merge from gcc
[external/binutils.git] / gas / doc / c-arm.texi
1 @c Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2 @c 2006, 2007, 2008, 2009  Free Software Foundation, Inc.
3 @c This is part of the GAS manual.
4 @c For copying conditions, see the file as.texinfo.
5
6 @ifset GENERIC
7 @page
8 @node ARM-Dependent
9 @chapter ARM Dependent Features
10 @end ifset
11
12 @ifclear GENERIC
13 @node Machine Dependencies
14 @chapter ARM Dependent Features
15 @end ifclear
16
17 @cindex ARM support
18 @cindex Thumb support
19 @menu
20 * ARM Options::              Options
21 * ARM Syntax::               Syntax
22 * ARM Floating Point::       Floating Point
23 * ARM Directives::           ARM Machine Directives
24 * ARM Opcodes::              Opcodes
25 * ARM Mapping Symbols::      Mapping Symbols
26 * ARM Unwinding Tutorial::   Unwinding
27 @end menu
28
29 @node ARM Options
30 @section Options
31 @cindex ARM options (none)
32 @cindex options for ARM (none)
33
34 @table @code
35
36 @cindex @code{-mcpu=} command line option, ARM
37 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
38 This option specifies the target processor.  The assembler will issue an
39 error message if an attempt is made to assemble an instruction which
40 will not execute on the target processor.  The following processor names are
41 recognized: 
42 @code{arm1},
43 @code{arm2},
44 @code{arm250},
45 @code{arm3},
46 @code{arm6},
47 @code{arm60},
48 @code{arm600},
49 @code{arm610},
50 @code{arm620},
51 @code{arm7},
52 @code{arm7m},
53 @code{arm7d},
54 @code{arm7dm},
55 @code{arm7di},
56 @code{arm7dmi},
57 @code{arm70},
58 @code{arm700},
59 @code{arm700i},
60 @code{arm710},
61 @code{arm710t},
62 @code{arm720},
63 @code{arm720t},
64 @code{arm740t},
65 @code{arm710c},
66 @code{arm7100},
67 @code{arm7500},
68 @code{arm7500fe},
69 @code{arm7t},
70 @code{arm7tdmi},
71 @code{arm7tdmi-s},
72 @code{arm8},
73 @code{arm810},
74 @code{strongarm},
75 @code{strongarm1},
76 @code{strongarm110},
77 @code{strongarm1100},
78 @code{strongarm1110},
79 @code{arm9},
80 @code{arm920},
81 @code{arm920t},
82 @code{arm922t},
83 @code{arm940t},
84 @code{arm9tdmi},
85 @code{fa526} (Faraday FA526 processor),
86 @code{fa626} (Faraday FA626 processor),
87 @code{arm9e},
88 @code{arm926e},
89 @code{arm926ej-s},
90 @code{arm946e-r0},
91 @code{arm946e},
92 @code{arm946e-s},
93 @code{arm966e-r0},
94 @code{arm966e},
95 @code{arm966e-s},
96 @code{arm968e-s},
97 @code{arm10t},
98 @code{arm10tdmi},
99 @code{arm10e},
100 @code{arm1020},
101 @code{arm1020t},
102 @code{arm1020e},
103 @code{arm1022e},
104 @code{arm1026ej-s},
105 @code{fa626te} (Faraday FA626TE processor),
106 @code{fa726te} (Faraday FA726TE processor),
107 @code{arm1136j-s},
108 @code{arm1136jf-s},
109 @code{arm1156t2-s},
110 @code{arm1156t2f-s},
111 @code{arm1176jz-s},
112 @code{arm1176jzf-s},
113 @code{mpcore},
114 @code{mpcorenovfp},
115 @code{cortex-a5},
116 @code{cortex-a8},
117 @code{cortex-a9},
118 @code{cortex-r4},
119 @code{cortex-r4f},
120 @code{cortex-m3},
121 @code{cortex-m1},
122 @code{cortex-m0},
123 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
124 @code{i80200} (Intel XScale processor)
125 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
126 and
127 @code{xscale}.  
128 The special name @code{all} may be used to allow the
129 assembler to accept instructions valid for any ARM processor.
130
131 In addition to the basic instruction set, the assembler can be told to 
132 accept various extension mnemonics that extend the processor using the 
133 co-processor instruction space.  For example, @code{-mcpu=arm920+maverick}
134 is equivalent to specifying @code{-mcpu=ep9312}.  The following extensions
135 are currently supported: 
136 @code{+maverick}
137 @code{+iwmmxt}
138 and
139 @code{+xscale}.
