name of a symbol.  This
615   // is a lot of effort to go to to read a string.  Why didn't they
616   // just have the group signature point into the string table, rather
617   // than indirect through a symbol?
618
619   // Get the appropriate symbol table header (this will normally be
620   // the single SHT_SYMTAB section, but in principle it need not be).
621   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
622   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
623
624   // Read the symbol table entry.
625   unsigned int symndx = shdr.get_sh_info();
626   if (symndx >= symshdr.get_sh_size() / This::sym_size)
627     {
628       this->error(_("section group %u info %u out of range"),
629                   index, symndx);
630       return false;
631     }
632   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
633   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
634                                              false);
635   elfcpp::Sym<size, big_endian> sym(psym);
636
637   // Read the symbol table names.
638   section_size_type symnamelen;
639   const unsigned char* psymnamesu;
640   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
641                                       &symnamelen, true);
642   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
643
644   // Get the section group signature.
645   if (sym.get_st_name() >= symnamelen)
646     {
647       this->error(_("symbol %u name offset %u out of range"),
648                   symndx, sym.get_st_name());
649       return false;
650     }
651
652   std::string signature(psymnames + sym.get_st_name());
653
654   // It seems that some versions of gas will create a section group
655   // associated with a section symbol, and then fail to give a name to
656   // the section symbol.  In such a case, use the name of the section.
657   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
658     {
659       bool is_ordinary;
660       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
661                                                       sym.get_st_shndx(),
662                                                       &is_ordinary);
663       if (!is_ordinary || sym_shndx >= this->shnum())
664         {
665           this->error(_("symbol %u invalid section index %u"),
666                       symndx, sym_shndx);
667           return false;
668         }
669       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
670       if (member_shdr.get_sh_name() < section_names_size)
671         signature = section_names + member_shdr.get_sh_name();
672     }
673
674   // Record this section group in the layout, and see whether we've already
675   // seen one with the same signature.
676   bool include_group;
677   Sized_relobj<size, big_endian>* kept_object = NULL;
678   Kept_section::Comdat_group* kept_group = NULL;
679
680   if ((flags & elfcpp::GRP_COMDAT) == 0)
681     include_group = true;
682   else
683     {
684       Kept_section this_group(this, index, true);
685       Kept_section *kept_section_group;
686       include_group = layout->find_or_add_kept_section(signature,
687                                                        &this_group,
688                                                        &kept_section_group);
689       if (include_group)
690         kept_section_group->group_sections = new Kept_section::Comdat_group;
691
692       kept_group = kept_section_group->group_sections;
693       kept_object = (static_cast<Sized_relobj<size, big_endian>*>
694                      (kept_section_group->object));
695     }
696
697   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
698
699   std::vector<unsigned int> shndxes;
700   bool relocate_group = include_group && parameters->options().relocatable();
701   if (relocate_group)
702     shndxes.reserve(count - 1);
703
704   for (size_t i = 1; i < count; ++i)
705     {
706       elfcpp::Elf_Word secnum =
707         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
708
709       if (relocate_group)
710         shndxes.push_back(secnum);
711
712       if (secnum >= this->shnum())
713         {
714           this->error(_("section %u in section group %u out of range"),
715                       secnum, index);
716           continue;
717         }
718
719       // Check for an earlier section number, since we're going to get
720       // it wrong--we may have already decided to include the section.
721       if (secnum < index)
722         this->error(_("invalid section group %u refers to earlier section %u"),
723                     index, secnum);
724
725       // Get the name of the member section.
726       typename This::Shdr member_shdr(shdrs + secnum * This::shdr_size);
727       if (member_shdr.get_sh_name() >= section_names_size)
728         {
729           // This is an error, but it will be diagnosed eventually
730           // in do_layout, so we don't need to do anything here but
731           // ignore it.
732           continue;
733         }
734       std::string mname(section_names + member_shdr.get_sh_name());
735
736       if (!include_group)
737         {
738           (*omit)[secnum] = true;
739           if (kept_group != NULL)
740             {
741               // Find the corresponding kept section, and store that info
742               // in the discarded section table.
743               Kept_section::Comdat_group::const_iterator p =
744                 kept_group->find(mname);
745               if (p != kept_group->end())
746                 {
747                   Kept_comdat_section* kept =
748                     new Kept_comdat_section(kept_object, p->second);
749                   this->set_kept_comdat_section(secnum, kept);
750                 }
751             }
752         }
753       else if (flags & elfcpp::GRP_COMDAT)
754         {
755           // Add the section to the kept group table.
756           gold_assert(kept_group != NULL);
757           kept_group->insert(std::make_pair(mname, secnum));
758         }
759     }
760
761   if (relocate_group)
762     layout->layout_group(symtab, this, index, name, signature.c_str(),
763                          shdr, flags, &shndxes);
764
765   return include_group;
766 }
767
768 // Whether to include a linkonce section in the link.  NAME is the
769 // name of the section and SHDR is the section header.
770
771 // Linkonce sections are a GNU extension implemented in the original
772 // GNU linker before section groups were defined.  The semantics are
773 // that we only include one linkonce section with a given name.  The
774 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
775 // where T is the type of section and SYMNAME is the name of a symbol.
776 // In an attempt to make linkonce sections interact well with section
777 // groups, we try to identify SYMNAME and use it like a section group
778 // signature.  We want to block section groups with that signature,
779 // but not other linkonce sections with that signature.  We also use
780 // the full name of the linkonce section as a normal section group
781 // signature.
782
783 template<int size, bool big_endian>
784 bool
785 Sized_relobj<size, big_endian>::include_linkonce_section(
786     Layout* layout,
787     unsigned int index,
788     const char* name,
789     const elfcpp::Shdr<size, big_endian>&)
790 {
791   // In general the symbol name we want will be the string following
792   // the last '.'.  However, we have to handle the case of
793   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
794   // some versions of gcc.  So we use a heuristic: if the name starts
795   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
796   // we look for the last '.'.  We can't always simply skip
797   // ".gnu.linkonce.X", because we have to deal with cases like
798   // ".gnu.linkonce.d.rel.ro.local".
799   const char* const linkonce_t = ".gnu.linkonce.t.";
800   const char* symname;
801   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
802     symname = name + strlen(linkonce_t);
803   else
804     symname = strrchr(name, '.') + 1;
805   std::string sig1(symname);
806   std::string sig2(name);
807   Kept_section candidate1(this, index, false);
808   Kept_section candidate2(this, index, true);
809   Kept_section* kept1;
810   Kept_section* kept2;
811   bool include1 = layout->find_or_add_kept_section(sig1, &candidate1, &kept1);
812   bool include2 = layout->find_or_add_kept_section(sig2, &candidate2, &kept2);
813
814   if (!include2)
815     {
816       // The section is being discarded on the basis of its section
817       // name (i.e., the kept section was also a linkonce section).
818       // In this case, the section index stored with the layout object
819       // is the linkonce section that was kept.
