sync with latest
[sdk/emulator/qemu.git] / dump.c
1 /*
2  * QEMU dump
3  *
4  * Copyright Fujitsu, Corp. 2011, 2012
5  *
6  * Authors:
7  *     Wen Congyang <wency@cn.fujitsu.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13
14 #include "qemu-common.h"
15 #include "elf.h"
16 #include "cpu.h"
17 #include "cpu-all.h"
18 #include "targphys.h"
19 #include "monitor.h"
20 #include "kvm.h"
21 #include "dump.h"
22 #include "sysemu.h"
23 #include "memory_mapping.h"
24 #include "error.h"
25 #include "qmp-commands.h"
26 #include "gdbstub.h"
27
28 static uint16_t cpu_convert_to_target16(uint16_t val, int endian)
29 {
30     if (endian == ELFDATA2LSB) {
31         val = cpu_to_le16(val);
32     } else {
33         val = cpu_to_be16(val);
34     }
35
36     return val;
37 }
38
39 static uint32_t cpu_convert_to_target32(uint32_t val, int endian)
40 {
41     if (endian == ELFDATA2LSB) {
42         val = cpu_to_le32(val);
43     } else {
44         val = cpu_to_be32(val);
45     }
46
47     return val;
48 }
49
50 static uint64_t cpu_convert_to_target64(uint64_t val, int endian)
51 {
52     if (endian == ELFDATA2LSB) {
53         val = cpu_to_le64(val);
54     } else {
55         val = cpu_to_be64(val);
56     }
57
58     return val;
59 }
60
61 typedef struct DumpState {
62     ArchDumpInfo dump_info;
63     MemoryMappingList list;
64     uint16_t phdr_num;
65     uint32_t sh_info;
66     bool have_section;
67     bool resume;
68     size_t note_size;
69     target_phys_addr_t memory_offset;
70     int fd;
71
72     RAMBlock *block;
73     ram_addr_t start;
74     bool has_filter;
75     int64_t begin;
76     int64_t length;
77     Error **errp;
78 } DumpState;
79
80 static int dump_cleanup(DumpState *s)
81 {
82     int ret = 0;
83
84     memory_mapping_list_free(&s->list);
85     if (s->fd != -1) {
86         close(s->fd);
87     }
88     if (s->resume) {
89         vm_start();
90     }
91
92     return ret;
93 }
94
95 static void dump_error(DumpState *s, const char *reason)
96 {
97     dump_cleanup(s);
98 }
99
100 static int fd_write_vmcore(void *buf, size_t size, void *opaque)
101 {
102     DumpState *s = opaque;
103     int fd = s->fd;
104     size_t writen_size;
105
106     /* The fd may be passed from user, and it can be non-blocked */
107     while (size) {
108         writen_size = qemu_write_full(fd, buf, size);
109         if (writen_size != size && errno != EAGAIN) {
110             return -1;
111         }
112
113         buf += writen_size;
114         size -= writen_size;
115     }
116
117     return 0;
118 }
119
120 static int write_elf64_header(DumpState *s)
121 {
122     Elf64_Ehdr elf_header;
123     int ret;
124     int endian = s->dump_info.d_endian;
125
126     memset(&elf_header, 0, sizeof(Elf64_Ehdr));
127     memcpy(&elf_header, ELFMAG, SELFMAG);
128     elf_header.e_ident[EI_CLASS] = ELFCLASS64;
129     elf_header.e_ident[EI_DATA] = s->dump_info.d_endian;
130     elf_header.e_ident[EI_VERSION] = EV_CURRENT;
131     elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian);
132     elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine,
133                                                    endian);
134     elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian);
135     elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian);
136     elf_header.e_phoff = cpu_convert_to_target64(sizeof(Elf64_Ehdr), endian);
137     elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf64_Phdr),
138                                                      endian);
139     elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian);
140     if (s->have_section) {
141         uint64_t shoff = sizeof(Elf64_Ehdr) + sizeof(Elf64_Phdr) * s->sh_info;
142
143         elf_header.e_shoff = cpu_convert_to_target64(shoff, endian);
144         elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf64_Shdr),
145                                                          endian);