140
141 @cindex @code{-march=} command line option, ARM
142 @item -march=@var{architecture}[+@var{extension}@dots{}]
143 This option specifies the target architecture.  The assembler will issue
144 an error message if an attempt is made to assemble an instruction which
145 will not execute on the target architecture.  The following architecture 
146 names are recognized: 
147 @code{armv1},
148 @code{armv2},
149 @code{armv2a},
150 @code{armv2s},
151 @code{armv3},
152 @code{armv3m},
153 @code{armv4},
154 @code{armv4xm},
155 @code{armv4t},
156 @code{armv4txm},
157 @code{armv5},
158 @code{armv5t},
159 @code{armv5txm},
160 @code{armv5te},
161 @code{armv5texp},
162 @code{armv6},
163 @code{armv6j},
164 @code{armv6k},
165 @code{armv6z},
166 @code{armv6zk},
167 @code{armv7},
168 @code{armv7-a},
169 @code{armv7-r},
170 @code{armv7-m},
171 @code{armv7e-m},
172 @code{iwmmxt}
173 and
174 @code{xscale}.
175 If both @code{-mcpu} and
176 @code{-march} are specified, the assembler will use
177 the setting for @code{-mcpu}.
178
179 The architecture option can be extended with the same instruction set
180 extension options as the @code{-mcpu} option.
181
182 @cindex @code{-mfpu=} command line option, ARM
183 @item -mfpu=@var{floating-point-format}
184
185 This option specifies the floating point format to assemble for.  The
186 assembler will issue an error message if an attempt is made to assemble
187 an instruction which will not execute on the target floating point unit.  
188 The following format options are recognized:
189 @code{softfpa},
190 @code{fpe},
191 @code{fpe2},
192 @code{fpe3},
193 @code{fpa},
194 @code{fpa10},
195 @code{fpa11},
196 @code{arm7500fe},
197 @code{softvfp},
198 @code{softvfp+vfp},
199 @code{vfp},
200 @code{vfp10},
201 @code{vfp10-r0},
202 @code{vfp9},
203 @code{vfpxd},
204 @code{vfpv2},
205 @code{vfpv3},
206 @code{vfpv3-fp16},
207 @code{vfpv3-d16},
208 @code{vfpv3-d16-fp16},
209 @code{vfpv3xd},
210 @code{vfpv3xd-d16},
211 @code{vfpv4},
212 @code{vfpv4-d16},
213 @code{arm1020t},
214 @code{arm1020e},
215 @code{arm1136jf-s},
216 @code{maverick},
217 @code{neon},
218 and
219 @code{neon-vfpv4}.
220
221 In addition to determining which instructions are assembled, this option
222 also affects the way in which the @code{.double} assembler directive behaves
223 when assembling little-endian code.
224
225 The default is dependent on the processor selected.  For Architecture 5 or 
226 later, the default is to assembler for VFP instructions; for earlier 
227 architectures the default is to assemble for FPA instructions.
228
229 @cindex @code{-mthumb} command line option, ARM
230 @item -mthumb
231 This option specifies that the assembler should start assembling Thumb
232 instructions; that is, it should behave as though the file starts with a 
233 @code{.code 16} directive.
234
235 @cindex @code{-mthumb-interwork} command line option, ARM
236 @item -mthumb-interwork
237 This option specifies that the output generated by the assembler should
238 be marked as supporting interworking.
239
240 @cindex @code{-mimplicit-it} command line option, ARM
241 @item -mimplicit-it=never
242 @itemx -mimplicit-it=always
243 @itemx -mimplicit-it=arm
244 @itemx -mimplicit-it=thumb
245 The @code{-mimplicit-it} option controls the behavior of the assembler when
246 conditional instructions are not enclosed in IT blocks.
247 There are four possible behaviors.
248 If @code{never} is specified, such constructs cause a warning in ARM
249 code and an error in Thumb-2 code.
250 If @code{always} is specified, such constructs are accepted in both
251 ARM and Thumb-2 code, where the IT instruction is added implicitly.
252 If @code{arm} is specified, such constructs are accepted in ARM code
253 and cause an error in Thumb-2 code.
254 If @code{thumb} is specified, such constructs cause a warning in ARM
255 code and are accepted in Thumb-2 code.  If you omit this option, the
256 behavior is equivalent to @code{-mimplicit-it=arm}.
257
258 @cindex @code{-mapcs-26} command line option, ARM
259 @cindex @code{-mapcs-32} command line option, ARM
260 @item -mapcs-26
261 @itemx -mapcs-32
262 These options specify that the output generated by the assembler should
263 be marked as supporting the indicated version of the Arm Procedure.
264 Calling Standard.
265
266 @cindex @code{-matpcs} command line option, ARM
267 @item -matpcs
268 This option specifies that the output generated by the assembler should 
269 be marked as supporting the Arm/Thumb Procedure Calling Standard.  If
270 enabled this option will cause the assembler to create an empty
271 debugging section in the object file called .arm.atpcs.  Debuggers can
272 use this to determine the ABI being used by.
273
274 @cindex @code{-mapcs-float} command line option, ARM
275 @item -mapcs-float
276 This indicates the floating point variant of the APCS should be
277 used.  In this variant floating point arguments are passed in FP
278 registers rather than integer registers.