820       unsigned int kept_group_index = kept2->shndx;
821       Relobj* kept_relobj = kept2->object;
822       if (kept_relobj != NULL)
823         {
824           Sized_relobj<size, big_endian>* kept_object =
825             static_cast<Sized_relobj<size, big_endian>*>(kept_relobj);
826           Kept_comdat_section* kept =
827             new Kept_comdat_section(kept_object, kept_group_index);
828           this->set_kept_comdat_section(index, kept);
829         }
830     }
831   else if (!include1)
832     {
833       // The section is being discarded on the basis of its symbol
834       // name.  This means that the corresponding kept section was
835       // part of a comdat group, and it will be difficult to identify
836       // the specific section within that group that corresponds to
837       // this linkonce section.  We'll handle the simple case where
838       // the group has only one member section.  Otherwise, it's not
839       // worth the effort.
840       Relobj* kept_relobj = kept1->object;
841       if (kept_relobj != NULL)
842         {
843           Sized_relobj<size, big_endian>* kept_object =
844             static_cast<Sized_relobj<size, big_endian>*>(kept_relobj);
845           Kept_section::Comdat_group* kept_group = kept1->group_sections;
846           if (kept_group != NULL && kept_group->size() == 1)
847             {
848               Kept_section::Comdat_group::const_iterator p =
849                 kept_group->begin();
850               gold_assert(p != kept_group->end());
851               Kept_comdat_section* kept =
852                 new Kept_comdat_section(kept_object, p->second);
853               this->set_kept_comdat_section(index, kept);
854             }
855         }
856     }
857
858   return include1 && include2;
859 }
860
861 // Layout an input section.
862
863 template<int size, bool big_endian>
864 inline void
865 Sized_relobj<size, big_endian>::layout_section(Layout* layout,
866                                                unsigned int shndx,
867                                                const char* name,
868                                                typename This::Shdr& shdr,
869                                                unsigned int reloc_shndx,
870                                                unsigned int reloc_type)
871 {
872   off_t offset;
873   Output_section* os = layout->layout(this, shndx, name, shdr,
874                                           reloc_shndx, reloc_type, &offset);
875
876   this->output_sections()[shndx] = os;
877   if (offset == -1)
878     this->section_offsets_[shndx] = invalid_address;
879   else
880     this->section_offsets_[shndx] = convert_types<Address, off_t>(offset);
881
882   // If this section requires special handling, and if there are
883   // relocs that apply to it, then we must do the special handling
884   // before we apply the relocs.
885   if (offset == -1 && reloc_shndx != 0)
886     this->set_relocs_must_follow_section_writes();
887 }
888
889 // Lay out the input sections.  We walk through the sections and check
890 // whether they should be included in the link.  If they should, we
891 // pass them to the Layout object, which will return an output section
892 // and an offset.  
893 // During garbage collection (gc-sections), this function is called
894 // twice.  When it is called the first time, it is for setting up some
895 // sections as roots to a work-list and to do comdat processing.  Actual
896 // layout happens the second time around after all the relevant sections
897 // have been determined.  The first time, is_worklist_ready is false.  
898 // It is then set to true after the worklist is processed and the relevant 
899 // sections are determined.  Then, this function is called again to 
900 // layout the sections.
901
902 template<int size, bool big_endian>
903 void
904 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
905                                           Layout* layout,
906                                           Read_symbols_data* sd)
907 {
908   const unsigned int shnum = this->shnum();
909   bool is_gc_pass_one = (parameters->options().gc_sections() 
910                          && !symtab->gc()->is_worklist_ready());
911   bool is_gc_pass_two = (parameters->options().gc_sections() 
912                          && symtab->gc()->is_worklist_ready());
913   if (shnum == 0)
914     return;
915   Symbols_data* gc_sd = NULL;
916   if (is_gc_pass_one)
917     {
918       // During garbage collection save the symbols data to use it when 
919       // re-entering this function.   
920       gc_sd = new Symbols_data;
921       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
922       this->set_symbols_data(gc_sd);
923     }
924   else if (is_gc_pass_two)
925     {
926       gc_sd = this->get_symbols_data();
927     }
928
929   const unsigned char* section_headers_data = NULL;
930   section_size_type section_names_size;
931   const unsigned char* symbols_data = NULL;
932   section_size_type symbols_size;
933   section_offset_type external_symbols_offset;
934   const unsigned char* symbol_names_data = NULL;
935   section_size_type symbol_names_size;
936  
937   if (parameters->options().gc_sections())
938     {
939       section_headers_data = gc_sd->section_headers_data;
940       section_names_size = gc_sd->section_names_size;
941       symbols_data = gc_sd->symbols_data;
942       symbols_size = gc_sd->symbols_size;
943       external_symbols_offset = gc_sd->external_symbols_offset;
944       symbol_names_data = gc_sd->symbol_names_data;
945       symbol_names_size = gc_sd->symbol_names_size;
946     }
947   else
948     {
949       section_headers_data = sd->section_headers->data();
950       section_names_size = sd->section_names_size;
951       if (sd->symbols != NULL)
952         symbols_data = sd->symbols->data();
953       symbols_size = sd->symbols_size;
954       external_symbols_offset = sd->external_symbols_offset;
955       if (sd->symbol_names != NULL)
956         symbol_names_data = sd->symbol_names->data();
957       symbol_names_size = sd->symbol_names_size;
958     }
959
960   // Get the section headers.
961   const unsigned char* shdrs = section_headers_data;
962   const unsigned char* pshdrs;
963
964   // Get the section names.
965   const unsigned char* pnamesu = parameters->options().gc_sections() ?
966                                  gc_sd->section_names_data :
967                                  sd->section_names->data();
968   const char* pnames = reinterpret_cast<const char*>(pnamesu);
969
970   // If any input files have been claimed by plugins, we need to defer
971   // actual layout until the replacement files have arrived.
972   const bool should_defer_layout =
973       (parameters->options().has_plugins()
974        && parameters->options().plugins()->should_defer_layout());
975   unsigned int num_sections_to_defer = 0;
976
977   // For each section, record the index of the reloc section if any.
978   // Use 0 to mean that there is no reloc section, -1U to mean that
979   // there is more than one.
980   std::vector<unsigned int> reloc_shndx(shnum, 0);
981   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
982   // Skip the first, dummy, section.
983   pshdrs = shdrs + This::shdr_size;
984   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
985     {
986       typename This::Shdr shdr(pshdrs);
987
988       // Count the number of sections whose layout will be deferred.
989       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
990         ++num_sections_to_defer;
991
992       unsigned int sh_type = shdr.get_sh_type();
993       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
994         {
995           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
996           if (target_shndx == 0 || target_shndx >= shnum)
997             {
998               this->error(_("relocation section %u has bad info %u"),
999                           i, target_shndx);
1000               continue;
1001             }
1002
1003           if (reloc_shndx[target_shndx] != 0)
1004             reloc_shndx[target_shndx] = -1U;
1005           else
1006             {
1007               reloc_shndx[target_shndx] = i;
1008               reloc_type[target_shndx] = sh_type;
1009             }
1010         }
1011     }
1012
1013   Output_sections& out_sections(this->output_sections());
1014   std::vector<Address>& out_section_offsets(this->section_offsets_);
1015
1016   if (!is_gc_pass_two)
1017     {
1018       out_sections.resize(shnum);
1019       out_section_offsets.resize(shnum);
1020     }
1021
1022   // If we are only linking for symbols, then there is nothing else to
1023   // do here.