146         elf_header.e_shnum = cpu_convert_to_target16(1, endian);
147     }
148
149     ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s);
150     if (ret < 0) {
151         dump_error(s, "dump: failed to write elf header.\n");
152         return -1;
153     }
154
155     return 0;
156 }
157
158 static int write_elf32_header(DumpState *s)
159 {
160     Elf32_Ehdr elf_header;
161     int ret;
162     int endian = s->dump_info.d_endian;
163
164     memset(&elf_header, 0, sizeof(Elf32_Ehdr));
165     memcpy(&elf_header, ELFMAG, SELFMAG);
166     elf_header.e_ident[EI_CLASS] = ELFCLASS32;
167     elf_header.e_ident[EI_DATA] = endian;
168     elf_header.e_ident[EI_VERSION] = EV_CURRENT;
169     elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian);
170     elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine,
171                                                    endian);
172     elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian);
173     elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian);
174     elf_header.e_phoff = cpu_convert_to_target32(sizeof(Elf32_Ehdr), endian);
175     elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf32_Phdr),
176                                                      endian);
177     elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian);
178     if (s->have_section) {
179         uint32_t shoff = sizeof(Elf32_Ehdr) + sizeof(Elf32_Phdr) * s->sh_info;
180
181         elf_header.e_shoff = cpu_convert_to_target32(shoff, endian);
182         elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf32_Shdr),
183                                                          endian);
184         elf_header.e_shnum = cpu_convert_to_target16(1, endian);
185     }
186
187     ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s);
188     if (ret < 0) {
189         dump_error(s, "dump: failed to write elf header.\n");
190         return -1;
191     }
192
193     return 0;
194 }
195
196 static int write_elf64_load(DumpState *s, MemoryMapping *memory_mapping,
197                             int phdr_index, target_phys_addr_t offset)
198 {
199     Elf64_Phdr phdr;
200     int ret;
201     int endian = s->dump_info.d_endian;
202
203     memset(&phdr, 0, sizeof(Elf64_Phdr));
204     phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian);
205     phdr.p_offset = cpu_convert_to_target64(offset, endian);
206     phdr.p_paddr = cpu_convert_to_target64(memory_mapping->phys_addr, endian);
207     if (offset == -1) {
208         /* When the memory is not stored into vmcore, offset will be -1 */
209         phdr.p_filesz = 0;
210     } else {
211         phdr.p_filesz = cpu_convert_to_target64(memory_mapping->length, endian);
212     }
213     phdr.p_memsz = cpu_convert_to_target64(memory_mapping->length, endian);
214     phdr.p_vaddr = cpu_convert_to_target64(memory_mapping->virt_addr, endian);
215
216     ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
217     if (ret < 0) {
218         dump_error(s, "dump: failed to write program header table.\n");
219         return -1;
220     }
221
222     return 0;
223 }
224
225 static int write_elf32_load(DumpState *s, MemoryMapping *memory_mapping,
226                             int phdr_index, target_phys_addr_t offset)
227 {
228     Elf32_Phdr phdr;
229     int ret;
230     int endian = s->dump_info.d_endian;
231
232     memset(&phdr, 0, sizeof(Elf32_Phdr));
233     phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian);
234     phdr.p_offset = cpu_convert_to_target32(offset, endian);
235     phdr.p_paddr = cpu_convert_to_target32(memory_mapping->phys_addr, endian);
236     if (offset == -1) {
237         /* When the memory is not stored into vmcore, offset will be -1 */
238         phdr.p_filesz = 0;
239     } else {
240         phdr.p_filesz = cpu_convert_to_target32(memory_mapping->length, endian);
241     }
242     phdr.p_memsz = cpu_convert_to_target32(memory_mapping->length, endian);