279
280 @cindex @code{-mapcs-reentrant} command line option, ARM
281 @item -mapcs-reentrant
282 This indicates that the reentrant variant of the APCS should be used.
283 This variant supports position independent code.
284
285 @cindex @code{-mfloat-abi=} command line option, ARM
286 @item -mfloat-abi=@var{abi}
287 This option specifies that the output generated by the assembler should be
288 marked as using specified floating point ABI.
289 The following values are recognized:
290 @code{soft},
291 @code{softfp}
292 and
293 @code{hard}.
294
295 @cindex @code{-eabi=} command line option, ARM
296 @item -meabi=@var{ver}
297 This option specifies which EABI version the produced object files should
298 conform to.
299 The following values are recognized:
300 @code{gnu},
301 @code{4}
302 and
303 @code{5}.
304
305 @cindex @code{-EB} command line option, ARM
306 @item -EB
307 This option specifies that the output generated by the assembler should
308 be marked as being encoded for a big-endian processor.
309
310 @cindex @code{-EL} command line option, ARM
311 @item -EL
312 This option specifies that the output generated by the assembler should
313 be marked as being encoded for a little-endian processor.
314
315 @cindex @code{-k} command line option, ARM
316 @cindex PIC code generation for ARM
317 @item -k
318 This option specifies that the output of the assembler should be marked
319 as position-independent code (PIC).
320
321 @cindex @code{--fix-v4bx} command line option, ARM
322 @item --fix-v4bx
323 Allow @code{BX} instructions in ARMv4 code.  This is intended for use with
324 the linker option of the same name.
325
326 @cindex @code{-mwarn-deprecated} command line option, ARM
327 @item -mwarn-deprecated
328 @itemx -mno-warn-deprecated
329 Enable or disable warnings about using deprecated options or
330 features.  The default is to warn.
331
332 @end table
333
334
335 @node ARM Syntax
336 @section Syntax
337 @menu
338 * ARM-Instruction-Set::      Instruction Set
339 * ARM-Chars::                Special Characters
340 * ARM-Regs::                 Register Names
341 * ARM-Relocations::          Relocations
342 * ARM-Neon-Alignment::       NEON Alignment Specifiers
343 @end menu
344
345 @node ARM-Instruction-Set
346 @subsection Instruction Set Syntax
347 Two slightly different syntaxes are support for ARM and THUMB
348 instructions.  The default, @code{divided}, uses the old style where
349 ARM and THUMB instructions had their own, separate syntaxes.  The new,
350 @code{unified} syntax, which can be selected via the @code{.syntax}
351 directive, and has the following main features:
352
353 @table @bullet
354 @item
355 Immediate operands do not require a @code{#} prefix.
356
357 @item
358 The @code{IT} instruction may appear, and if it does it is validated
359 against subsequent conditional affixes.  In ARM mode it does not
360 generate machine code, in THUMB mode it does.
361
362 @item
363 For ARM instructions the conditional affixes always appear at the end
364 of the instruction.  For THUMB instructions conditional affixes can be
365 used, but only inside the scope of an @code{IT} instruction.
366
367 @item
368 All of the instructions new to the V6T2 architecture (and later) are
369 available.  (Only a few such instructions can be written in the
370 @code{divided} syntax).
371
372 @item
373 The @code{.N} and @code{.W} suffixes are recognized and honored.
374
375 @item
376 All instructions set the flags if and only if they have an @code{s}
377 affix.
378 @end table
379
380 @node ARM-Chars
381 @subsection Special Characters
382
383 @cindex line comment character, ARM
384 @cindex ARM line comment character
385 The presence of a @samp{@@} on a line indicates the start of a comment
386 that extends to the end of the current line.  If a @samp{#} appears as
387 the first character of a line, the whole line is treated as a comment.
388
389 @cindex line separator, ARM
390 @cindex statement separator, ARM
391 @cindex ARM line separator
392 The @samp{;} character can be used instead of a newline to separate
393 statements.
394
395 @cindex immediate character, ARM
396 @cindex ARM immediate character
397 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
398
399 @cindex identifiers, ARM
400 @cindex ARM identifiers
401 *TODO* Explain about /data modifier on symbols.
402
403 @node ARM-Regs
404 @subsection Register Names
405
406 @cindex ARM register names
407 @cindex register names, ARM
408 *TODO* Explain about ARM register naming, and the predefined names.
409
410 @node ARM-Neon-Alignment
411 @subsection NEON Alignment Specifiers
412
413 @cindex alignment for NEON instructions
414 Some NEON load/store instructions allow an optional address
415 alignment qualifier.