1024   if (this->input_file()->just_symbols())
1025     {
1026       if (!is_gc_pass_two)
1027         {
1028           delete sd->section_headers;
1029           sd->section_headers = NULL;
1030           delete sd->section_names;
1031           sd->section_names = NULL;
1032         }
1033       return;
1034     }
1035
1036   if (num_sections_to_defer > 0)
1037     {
1038       parameters->options().plugins()->add_deferred_layout_object(this);
1039       this->deferred_layout_.reserve(num_sections_to_defer);
1040     }
1041
1042   // Whether we've seen a .note.GNU-stack section.
1043   bool seen_gnu_stack = false;
1044   // The flags of a .note.GNU-stack section.
1045   uint64_t gnu_stack_flags = 0;
1046
1047   // Keep track of which sections to omit.
1048   std::vector<bool> omit(shnum, false);
1049
1050   // Keep track of reloc sections when emitting relocations.
1051   const bool relocatable = parameters->options().relocatable();
1052   const bool emit_relocs = (relocatable
1053                             || parameters->options().emit_relocs());
1054   std::vector<unsigned int> reloc_sections;
1055
1056   // Keep track of .eh_frame sections.
1057   std::vector<unsigned int> eh_frame_sections;
1058
1059   // Skip the first, dummy, section.
1060   pshdrs = shdrs + This::shdr_size;
1061   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1062     {
1063       typename This::Shdr shdr(pshdrs);
1064
1065       if (shdr.get_sh_name() >= section_names_size)
1066         {
1067           this->error(_("bad section name offset for section %u: %lu"),
1068                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1069           return;
1070         }
1071
1072       const char* name = pnames + shdr.get_sh_name();
1073
1074       if (!is_gc_pass_two)
1075         { 
1076           if (this->handle_gnu_warning_section(name, i, symtab))
1077             { 
1078               if (!relocatable)
1079                 omit[i] = true;
1080             }
1081
1082           // The .note.GNU-stack section is special.  It gives the
1083           // protection flags that this object file requires for the stack
1084           // in memory.
1085           if (strcmp(name, ".note.GNU-stack") == 0)
1086             {
1087               seen_gnu_stack = true;
1088               gnu_stack_flags |= shdr.get_sh_flags();
1089               omit[i] = true;
1090             }
1091
1092           bool discard = omit[i];
1093           if (!discard)
1094             {
1095               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1096                 {
1097                   if (!this->include_section_group(symtab, layout, i, name, 
1098                                                    shdrs, pnames, 
1099                                                    section_names_size,
1100                                                    &omit))
1101                     discard = true;
1102                 }
1103               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1104                        && Layout::is_linkonce(name))
1105                 {
1106                   if (!this->include_linkonce_section(layout, i, name, shdr))
1107                     discard = true;
1108                 }
1109             }
1110
1111           if (discard)
1112             {
1113               // Do not include this section in the link.
1114               out_sections[i] = NULL;
1115               out_section_offsets[i] = invalid_address;
1116               continue;
1117             }
1118         }
1119  
1120       if (is_gc_pass_one)
1121         {
1122           if (is_section_name_included(name)
1123               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY 
1124               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1125             {
1126               symtab->gc()->worklist().push(Section_id(this, i)); 
1127             }
1128         }
1129
1130       // When doing a relocatable link we are going to copy input
1131       // reloc sections into the output.  We only want to copy the
1132       // ones associated with sections which are not being discarded.
1133       // However, we don't know that yet for all sections.  So save
1134       // reloc sections and process them later. Garbage collection is
1135       // not triggered when relocatable code is desired.
1136       if (emit_relocs
1137           && (shdr.get_sh_type() == elfcpp::SHT_REL
1138               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1139         {
1140           reloc_sections.push_back(i);
1141           continue;
1142         }
1143
1144       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1145         continue;
1146
1147       // The .eh_frame section is special.  It holds exception frame
1148       // information that we need to read in order to generate the
1149       // exception frame header.  We process these after all the other
1150       // sections so that the exception frame reader can reliably
1151       // determine which sections are being discarded, and discard the
1152       // corresponding information.
1153       if (!relocatable
1154           && strcmp(name, ".eh_frame") == 0
1155           && this->check_eh_frame_flags(&shdr))
1156         {
1157           if (is_gc_pass_one)
1158             {
1159               out_sections[i] = reinterpret_cast<Output_section*>(1);
1160               out_section_offsets[i] = invalid_address;
1161             }
1162           else
1163             eh_frame_sections.push_back(i);
1164           continue;
1165         }
1166
1167       if (is_gc_pass_two)
1168         {
1169           // This is executed during the second pass of garbage 
1170           // collection. do_layout has been called before and some 
1171           // sections have been already discarded. Simply ignore 
1172           // such sections this time around.
1173           if (out_sections[i] == NULL)
1174             {
1175               gold_assert(out_section_offsets[i] == invalid_address);
1176               continue; 
1177             }
1178           if ((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1179             if (symtab->gc()->referenced_list().find(Section_id(this,i)) 
1180                 == symtab->gc()->referenced_list().end())
1181               {
1182                 if (parameters->options().print_gc_sections())
1183                   gold_info(_("%s: removing unused section from '%s'" 
1184                               " in file '%s"),
1185                             program_name, this->section_name(i).c_str(), 
1186                             this->name().c_str());
1187                 out_sections[i] = NULL;
1188                 out_section_offsets[i] = invalid_address;
1189                 continue;
1190               }
1191         }
1192       // Defer layout here if input files are claimed by plugins.  When gc
1193       // is turned on this function is called twice.  For the second call
1194       // should_defer_layout should be false.
1195       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1196         {
1197           gold_assert(!is_gc_pass_two);
1198           this->deferred_layout_.push_back(Deferred_layout(i, name, 
1199                                                            pshdrs,
1200                                                            reloc_shndx[i],
1201                                                            reloc_type[i]));
1202           // Put dummy values here; real values will be supplied by
1203           // do_layout_deferred_sections.
1204           out_sections[i] = reinterpret_cast<Output_section*>(2);
1205           out_section_offsets[i] = invalid_address;
1206           continue;
1207               }
1208       // During gc_pass_two if a section that was previously deferred is
1209       // found, do not layout the section as layout_deferred_sections will
1210       // do it later from gold.cc.
1211       if (is_gc_pass_two 
1212           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1213         continue;
1214
1215       if (is_gc_pass_one)
1216         {
1217           // This is during garbage collection. The out_sections are 
1218           // assigned in the second call to this function. 
1219           out_sections[i] = reinterpret_cast<Output_section*>(1);
1220           out_section_offsets[i] = invalid_address;
1221         }
1222       else
1223         {
1224           // When garbage collection is switched on the actual layout
1225           // only happens in the second call.
1226           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1227                                reloc_type[i]);
1228         }
1229     }
1230
1231   if (!is_gc_pass_one)
1232     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags);
1233
1234   // When doing a relocatable link handle the reloc sections at the
1235   // end.  Garbage collection is not turned on for relocatable code. 
1236   if (emit_relocs)
1237     this->size_relocatable_relocs();
1238   gold_assert(!parameters->options().gc_sections() || reloc_sections.empty());
1239   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1240        p != reloc_sections.end();
1241        ++p)
1242     {
1243       unsigned int i = *p;
1244       const unsigned char* pshdr;
1245       pshdr = section_headers_data + i * This::shdr_size;
1246       typename This::Shdr shdr(pshdr);
1247
1248       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1249       if (data_shndx >= shnum)
1250         {
1251           // We already warned about this above.
1252           continue;
1253         }
1254
1255       Output_section* data_section = out_sections[data_shndx];
1256       if (data_section == NULL)
1257         {
1258           out_sections[i] = NULL;
1259           out_section_offsets[i] = invalid_address;
1260           continue;
1261         }
1262
1263       Relocatable_relocs* rr = new Relocatable_relocs();
1264       this->set_relocatable_relocs(i, rr);
1265
1266       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1267                                                 rr);
1268       out_sections[i] = os;
1269       out_section_offsets[i] = invalid_address;
1270     }
1271
1272   // Handle the .eh_frame sections at the end.
1273   gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1274   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1275        p != eh_frame_sections.end();
1276        ++p)
1277     {
1278       gold_assert(this->has_eh_frame_);
1279       gold_assert(external_symbols_offset != 0);
1280
1281       unsigned int i = *p;
1282       const unsigned char *pshdr;
1283       pshdr = section_headers_data + i * This::shdr_size;
1284       typename This::Shdr shdr(pshdr);
1285
1286       off_t offset;
1287       Output_section* os = layout->layout_eh_frame(this,
1288                                                    symbols_data,
1289                                                    symbols_size,
1290                                                    symbol_names_data,
1291                                                    symbol_names_size,
1292                                                    i, shdr,
1293                                                    reloc_shndx[i],
1294                                                    reloc_type[i],
1295                                                    &offset);
1296       out_sections[i] = os;
1297       if (offset == -1)
1298         out_section_offsets[i] = invalid_address;
1299       else
1300         out_section_offsets[i] = convert_types<Address, off_t>(offset);
1301
1302       // If this section requires special handling, and if there are
1303       // relocs that apply to it, then we must do the special handling
1304       // before we apply the relocs.
1305       if (offset == -1 && reloc_shndx[i] != 0)
1306         this->set_relocs_must_follow_section_writes();
1307     }
1308
1309   if (is_gc_pass_two)
1310     {
1311       delete[] gc_sd->section_headers_data;
1312       delete[] gc_sd->section_names_data;
1313       delete[] gc_sd->symbols_data;
1314       delete[] gc_sd->symbol_names_data;
1315     }
1316   else
1317     {
1318       delete sd->section_headers;
1319       sd->section_headers = NULL;
1320       delete sd->section_names;
1321       sd->section_names = NULL;
1322     }
1323 }
1324
1325 // Layout sections whose layout was deferred while waiting for
1326 // input files from a plugin.
1327
1328 template<int size, bool big_endian>
1329 void
1330 Sized_relobj<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1331 {
1332   typename std::vector<Deferred_layout>::iterator deferred;
1333
1334   for (deferred = this->deferred_layout_.begin();
1335        deferred != this->deferred_layout_.end();
1336        ++deferred)
1337     {
1338       typename This::Shdr shdr(deferred->shdr_data_);
1339       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1340                            shdr, deferred->reloc_shndx_, deferred->reloc_type_);
1341     }
1342
1343   this->deferred_layout_.clear();
1344 }
1345
1346 // Add the symbols to the symbol table.
1347
1348 template<int size, bool big_endian>
1349 void
1350 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1351                                                Read_symbols_data* sd,
1352                                                Layout*)
1353 {
1354   if (sd->symbols == NULL)
1355     {
1356       gold_assert(sd->symbol_names == NULL);
1357       return;
1358     }
1359
1360   const int sym_size = This::sym_size;
1361   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1362                      / sym_size);
1363   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1364     {
1365       this->error(_("size of symbols is not multiple of symbol size"));
1366       return;
1367     }
1368
1369   this->symbols_.resize(symcount);
1370
1371   const char* sym_names =
1372     reinterpret_cast<const char*>(sd->symbol_names->data());
1373   symtab->add_from_relobj(this,
1374                           sd->symbols->data() + sd->external_symbols_offset,
1375                           symcount, this->local_symbol_count_,
1376                           sym_names, sd->symbol_names_size,
1377                           &this->symbols_,
1378                           &this->defined_count_);
1379
1380   delete sd->symbols;
1381   sd->symbols = NULL;
1382   delete sd->symbol_names;
1383   sd->symbol_names = NULL;
1384 }
1385
1386 // First pass over the local symbols.  Here we add their names to
1387 // *POOL and *DYNPOOL, and we store the symbol value in
1388 // THIS->LOCAL_VALUES_.  This function is always called from a
1389 // singleton thread.  This is followed by a call to
1390 // finalize_local_symbols.
1391
1392 template<int size, bool big_endian>
1393 void
1394 Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1395                                                        Stringpool* dynpool)
1396 {
1397   gold_assert(this->symtab_shndx_ != -1U);
1398   if (this->symtab_shndx_ == 0)
1399     {
1400       // This object has no symbols.  Weird but legal.
1401       return;
1402     }
1403
1404   // Read the symbol table section header.
1405   const unsigned int symtab_shndx = this->symtab_shndx_;
1406   typename This::Shdr symtabshdr(this,
1407                                  this->elf_file_.section_header(symtab_shndx));
1408   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1409
1410   // Read the local symbols.
1411   const int sym_size = This::sym_size;
1412   const unsigned int loccount = this->local_symbol_count_;
1413   gold_assert(loccount == symtabshdr.get_sh_info());
1414   off_t locsize = loccount * sym_size;
1415   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1416                                               locsize, true, true);
1417
1418   // Read the symbol names.
1419   const unsigned int strtab_shndx =
1420     this->adjust_shndx(symtabshdr.get_sh_link());
1421   section_size_type strtab_size;
1422   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1423                                                         &strtab_size,
1424                                                         true);
1425   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1426
1427   // Loop over the local symbols.
1428
1429   const Output_sections& out_sections(this->output_sections());
1430   unsigned int shnum = this->shnum();
1431   unsigned int count = 0;
1432   unsigned int dyncount = 0;
1433   // Skip the first, dummy, symbol.
1434   psyms += sym_size;
1435   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1436     {
1437       elfcpp::Sym<size, big_endian> sym(psyms);
1438
1439       Symbol_value<size>& lv(this->local_values_[i]);
1440
1441       bool is_ordinary;
1442       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1443                                                   &is_ordinary);
1444       lv.set_input_shndx(shndx, is_ordinary);
1445
1446       if (sym.get_st_type() == elfcpp::STT_SECTION)
1447         lv.set_is_section_symbol();
1448       else if (sym.get_st_type() == elfcpp::STT_TLS)
1449         lv.set_is_tls_symbol();
1450
1451       // Save the input symbol value for use in do_finalize_local_symbols().