416 The ARM documentation specifies that this is indicated by
417 @samp{@@ @var{align}}. However GAS already interprets
418 the @samp{@@} character as a "line comment" start,
419 so @samp{: @var{align}} is used instead.  For example:
420
421 @smallexample
422         vld1.8 @{q0@}, [r0, :128]
423 @end smallexample
424
425 @node ARM Floating Point
426 @section Floating Point
427
428 @cindex floating point, ARM (@sc{ieee})
429 @cindex ARM floating point (@sc{ieee})
430 The ARM family uses @sc{ieee} floating-point numbers.
431
432 @node ARM-Relocations
433 @subsection ARM relocation generation
434
435 @cindex data relocations, ARM
436 @cindex ARM data relocations
437 Specific data relocations can be generated by putting the relocation name
438 in parentheses after the symbol name.  For example:
439
440 @smallexample
441         .word foo(TARGET1)
442 @end smallexample
443
444 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
445 @var{foo}.
446 The following relocations are supported:
447 @code{GOT},
448 @code{GOTOFF},
449 @code{TARGET1},
450 @code{TARGET2},
451 @code{SBREL},
452 @code{TLSGD},
453 @code{TLSLDM},
454 @code{TLSLDO},
455 @code{GOTTPOFF},
456 @code{GOT_PREL}
457 and
458 @code{TPOFF}.
459
460 For compatibility with older toolchains the assembler also accepts
461 @code{(PLT)} after branch targets.  This will generate the deprecated
462 @samp{R_ARM_PLT32} relocation.
463
464 @cindex MOVW and MOVT relocations, ARM
465 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
466 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
467 respectively.  For example to load the 32-bit address of foo into r0:
468
469 @smallexample
470         MOVW r0, #:lower16:foo
471         MOVT r0, #:upper16:foo
472 @end smallexample
473
474 @node ARM Directives
475 @section ARM Machine Directives
476
477 @cindex machine directives, ARM
478 @cindex ARM machine directives
479 @table @code
480
481 @c AAAAAAAAAAAAAAAAAAAAAAAAA
482
483 @cindex @code{.2byte} directive, ARM
484 @cindex @code{.4byte} directive, ARM
485 @cindex @code{.8byte} directive, ARM
486 @item .2byte @var{expression} [, @var{expression}]*
487 @itemx .4byte @var{expression} [, @var{expression}]*
488 @itemx .8byte @var{expression} [, @var{expression}]*
489 These directives write 2, 4 or 8 byte values to the output section.
490
491 @cindex @code{.align} directive, ARM
492 @item .align @var{expression} [, @var{expression}]
493 This is the generic @var{.align} directive.  For the ARM however if the
494 first argument is zero (ie no alignment is needed) the assembler will
495 behave as if the argument had been 2 (ie pad to the next four byte
496 boundary).  This is for compatibility with ARM's own assembler.
497
498 @cindex @code{.arch} directive, ARM
499 @item .arch @var{name}
500 Select the target architecture.  Valid values for @var{name} are the same as
501 for the @option{-march} commandline option.
502
503 @cindex @code{.arm} directive, ARM
504 @item .arm
505 This performs the same action as @var{.code 32}.
506
507 @anchor{arm_pad}
508 @cindex @code{.pad} directive, ARM
509 @item .pad #@var{count}
510 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
511 A positive value indicates the function prologue allocated stack space by
512 decrementing the stack pointer.
513
514 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
515
516 @cindex @code{.bss} directive, ARM
517 @item .bss
518 This directive switches to the @code{.bss} section.
519
520 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
521
522 @cindex @code{.cantunwind} directive, ARM
523 @item .cantunwind
524 Prevents unwinding through the current function.  No personality routine
525 or exception table data is required or permitted.
526
527 @cindex @code{.code} directive, ARM
528 @item .code @code{[16|32]}
529 This directive selects the instruction set being generated. The value 16
530 selects Thumb, with the value 32 selecting ARM.
531
532 @cindex @code{.cpu} directive, ARM
533 @item .cpu @var{name}
534 Select the target processor.  Valid values for @var{name} are the same as
535 for the @option{-mcpu} commandline option.
536
537 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
538
539 @cindex @code{.dn} and @code{.qn} directives, ARM
540 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
541 @item @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
542
543 The @code{dn} and @code{qn} directives are used to create typed
544 and/or indexed register aliases for use in Advanced SIMD Extension
545 (Neon) instructions.  The former should be used to create aliases
546 of double-precision registers, and the latter to create aliases of
547 quad-precision registers.
548
549 If these directives are used to create typed aliases, those aliases can
550 be used in Neon instructions instead of writing types after the mnemonic
551 or after each operand.  For example:
552
553 @smallexample
554         x .dn d2.f32
555         y .dn d3.f32
556         z .dn d4.f32[1]
557         vmul x,y,z
558 @end smallexample
559
560 This is equivalent to writing the following:
561
562 @smallexample
563         vmul.f32 d2,d3,d4[1]
564 @end smallexample
565
566 Aliases created using @code{dn} or @code{qn} can be destroyed using
567 @code{unreq}.