1452       lv.set_input_value(sym.get_st_value());
1453
1454       // Decide whether this symbol should go into the output file.
1455
1456       if (shndx < shnum && out_sections[shndx] == NULL)
1457         {
1458           lv.set_no_output_symtab_entry();
1459           gold_assert(!lv.needs_output_dynsym_entry());
1460           continue;
1461         }
1462
1463       if (sym.get_st_type() == elfcpp::STT_SECTION)
1464         {
1465           lv.set_no_output_symtab_entry();
1466           gold_assert(!lv.needs_output_dynsym_entry());
1467           continue;
1468         }
1469
1470       if (sym.get_st_name() >= strtab_size)
1471         {
1472           this->error(_("local symbol %u section name out of range: %u >= %u"),
1473                       i, sym.get_st_name(),
1474                       static_cast<unsigned int>(strtab_size));
1475           lv.set_no_output_symtab_entry();
1476           continue;
1477         }
1478
1479       // Add the symbol to the symbol table string pool.
1480       const char* name = pnames + sym.get_st_name();
1481       pool->add(name, true, NULL);
1482       ++count;
1483
1484       // If needed, add the symbol to the dynamic symbol table string pool.
1485       if (lv.needs_output_dynsym_entry())
1486         {
1487           dynpool->add(name, true, NULL);
1488           ++dyncount;
1489         }
1490     }
1491
1492   this->output_local_symbol_count_ = count;
1493   this->output_local_dynsym_count_ = dyncount;
1494 }
1495
1496 // Finalize the local symbols.  Here we set the final value in
1497 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
1498 // This function is always called from a singleton thread.  The actual
1499 // output of the local symbols will occur in a separate task.
1500
1501 template<int size, bool big_endian>
1502 unsigned int
1503 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
1504                                                           off_t off)
1505 {
1506   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1507
1508   const unsigned int loccount = this->local_symbol_count_;
1509   this->local_symbol_offset_ = off;
1510
1511   const bool relocatable = parameters->options().relocatable();
1512   const Output_sections& out_sections(this->output_sections());
1513   const std::vector<Address>& out_offsets(this->section_offsets_);
1514   unsigned int shnum = this->shnum();
1515
1516   for (unsigned int i = 1; i < loccount; ++i)
1517     {
1518       Symbol_value<size>& lv(this->local_values_[i]);
1519
1520       bool is_ordinary;
1521       unsigned int shndx = lv.input_shndx(&is_ordinary);
1522
1523       // Set the output symbol value.
1524
1525       if (!is_ordinary)
1526         {
1527           if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
1528             lv.set_output_value(lv.input_value());
1529           else
1530             {
1531               this->error(_("unknown section index %u for local symbol %u"),
1532                           shndx, i);
1533               lv.set_output_value(0);
1534             }
1535         }
1536       else
1537         {
1538           if (shndx >= shnum)
1539             {
1540               this->error(_("local symbol %u section index %u out of range"),
1541                           i, shndx);
1542               shndx = 0;
1543             }
1544
1545           Output_section* os = out_sections[shndx];
1546
1547           if (os == NULL)
1548             {
1549               // This local symbol belongs to a section we are discarding.
1550               // In some cases when applying relocations later, we will
1551               // attempt to match it to the corresponding kept section,
1552               // so we leave the input value unchanged here.
1553               continue;
1554             }
1555           else if (out_offsets[shndx] == invalid_address)
1556             {
1557               uint64_t start;
1558
1559               // This is a SHF_MERGE section or one which otherwise
1560               // requires special handling.
1561               if (!lv.is_section_symbol())
1562                 {
1563                   // This is not a section symbol.  We can determine
1564                   // the final value now.
1565                   lv.set_output_value(os->output_address(this, shndx,
1566                                                          lv.input_value()));
1567                 }
1568               else if (!os->find_starting_output_address(this, shndx, &start))
1569                 {
1570                   // This is a section symbol, but apparently not one
1571                   // in a merged section.  Just use the start of the
1572                   // output section.  This happens with relocatable
1573                   // links when the input object has section symbols
1574                   // for arbitrary non-merge sections.
1575                   lv.set_output_value(os->address());
1576                 }
1577               else
1578                 {
1579                   // We have to consider the addend to determine the
1580                   // value to use in a relocation.  START is the start
1581                   // of this input section.
1582                   Merged_symbol_value<size>* msv =
1583                     new Merged_symbol_value<size>(lv.input_value(), start);
1584                   lv.set_merged_symbol_value(msv);
1585                 }
1586             }
1587           else if (lv.is_tls_symbol())
1588             lv.set_output_value(os->tls_offset()
1589                                 + out_offsets[shndx]
1590                                 + lv.input_value());
1591           else
1592             lv.set_output_value((relocatable ? 0 : os->address())
1593                                 + out_offsets[shndx]
1594                                 + lv.input_value());
1595         }
1596
1597       if (lv.needs_output_symtab_entry())
1598         {
1599           lv.set_output_symtab_index(index);
1600           ++index;
1601         }
1602     }
1603   return index;
1604 }
1605
1606 // Set the output dynamic symbol table indexes for the local variables.
1607
1608 template<int size, bool big_endian>
1609 unsigned int
1610 Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index)
1611 {
1612   const unsigned int loccount = this->local_symbol_count_;
1613   for (unsigned int i = 1; i < loccount; ++i)
1614     {
1615       Symbol_value<size>& lv(this->local_values_[i]);
1616       if (lv.needs_output_dynsym_entry())
1617         {
1618           lv.set_output_dynsym_index(index);
1619           ++index;
1620         }
1621     }
1622   return index;
1623 }
1624
1625 // Set the offset where local dynamic symbol information will be stored.
1626 // Returns the count of local symbols contributed to the symbol table by
1627 // this object.
1628
1629 template<int size, bool big_endian>
1630 unsigned int
1631 Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off)
1632 {
1633   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1634   this->local_dynsym_offset_ = off;
1635   return this->output_local_dynsym_count_;
1636 }
1637
1638 // Write out the local symbols.
1639
1640 template<int size, bool big_endian>
1641 void
1642 Sized_relobj<size, big_endian>::write_local_symbols(
1643     Output_file* of,
1644     const Stringpool* sympool,
1645     const Stringpool* dynpool,
1646     Output_symtab_xindex* symtab_xindex,
1647     Output_symtab_xindex* dynsym_xindex)
1648 {
1649   const bool strip_all = parameters->options().strip_all();
1650   if (strip_all)
1651     {
1652       if (this->output_local_dynsym_count_ == 0)
1653         return;
1654       this->output_local_symbol_count_ = 0;
1655     }
1656
1657   gold_assert(this->symtab_shndx_ != -1U);
1658   if (this->symtab_shndx_ == 0)
1659     {
1660       // This object has no symbols.  Weird but legal.
1661       return;
1662     }
1663
1664   // Read the symbol table section header.