568
569 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
570
571 @cindex @code{.eabi_attribute} directive, ARM
572 @item .eabi_attribute @var{tag}, @var{value}
573 Set the EABI object attribute @var{tag} to @var{value}.
574
575 The @var{tag} is either an attribute number, or one of the following:
576 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
577 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
578 @code{Tag_THUMB_ISA_use}, @code{Tag_VFP_arch}, @code{Tag_WMMX_arch},
579 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
580 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
581 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
582 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
583 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
584 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
585 @code{Tag_ABI_align8_needed}, @code{Tag_ABI_align8_preserved},
586 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
587 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
588 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
589 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
590 @code{Tag_VFP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
591 @code{Tag_MPextension_use}, @code{Tag_DIV_use},
592 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
593 @code{Tag_conformance}, @code{Tag_T2EE_use},
594 @code{Tag_Virtualization_use}
595
596 The @var{value} is either a @code{number}, @code{"string"}, or
597 @code{number, "string"} depending on the tag.
598
599 @cindex @code{.even} directive, ARM
600 @item .even
601 This directive aligns to an even-numbered address.
602
603 @cindex @code{.extend} directive, ARM
604 @cindex @code{.ldouble} directive, ARM
605 @item .extend  @var{expression} [, @var{expression}]*
606 @itemx .ldouble  @var{expression} [, @var{expression}]*
607 These directives write 12byte long double floating-point values to the
608 output section.  These are not compatible with current ARM processors
609 or ABIs.
610
611 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
612
613 @anchor{arm_fnend}
614 @cindex @code{.fnend} directive, ARM
615 @item .fnend
616 Marks the end of a function with an unwind table entry.  The unwind index
617 table entry is created when this directive is processed.
618
619 If no personality routine has been specified then standard personality
620 routine 0 or 1 will be used, depending on the number of unwind opcodes
621 required.
622
623 @anchor{arm_fnstart}
624 @cindex @code{.fnstart} directive, ARM
625 @item .fnstart
626 Marks the start of a function with an unwind table entry.
627
628 @cindex @code{.force_thumb} directive, ARM
629 @item .force_thumb
630 This directive forces the selection of Thumb instructions, even if the
631 target processor does not support those instructions
632
633 @cindex @code{.fpu} directive, ARM
634 @item .fpu @var{name}
635 Select the floating-point unit to assemble for.  Valid values for @var{name}
636 are the same as for the @option{-mfpu} commandline option.
637
638 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
639 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
640
641 @cindex @code{.handlerdata} directive, ARM
642 @item .handlerdata
643 Marks the end of the current function, and the start of the exception table
644 entry for that function.  Anything between this directive and the
645 @code{.fnend} directive will be added to the exception table entry.
646
647 Must be preceded by a @code{.personality} or @code{.personalityindex}
648 directive.
649
650 @c IIIIIIIIIIIIIIIIIIIIIIIIII
651
652 @cindex @code{.inst} directive, ARM
653 @item .inst @var{opcode} [ , @dots{} ]
654 @item .inst.n @var{opcode} [ , @dots{} ]
655 @item .inst.w @var{opcode} [ , @dots{} ]
656 Generates the instruction corresponding to the numerical value @var{opcode}.
657 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
658 specified explicitly, overriding the normal encoding rules.
659
660 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
661 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
662 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
663
664 @item .ldouble  @var{expression} [, @var{expression}]*
665 See @code{.extend}.
666
667 @cindex @code{.ltorg} directive, ARM
668 @item .ltorg
669 This directive causes the current contents of the literal pool to be
670 dumped into the current section (which is assumed to be the .text
671 section) at the current location (aligned to a word boundary).
672 @code{GAS} maintains a separate literal pool for each section and each
673 sub-section.  The @code{.ltorg} directive will only affect the literal
674 pool of the current section and sub-section.  At the end of assembly
675 all remaining, un-empty literal pools will automatically be dumped.
676
677 Note - older versions of @code{GAS} would dump the current literal
678 pool any time a section change occurred.  This is no longer done, since
679 it prevents accurate control of the placement of literal pools.
680
681 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
682
683 @cindex @code{.movsp} directive, ARM
684 @item .movsp @var{reg} [, #@var{offset}]
685 Tell the unwinder that @var{reg} contains an offset from the current
686 stack pointer.  If @var{offset} is not specified then it is assumed to be
687 zero.
688
689 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
690 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
691
692 @cindex @code{.object_arch} directive, ARM
693 @item .object_arch @var{name}
694 Override the architecture recorded in the EABI object attribute section.
695 Valid values for @var{name} are the same as for the @code{.arch} directive.
696 Typically this is useful when code uses runtime detection of CPU features.
697
698 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
699
700 @cindex @code{.packed} directive, ARM
701 @item .packed  @var{expression} [, @var{expression}]*
702 This directive writes 12-byte packed floating-point values to the
703 output section.  These are not compatible with current ARM processors
704 or ABIs.
705
706 @cindex @code{.pad} directive, ARM
707 @item .pad #@var{count}
708 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
709 A positive value indicates the function prologue allocated stack space by
710 decrementing the stack pointer.