1665   const unsigned int symtab_shndx = this->symtab_shndx_;
1666   typename This::Shdr symtabshdr(this,
1667                                  this->elf_file_.section_header(symtab_shndx));
1668   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1669   const unsigned int loccount = this->local_symbol_count_;
1670   gold_assert(loccount == symtabshdr.get_sh_info());
1671
1672   // Read the local symbols.
1673   const int sym_size = This::sym_size;
1674   off_t locsize = loccount * sym_size;
1675   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1676                                               locsize, true, false);
1677
1678   // Read the symbol names.
1679   const unsigned int strtab_shndx =
1680     this->adjust_shndx(symtabshdr.get_sh_link());
1681   section_size_type strtab_size;
1682   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1683                                                         &strtab_size,
1684                                                         false);
1685   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1686
1687   // Get views into the output file for the portions of the symbol table
1688   // and the dynamic symbol table that we will be writing.
1689   off_t output_size = this->output_local_symbol_count_ * sym_size;
1690   unsigned char* oview = NULL;
1691   if (output_size > 0)
1692     oview = of->get_output_view(this->local_symbol_offset_, output_size);
1693
1694   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
1695   unsigned char* dyn_oview = NULL;
1696   if (dyn_output_size > 0)
1697     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
1698                                     dyn_output_size);
1699
1700   const Output_sections out_sections(this->output_sections());
1701
1702   gold_assert(this->local_values_.size() == loccount);
1703
1704   unsigned char* ov = oview;
1705   unsigned char* dyn_ov = dyn_oview;
1706   psyms += sym_size;
1707   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1708     {
1709       elfcpp::Sym<size, big_endian> isym(psyms);
1710
1711       Symbol_value<size>& lv(this->local_values_[i]);
1712
1713       bool is_ordinary;
1714       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
1715                                                      &is_ordinary);
1716       if (is_ordinary)
1717         {
1718           gold_assert(st_shndx < out_sections.size());
1719           if (out_sections[st_shndx] == NULL)
1720             continue;
1721           st_shndx = out_sections[st_shndx]->out_shndx();
1722           if (st_shndx >= elfcpp::SHN_LORESERVE)
1723             {
1724               if (lv.needs_output_symtab_entry() && !strip_all)
1725                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
1726               if (lv.needs_output_dynsym_entry())
1727                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
1728               st_shndx = elfcpp::SHN_XINDEX;
1729             }
1730         }
1731
1732       // Write the symbol to the output symbol table.
1733       if (!strip_all && lv.needs_output_symtab_entry())
1734         {
1735           elfcpp::Sym_write<size, big_endian> osym(ov);
1736
1737           gold_assert(isym.get_st_name() < strtab_size);
1738           const char* name = pnames + isym.get_st_name();
1739           osym.put_st_name(sympool->get_offset(name));
1740           osym.put_st_value(this->local_values_[i].value(this, 0));
1741           osym.put_st_size(isym.get_st_size());
1742           osym.put_st_info(isym.get_st_info());
1743           osym.put_st_other(isym.get_st_other());
1744           osym.put_st_shndx(st_shndx);
1745
1746           ov += sym_size;
1747         }
1748
1749       // Write the symbol to the output dynamic symbol table.
1750       if (lv.needs_output_dynsym_entry())
1751         {
1752           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
1753           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
1754
1755           gold_assert(isym.get_st_name() < strtab_size);
1756           const char* name = pnames + isym.get_st_name();
1757           osym.put_st_name(dynpool->get_offset(name));
1758           osym.put_st_value(this->local_values_[i].value(this, 0));
1759           osym.put_st_size(isym.get_st_size());
1760           osym.put_st_info(isym.get_st_info());
1761           osym.put_st_other(isym.get_st_other());
1762           osym.put_st_shndx(st_shndx);
1763
1764           dyn_ov += sym_size;
1765         }
1766     }
1767
1768
1769   if (output_size > 0)
1770     {
1771       gold_assert(ov - oview == output_size);
1772       of->write_output_view(this->local_symbol_offset_, output_size, oview);
1773     }
1774
1775   if (dyn_output_size > 0)
1776     {
1777       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
1778       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
1779                             dyn_oview);
1780     }
1781 }
1782
1783 // Set *INFO to symbolic information about the offset OFFSET in the
1784 // section SHNDX.  Return true if we found something, false if we
1785 // found nothing.
1786
1787 template<int size, bool big_endian>
1788 bool
1789 Sized_relobj<size, big_endian>::get_symbol_location_info(
1790     unsigned int shndx,
1791     off_t offset,
1792     Symbol_location_info* info)
1793 {
1794   if (this->symtab_shndx_ == 0)
1795     return false;
1796
1797   section_size_type symbols_size;
1798   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
1799                                                         &symbols_size,
1800                                                         false);
1801
1802   unsigned int symbol_names_shndx =
1803     this->adjust_shndx(this->section_link(this->symtab_shndx_));
1804   section_size_type names_size;
1805   const unsigned char* symbol_names_u =
1806     this->section_contents(symbol_names_shndx, &names_size, false);
1807   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
1808
1809   const int sym_size = This::sym_size;
1810   const size_t count = symbols_size / sym_size;
1811
1812   const unsigned char* p = symbols;
1813   for (size_t i = 0; i < count; ++i, p += sym_size)
1814     {
1815       elfcpp::Sym<size, big_endian> sym(p);
1816
1817       if (sym.get_st_type() == elfcpp::STT_FILE)
1818         {
1819           if (sym.get_st_name() >= names_size)
1820             info->source_file = "(invalid)";
1821           else
1822             info->source_file = symbol_names + sym.get_st_name();
1823           continue;
1824         }
1825
1826       bool is_ordinary;
1827       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1828                                                      &is_ordinary);
1829       if (is_ordinary
1830           && st_shndx == shndx
1831           && static_cast<off_t>(sym.get_st_value()) <= offset
1832           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
1833               > offset))
1834         {
1835           if (sym.get_st_name() > names_size)
1836             info->enclosing_symbol_name = "(invalid)";
1837           else
1838             {
1839               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
1840               if (parameters->options().do_demangle())
1841                 {
1842                   char* demangled_name = cplus_demangle(
1843                       info->enclosing_symbol_name.c_str(),
1844                       DMGL_ANSI | DMGL_PARAMS);
1845                   if (demangled_name != NULL)
1846                     {
1847                       info->enclosing_symbol_name.assign(demangled_name);
1848                       free(demangled_name);
1849                     }
1850                 }
1851             }
1852           return true;
1853         }
1854     }
1855
1856   return false;
1857 }
1858
1859 // Look for a kept section corresponding to the given discarded section,
1860 // and return its output address.  This is used only for relocations in
1861 // debugging sections.  If we can't find the kept section, return 0.
1862
1863 template<int size, bool big_endian>
1864 typename Sized_relobj<size, big_endian>::Address
1865 Sized_relobj<size, big_endian>::map_to_kept_section(
1866     unsigned int shndx,
1867     bool* found) const
1868 {
1869   Kept_comdat_section *kept = this->get_kept_comdat_section(shndx);
1870   if (kept != NULL)
1871     {
1872       gold_assert(kept->object_ != NULL);
1873       *found = true;
1874       Output_section* os = kept->object_->output_section(kept->shndx_);
1875       Address offset = kept->object_->get_output_section_offset(kept->shndx_);
1876       gold_assert(os != NULL && offset != invalid_address);
1877       return os->address() + offset;
1878     }
1879   *found = false;
1880   return 0;
1881 }
1882
1883 // Get symbol counts.
1884
1885 template<int size, bool big_endian>
1886 void
1887 Sized_relobj<size, big_endian>::do_get_global_symbol_counts(
1888     const Symbol_table*,
1889     size_t* defined,
1890     size_t* used) const
1891 {
1892   *defined = this->defined_count_;
1893   size_t count = 0;
1894   for (Symbols::const_iterator p = this->symbols_.begin();
1895        p != this->symbols_.end();
1896        ++p)
1897     if (*p != NULL
1898         && (*p)->source() == Symbol::FROM_OBJECT
1899         && (*p)->object() == this
1900         && (*p)->is_defined())
1901       ++count;
1902   *used = count;
1903 }
1904
1905 // Input_objects methods.
1906
1907 // Add a regular relocatable object to the list.  Return false if this
1908 // object should be ignored.
1909
1910 bool
1911 Input_objects::add_object(Object* obj)
1912 {
1913   // Set the global target from the first object file we recognize.
1914   Target* target = obj->target();
1915   if (!parameters->target_valid())
1916     set_parameters_target(target);
1917   else if (target != &parameters->target())
1918     {
1919       obj->error(_("incompatible target"));
1920       return false;
1921     }
1922
1923   // Print the filename if the -t/--trace option is selected.
1924   if (parameters->options().trace())
1925     gold_info("%s", obj->name().c_str());
1926
1927   if (!obj->is_dynamic())
1928     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
1929   else
1930     {
1931       // See if this is a duplicate SONAME.
1932       Dynobj* dynobj = static_cast<Dynobj*>(obj);
1933       const char* soname = dynobj->soname();
1934
1935       std::pair<Unordered_set<std::string>::iterator, bool> ins =
1936         this->sonames_.insert(soname);
1937       if (!ins.second)
1938         {
1939           // We have already seen a dynamic object with this soname.
1940           return false;
1941         }
1942
1943       this->dynobj_list_.push_back(dynobj);
1944     }
1945
1946   // Add this object to the cross-referencer if requested.
1947   if (parameters->options().user_set_print_symbol_counts())
1948     {
1949       if (this->cref_ == NULL)
1950         this->cref_ = new Cref();
1951       this->cref_->add_object(obj);
1952     }
1953
1954   return true;
1955 }
1956
1957 // For each dynamic object, record whether we've seen all of its
1958 // explicit dependencies.
1959
1960 void
1961 Input_objects::check_dynamic_dependencies() const
1962 {
1963   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
1964        p != this->dynobj_list_.end();
1965        ++p)
1966     {
1967       const Dynobj::Needed& needed((*p)->needed());
1968       bool found_all = true;
1969       for (Dynobj::Needed::const_iterator pneeded = needed.begin();
1970            pneeded != needed.end();
1971            ++pneeded)
1972         {
1973           if (this->sonames_.find(*pneeded) == this->sonames_.end())
1974             {
1975               found_all = false;
1976               break;
1977             }
1978         }
1979       (*p)->set_has_unknown_needed_entries(!found_all);
1980     }
1981 }
1982
1983 // Start processing an archive.
1984
1985 void
1986 Input_objects::archive_start(Archive* archive)
1987 {
1988   if (parameters->options().user_set_print_symbol_counts())
1989     {
1990       if (this->cref_ == NULL)
1991         this->cref_ = new Cref();
1992       this->cref_->add_archive_start(archive);
1993     }
1994 }
1995
1996 // Stop processing an archive.
1997
1998 void
1999 Input_objects::archive_stop(Archive* archive)
2000 {
2001   if (parameters->options().user_set_print_symbol_counts())
2002     this->cref_->add_archive_stop(archive);
2003 }
2004
2005 // Print symbol counts
2006
2007 void
2008 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2009 {
2010   if (parameters->options().user_set_print_symbol_counts()
2011       && this->cref_ != NULL)
2012     this->cref_->print_symbol_counts(symtab);
2013 }
2014
2015 // Relocate_info methods.
2016
2017 // Return a string describing the location of a relocation.  This is
2018 // only used in error messages.
2019
2020 template<int size, bool big_endian>
2021 std::string
2022 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2023 {
2024   // See if we can get line-number information from debugging sections.
2025   std::string filename;
2026   std::string file_and_lineno;   // Better than filename-only, if available.
2027
2028   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2029   // This will be "" if we failed to parse the debug info for any reason.
2030   file_and_lineno = line_info.addr2line(this->data_shndx, offset);
2031
2032   std::string ret(this->object->name());
2033   ret += ':';
2034   Symbol_location_info info;
2035   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2036     {
2037       ret += " in function ";
2038       ret += info.enclosing_symbol_name;
2039       ret += ":";
2040       filename = info.source_file;
2041     }
2042
2043   if (!file_and_lineno.empty())
2044     ret += file_and_lineno;
2045   else
2046     {
2047       if (!filename.empty())
2048         ret += filename;
2049       ret += "(";
2050       ret += this->object->section_name(this->data_shndx);
2051       char buf[100];
2052       // Offsets into sections have to be positive.
2053       snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset));
2054       ret += buf;
2055       ret += ")";
2056     }
2057   return ret;
2058 }
2059
2060 } // End namespace gold.
2061
2062 namespace
2063 {
2064
2065 using namespace gold;
2066
2067 // Read an ELF file with the header and return the appropriate
2068 // instance of Object.
2069
2070 template<int size, bool big_endian>
2071 Object*
2072 make_elf_sized_object(const std::string& name, Input_file* input_file,
2073                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2074 {
2075   int et = ehdr.get_e_type();
2076   if (et == elfcpp::ET_REL)
2077     {
2078       Sized_relobj<size, big_endian>* obj =
2079         new Sized_relobj<size, big_endian>(name, input_file, offset, ehdr);
2080       obj->setup(ehdr);
2081       return obj;
2082     }
2083   else if (et == elfcpp::ET_DYN)
2084     {
2085       Sized_dynobj<size, big_endian>* obj =
2086         new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2087       obj->setup(ehdr);
2088       return obj;
2089     }
2090   else
2091     {
2092       gold_error(_("%s: unsupported ELF file type %d"),
2093                  name.c_str(), et);
2094       return NULL;
2095     }
2096 }
2097
2098 } // End anonymous namespace.
2099
2100 namespace gold
2101 {
2102
2103 // Return whether INPUT_FILE is an ELF object.