711
712 @cindex @code{.personality} directive, ARM
713 @item .personality @var{name}
714 Sets the personality routine for the current function to @var{name}.
715
716 @cindex @code{.personalityindex} directive, ARM
717 @item .personalityindex @var{index}
718 Sets the personality routine for the current function to the EABI standard
719 routine number @var{index}
720
721 @cindex @code{.pool} directive, ARM
722 @item .pool
723 This is a synonym for .ltorg.
724
725 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
726 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
727
728 @cindex @code{.req} directive, ARM
729 @item @var{name} .req @var{register name}
730 This creates an alias for @var{register name} called @var{name}.  For
731 example:
732
733 @smallexample
734         foo .req r0
735 @end smallexample
736
737 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
738
739 @anchor{arm_save}
740 @cindex @code{.save} directive, ARM
741 @item .save @var{reglist}
742 Generate unwinder annotations to restore the registers in @var{reglist}.
743 The format of @var{reglist} is the same as the corresponding store-multiple
744 instruction.
745
746 @smallexample
747 @exdent @emph{core registers}
748   .save @{r4, r5, r6, lr@}
749   stmfd sp!, @{r4, r5, r6, lr@}
750 @exdent @emph{FPA registers}
751   .save f4, 2
752   sfmfd f4, 2, [sp]!
753 @exdent @emph{VFP registers}
754   .save @{d8, d9, d10@}
755   fstmdx sp!, @{d8, d9, d10@}
756 @exdent @emph{iWMMXt registers}
757   .save @{wr10, wr11@}
758   wstrd wr11, [sp, #-8]!
759   wstrd wr10, [sp, #-8]!
760 or
761   .save wr11
762   wstrd wr11, [sp, #-8]!
763   .save wr10
764   wstrd wr10, [sp, #-8]!
765 @end smallexample
766
767 @anchor{arm_setfp}
768 @cindex @code{.setfp} directive, ARM
769 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
770 Make all unwinder annotations relative to a frame pointer.  Without this
771 the unwinder will use offsets from the stack pointer.
772
773 The syntax of this directive is the same as the @code{add} or @code{mov}
774 instruction used to set the frame pointer.  @var{spreg} must be either
775 @code{sp} or mentioned in a previous @code{.movsp} directive.
776
777 @smallexample
778 .movsp ip
779 mov ip, sp
780 @dots{}
781 .setfp fp, ip, #4
782 add fp, ip, #4
783 @end smallexample
784
785 @cindex @code{.secrel32} directive, ARM
786 @item .secrel32 @var{expression} [, @var{expression}]*
787 This directive emits relocations that evaluate to the section-relative
788 offset of each expression's symbol.  This directive is only supported
789 for PE targets.
790
791 @cindex @code{.syntax} directive, ARM
792 @item .syntax [@code{unified} | @code{divided}]
793 This directive sets the Instruction Set Syntax as described in the
794 @ref{ARM-Instruction-Set} section.
795
796 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
797
798 @cindex @code{.thumb} directive, ARM
799 @item .thumb
800 This performs the same action as @var{.code 16}.
801
802 @cindex @code{.thumb_func} directive, ARM
803 @item .thumb_func
804 This directive specifies that the following symbol is the name of a
805 Thumb encoded function.  This information is necessary in order to allow
806 the assembler and linker to generate correct code for interworking
807 between Arm and Thumb instructions and should be used even if
808 interworking is not going to be performed.  The presence of this
809 directive also implies @code{.thumb}
810
811 This directive is not neccessary when generating EABI objects.  On these
812 targets the encoding is implicit when generating Thumb code.
813
814 @cindex @code{.thumb_set} directive, ARM
815 @item .thumb_set
816 This performs the equivalent of a @code{.set} directive in that it
817 creates a symbol which is an alias for another symbol (possibly not yet
818 defined).  This directive also has the added property in that it marks
819 the aliased symbol as being a thumb function entry point, in the same
820 way that the @code{.thumb_func} directive does.
821
822 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
823
824 @cindex @code{.unreq} directive, ARM
825 @item .unreq @var{alias-name}
826 This undefines a register alias which was previously defined using the
827 @code{req}, @code{dn} or @code{qn} directives.  For example:
828
829 @smallexample
830         foo .req r0
831         .unreq foo
832 @end smallexample
833
834 An error occurs if the name is undefined.  Note - this pseudo op can
835 be used to delete builtin in register name aliases (eg 'r0').  This
836 should only be done if it is really necessary.
837
838 @cindex @code{.unwind_raw} directive, ARM
839 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
840 Insert one of more arbitary unwind opcode bytes, which are known to adjust
841 the stack pointer by @var{offset} bytes.
842
843 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
844 @code{.save @{r0@}}
845
846 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
847
848 @cindex @code{.vsave} directive, ARM
849 @item .vsave @var{vfp-reglist}
850 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
851 using FLDMD.  Also works for VFPv3 registers
852 that are to be restored using VLDM.