2104
2105 bool
2106 is_elf_object(Input_file* input_file, off_t offset,
2107               const unsigned char** start, int *read_size)
2108 {
2109   off_t filesize = input_file->file().filesize();
2110   int want = elfcpp::Elf_sizes<64>::ehdr_size;
2111   if (filesize - offset < want)
2112     want = filesize - offset;
2113
2114   const unsigned char* p = input_file->file().get_view(offset, 0, want,
2115                                                        true, false);
2116   *start = p;
2117   *read_size = want;
2118
2119   if (want < 4)
2120     return false;
2121
2122   static unsigned char elfmagic[4] =
2123     {
2124       elfcpp::ELFMAG0, elfcpp::ELFMAG1,
2125       elfcpp::ELFMAG2, elfcpp::ELFMAG3
2126     };
2127   return memcmp(p, elfmagic, 4) == 0;
2128 }
2129
2130 // Read an ELF file and return the appropriate instance of Object.
2131
2132 Object*
2133 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2134                 const unsigned char* p, section_offset_type bytes,
2135                 bool* punconfigured)
2136 {
2137   if (punconfigured != NULL)
2138     *punconfigured = false;
2139
2140   if (bytes < elfcpp::EI_NIDENT)
2141     {
2142       gold_error(_("%s: ELF file too short"), name.c_str());
2143       return NULL;
2144     }
2145
2146   int v = p[elfcpp::EI_VERSION];
2147   if (v != elfcpp::EV_CURRENT)
2148     {
2149       if (v == elfcpp::EV_NONE)
2150         gold_error(_("%s: invalid ELF version 0"), name.c_str());
2151       else
2152         gold_error(_("%s: unsupported ELF version %d"), name.c_str(), v);
2153       return NULL;
2154     }
2155
2156   int c = p[elfcpp::EI_CLASS];
2157   if (c == elfcpp::ELFCLASSNONE)
2158     {
2159       gold_error(_("%s: invalid ELF class 0"), name.c_str());
2160       return NULL;
2161     }
2162   else if (c != elfcpp::ELFCLASS32
2163            && c != elfcpp::ELFCLASS64)
2164     {
2165       gold_error(_("%s: unsupported ELF class %d"), name.c_str(), c);
2166       return NULL;
2167     }
2168
2169   int d = p[elfcpp::EI_DATA];
2170   if (d == elfcpp::ELFDATANONE)
2171     {
2172       gold_error(_("%s: invalid ELF data encoding"), name.c_str());
2173       return NULL;
2174     }
2175   else if (d != elfcpp::ELFDATA2LSB
2176            && d != elfcpp::ELFDATA2MSB)
2177     {
2178       gold_error(_("%s: unsupported ELF data encoding %d"), name.c_str(), d);
2179       return NULL;
2180     }
2181
2182   bool big_endian = d == elfcpp::ELFDATA2MSB;
2183
2184   if (c == elfcpp::ELFCLASS32)
2185     {
2186       if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
2187         {
2188           gold_error(_("%s: ELF file too short"), name.c_str());
2189           return NULL;
2190         }
2191       if (big_endian)
2192         {
2193 #ifdef HAVE_TARGET_32_BIG
2194           elfcpp::Ehdr<32, true> ehdr(p);
2195           return make_elf_sized_object<32, true>(name, input_file,
2196                                                  offset, ehdr);
2197 #else
2198           if (punconfigured != NULL)
2199             *punconfigured = true;
2200           else
2201             gold_error(_("%s: not configured to support "
2202                          "32-bit big-endian object"),
2203                        name.c_str());
2204           return NULL;
2205 #endif
2206         }
2207       else
2208         {
2209 #ifdef HAVE_TARGET_32_LITTLE
2210           elfcpp::Ehdr<32, false> ehdr(p);
2211           return make_elf_sized_object<32, false>(name, input_file,
2212                                                   offset, ehdr);
2213 #else
2214           if (punconfigured != NULL)
2215             *punconfigured = true;
2216           else
2217             gold_error(_("%s: not configured to support "
2218                          "32-bit little-endian object"),
2219                        name.c_str());
2220           return NULL;
2221 #endif
2222         }
2223     }
2224   else
2225     {
2226       if (bytes < elfcpp::Elf_sizes<64>::ehdr_size)
2227         {
2228           gold_error(_("%s: ELF file too short"), name.c_str());
2229           return NULL;
2230         }
2231       if (big_endian)
2232         {
2233 #ifdef HAVE_TARGET_64_BIG
2234           elfcpp::Ehdr<64, true> ehdr(p);
2235           return make_elf_sized_object<64, true>(name, input_file,
2236                                                  offset, ehdr);
2237 #else
2238           if (punconfigured != NULL)
2239             *punconfigured = true;
2240           else
2241             gold_error(_("%s: not configured to support "
2242                          "64-bit big-endian object"),
2243                        name.c_str());
2244           return NULL;
2245 #endif
2246         }
2247       else
2248         {
2249 #ifdef HAVE_TARGET_64_LITTLE
2250           elfcpp::Ehdr<64, false> ehdr(p);
2251           return make_elf_sized_object<64, false>(name, input_file,
2252                                                   offset, ehdr);
2253 #else
2254           if (punconfigured != NULL)
2255             *punconfigured = true;
2256           else
2257             gold_error(_("%s: not configured to support "
2258                          "64-bit little-endian object"),
2259                        name.c_str());
2260           return NULL;
2261 #endif
2262         }
2263     }
2264 }
2265
2266 // Instantiate the templates we need.
2267
2268 #ifdef HAVE_TARGET_32_LITTLE
2269 template
2270 void
2271 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2272                                      Read_symbols_data*);
2273 #endif
2274
2275 #ifdef HAVE_TARGET_32_BIG
2276 template
2277 void
2278 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2279                                     Read_symbols_data*);
2280 #endif
2281
2282 #ifdef HAVE_TARGET_64_LITTLE
2283 template
2284 void
2285 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2286                                      Read_symbols_data*);
2287 #endif
2288
2289 #ifdef HAVE_TARGET_64_BIG
2290 template
2291 void
2292 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2293                                     Read_symbols_data*);
2294 #endif
2295
2296 #ifdef HAVE_TARGET_32_LITTLE
2297 template
2298 class Sized_relobj<32, false>;
2299 #endif
2300
2301 #ifdef HAVE_TARGET_32_BIG
2302 template
2303 class Sized_relobj<32, true>;
2304 #endif
2305
2306 #ifdef HAVE_TARGET_64_LITTLE
2307 template
2308 class Sized_relobj<64, false>;
2309 #endif
2310
2311 #ifdef HAVE_TARGET_64_BIG
2312 template
2313 class Sized_relobj<64, true>;
2314 #endif
2315
2316 #ifdef HAVE_TARGET_32_LITTLE
2317 template
2318 struct Relocate_info<32, false>;
2319 #endif
2320
2321 #ifdef HAVE_TARGET_32_BIG
2322 template
2323 struct Relocate_info<32, true>;
2324 #endif
2325
2326 #ifdef HAVE_TARGET_64_LITTLE
2327 template
2328 struct Relocate_info<64, false>;
2329 #endif
2330
2331 #ifdef HAVE_TARGET_64_BIG
2332 template
2333 struct Relocate_info<64, true>;
2334 #endif
2335
2336 } // End namespace gold.