853 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
854 instruction.
855
856 @smallexample
857 @exdent @emph{VFP registers}
858   .vsave @{d8, d9, d10@}
859   fstmdd sp!, @{d8, d9, d10@}
860 @exdent @emph{VFPv3 registers}
861   .vsave @{d15, d16, d17@}
862   vstm sp!, @{d15, d16, d17@}
863 @end smallexample
864
865 Since FLDMX and FSTMX are now deprecated, this directive should be
866 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
867
868 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
869 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
870 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
871 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
872
873 @end table
874
875 @node ARM Opcodes
876 @section Opcodes
877
878 @cindex ARM opcodes
879 @cindex opcodes for ARM
880 @code{@value{AS}} implements all the standard ARM opcodes.  It also
881 implements several pseudo opcodes, including several synthetic load
882 instructions. 
883
884 @table @code
885
886 @cindex @code{NOP} pseudo op, ARM
887 @item NOP
888 @smallexample
889   nop
890 @end smallexample
891
892 This pseudo op will always evaluate to a legal ARM instruction that does
893 nothing.  Currently it will evaluate to MOV r0, r0.
894
895 @cindex @code{LDR reg,=<label>} pseudo op, ARM
896 @item LDR 
897 @smallexample
898   ldr <register> , = <expression>
899 @end smallexample
900
901 If expression evaluates to a numeric constant then a MOV or MVN
902 instruction will be used in place of the LDR instruction, if the
903 constant can be generated by either of these instructions.  Otherwise
904 the constant will be placed into the nearest literal pool (if it not
905 already there) and a PC relative LDR instruction will be generated.
906
907 @cindex @code{ADR reg,<label>} pseudo op, ARM
908 @item ADR
909 @smallexample
910   adr <register> <label>
911 @end smallexample
912
913 This instruction will load the address of @var{label} into the indicated
914 register.  The instruction will evaluate to a PC relative ADD or SUB
915 instruction depending upon where the label is located.  If the label is
916 out of range, or if it is not defined in the same file (and section) as
917 the ADR instruction, then an error will be generated.  This instruction
918 will not make use of the literal pool.
919
920 @cindex @code{ADRL reg,<label>} pseudo op, ARM
921 @item ADRL 
922 @smallexample
923   adrl <register> <label>
924 @end smallexample
925
926 This instruction will load the address of @var{label} into the indicated
927 register.  The instruction will evaluate to one or two PC relative ADD
928 or SUB instructions depending upon where the label is located.  If a
929 second instruction is not needed a NOP instruction will be generated in
930 its place, so that this instruction is always 8 bytes long.
931
932 If the label is out of range, or if it is not defined in the same file
933 (and section) as the ADRL instruction, then an error will be generated.
934 This instruction will not make use of the literal pool.
935
936 @end table
937
938 For information on the ARM or Thumb instruction sets, see @cite{ARM
939 Software Development Toolkit Reference Manual}, Advanced RISC Machines
940 Ltd.
941
942 @node ARM Mapping Symbols
943 @section Mapping Symbols
944
945 The ARM ELF specification requires that special symbols be inserted
946 into object files to mark certain features:
947
948 @table @code
949
950 @cindex @code{$a}
951 @item $a
952 At the start of a region of code containing ARM instructions.
953
954 @cindex @code{$t}
955 @item $t
956 At the start of a region of code containing THUMB instructions.
957
958 @cindex @code{$d}
959 @item $d
960 At the start of a region of data.
961
962 @end table
963
964 The assembler will automatically insert these symbols for you - there
965 is no need to code them yourself.  Support for tagging symbols ($b,
966 $f, $p and $m) which is also mentioned in the current ARM ELF
967 specification is not implemented.  This is because they have been
968 dropped from the new EABI and so tools cannot rely upon their
969 presence.
970
971 @node ARM Unwinding Tutorial
972 @section Unwinding
973
974 The ABI for the ARM Architecture specifies a standard format for
975 exception unwind information.  This information is used when an
976 exception is thrown to determine where control should be transferred.
977 In particular, the unwind information is used to determine which
978 function called the function that threw the exception, and which
979 function called that one, and so forth.  This information is also used
980 to restore the values of callee-saved registers in the function
981 catching the exception.
982
983 If you are writing functions in assembly code, and those functions
984 call other functions that throw exceptions, you must use assembly
985 pseudo ops to ensure that appropriate exception unwind information is
986 generated.  Otherwise, if one of the functions called by your assembly
987 code throws an exception, the run-time library will be unable to
988 unwind the stack through your assembly code and your program will not
989 behave correctly.
990
991 To illustrate the use of these pseudo ops, we will examine the code
992 that G++ generates for the following C++ input:
993
994 @verbatim
995 void callee (int *);
996
997 int 
998 caller () 
999 {
1000   int i;
1001   callee (&i);
1002   return i; 
1003 }
1004 @end verbatim
1005
1006 This example does not show how to throw or catch an exception from
1007 assembly code.  That is a much more complex operation and should
1008 always be done in a high-level language, such as C++, that directly
1009 supports exceptions.
1010
1011 The code generated by one particular version of G++ when compiling the
1012 example above is:
1013
1014 @verbatim
1015 _Z6callerv:
1016         .fnstart
1017 .LFB2:
1018         @ Function supports interworking.
1019         @ args = 0, pretend = 0, frame = 8
1020         @ frame_needed = 1, uses_anonymous_args = 0
1021         stmfd   sp!, {fp, lr}
1022         .save {fp, lr}
1023 .LCFI0:
1024         .setfp fp, sp, #4
1025         add     fp, sp, #4
1026 .LCFI1:
1027         .pad #8
1028         sub     sp, sp, #8
1029 .LCFI2:
1030         sub     r3, fp, #8
1031         mov     r0, r3
1032         bl      _Z6calleePi
1033         ldr     r3, [fp, #-8]
1034         mov     r0, r3
1035         sub     sp, fp, #4
1036         ldmfd   sp!, {fp, lr}
1037         bx      lr
1038 .LFE2:
1039         .fnend
1040 @end verbatim
1041
1042 Of course, the sequence of instructions varies based on the options
1043 you pass to GCC and on the version of GCC in use.  The exact
1044 instructions are not important since we are focusing on the pseudo ops
1045 that are used to generate unwind information.
1046
1047 An important assumption made by the unwinder is that the stack frame
1048 does not change during the body of the function.  In particular, since
1049 we assume that the assembly code does not itself throw an exception,
1050 the only point where an exception can be thrown is from a call, such
1051 as the @code{bl} instruction above.  At each call site, the same saved
1052 registers (including @code{lr}, which indicates the return address)
1053 must be located in the same locations relative to the frame pointer.
1054
1055 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1056 op appears immediately before the first instruction of the function
1057 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1058 op appears immediately after the last instruction of the function.
1059 These pseudo ops specify the range of the function.  
1060
1061 Only the order of the other pseudos ops (e.g., @code{.setfp} or
1062 @code{.pad}) matters; their exact locations are irrelevant.  In the
1063 example above, the compiler emits the pseudo ops with particular
1064 instructions.  That makes it easier to understand the code, but it is
1065 not required for correctness.  It would work just as well to emit all
1066 of the pseudo ops other than @code{.fnend} in the same order, but
1067 immediately after @code{.fnstart}.
1068
1069 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1070 indicates registers that have been saved to the stack so that they can
1071 be restored before the function returns.  The argument to the
1072 @code{.save} pseudo op is a list of registers to save.  If a register
1073 is ``callee-saved'' (as specified by the ABI) and is modified by the
1074 function you are writing, then your code must save the value before it
1075 is modified and restore the original value before the function
1076 returns.  If an exception is thrown, the run-time library restores the
1077 values of these registers from their locations on the stack before
1078 returning control to the exception handler.  (Of course, if an
1079 exception is not thrown, the function that contains the @code{.save}
1080 pseudo op restores these registers in the function epilogue, as is
1081 done with the @code{ldmfd} instruction above.)
1082
1083 You do not have to save callee-saved registers at the very beginning
1084 of the function and you do not need to use the @code{.save} pseudo op
1085 immediately following the point at which the registers are saved.
1086 However, if you modify a callee-saved register, you must save it on
1087 the stack before modifying it and before calling any functions which
1088 might throw an exception.  And, you must use the @code{.save} pseudo
1089 op to indicate that you have done so.
1090
1091 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1092 modification of the stack pointer that does not save any registers.
1093 The argument is the number of bytes (in decimal) that are subtracted
1094 from the stack pointer.  (On ARM CPUs, the stack grows downwards, so
1095 subtracting from the stack pointer increases the size of the stack.)
1096
1097 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1098 indicates the register that contains the frame pointer.  The first
1099 argument is the register that is set, which is typically @code{fp}.
1100 The second argument indicates the register from which the frame
1101 pointer takes its value.  The third argument, if present, is the value
1102 (in decimal) added to the register specified by the second argument to
1103 compute the value of the frame pointer.  You should not modify the
1104 frame pointer in the body of the function.
1105
1106 If you do not use a frame pointer, then you should not use the
1107 @code{.setfp} pseudo op.  If you do not use a frame pointer, then you
1108 should avoid modifying the stack pointer outside of the function
1109 prologue.  Otherwise, the run-time library will be unable to find
1110 saved registers when it is unwinding the stack.
1111
1112 The pseudo ops described above are sufficient for writing assembly
1113 code that calls functions which may throw exceptions.  If you need to
1114 know more about the object-file format used to represent unwind
1115 information, you may consult the @cite{Exception Handling ABI for the
1116 ARM Architecture} available from @uref{http://infocenter.arm.com}.