243     phdr.p_vaddr = cpu_convert_to_target32(memory_mapping->virt_addr, endian);
244
245     ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
246     if (ret < 0) {
247         dump_error(s, "dump: failed to write program header table.\n");
248         return -1;
249     }
250
251     return 0;
252 }
253
254 static int write_elf64_note(DumpState *s)
255 {
256     Elf64_Phdr phdr;
257     int endian = s->dump_info.d_endian;
258     target_phys_addr_t begin = s->memory_offset - s->note_size;
259     int ret;
260
261     memset(&phdr, 0, sizeof(Elf64_Phdr));
262     phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian);
263     phdr.p_offset = cpu_convert_to_target64(begin, endian);
264     phdr.p_paddr = 0;
265     phdr.p_filesz = cpu_convert_to_target64(s->note_size, endian);
266     phdr.p_memsz = cpu_convert_to_target64(s->note_size, endian);
267     phdr.p_vaddr = 0;
268
269     ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
270     if (ret < 0) {
271         dump_error(s, "dump: failed to write program header table.\n");
272         return -1;
273     }
274
275     return 0;
276 }
277
278 static int write_elf64_notes(DumpState *s)
279 {
280     CPUArchState *env;
281     int ret;
282     int id;
283
284     for (env = first_cpu; env != NULL; env = env->next_cpu) {
285         id = cpu_index(env);
286         ret = cpu_write_elf64_note(fd_write_vmcore, env, id, s);
287         if (ret < 0) {
288             dump_error(s, "dump: failed to write elf notes.\n");
289             return -1;
290         }
291     }
292
293     for (env = first_cpu; env != NULL; env = env->next_cpu) {
294         ret = cpu_write_elf64_qemunote(fd_write_vmcore, env, s);
295         if (ret < 0) {
296             dump_error(s, "dump: failed to write CPU status.\n");
297             return -1;
298         }
299     }
300
301     return 0;
302 }
303
304 static int write_elf32_note(DumpState *s)
305 {
306     target_phys_addr_t begin = s->memory_offset - s->note_size;
307     Elf32_Phdr phdr;
308     int endian = s->dump_info.d_endian;
309     int ret;
310
311     memset(&phdr, 0, sizeof(Elf32_Phdr));
312     phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian);
313     phdr.p_offset = cpu_convert_to_target32(begin, endian);
314     phdr.p_paddr = 0;
315     phdr.p_filesz = cpu_convert_to_target32(s->note_size, endian);
316     phdr.p_memsz = cpu_convert_to_target32(s->note_size, endian);
317     phdr.p_vaddr = 0;
318
319     ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
320     if (ret < 0) {
321         dump_error(s, "dump: failed to write program header table.\n");
322         return -1;
323     }
324
325     return 0;
326 }
327
328 static int write_elf32_notes(DumpState *s)
329 {
330     CPUArchState *env;
331     int ret;
332     int id;
333
334     for (env = first_cpu; env != NULL; env = env->next_cpu) {
335         id = cpu_index(env);
336         ret = cpu_write_elf32_note(fd_write_vmcore, env, id, s);
337         if (ret < 0) {
338             dump_error(s, "dump: failed to write elf notes.\n");
339             return -1;
340         }
341     }
342
343     for (env = first_cpu; env != NULL; env = env->next_cpu) {
344         ret = cpu_write_elf32_qemunote(fd_write_vmcore, env, s);
345         if (ret < 0) {
346             dump_error(s, "dump: failed to write CPU status.\n");
347             return -1;
348         }
349     }
350
351     return 0;
352 }
353
354 static int write_elf_section(DumpState *s, int type)
355 {
356     Elf32_Shdr shdr32;
357     Elf64_Shdr shdr64;
358     int endian = s->dump_info.d_endian;
359     int shdr_size;
360     void *shdr;
361     int ret;
362
363     if (type == 0) {
364         shdr_size = sizeof(Elf32_Shdr);
365         memset(&shdr32, 0, shdr_size);
366         shdr32.sh_info = cpu_convert_to_target32(s->sh_info, endian);
367         shdr = &shdr32;
368     } else {
369         shdr_size = sizeof(Elf64_Shdr);
370         memset(&shdr64, 0, shdr_size);
371         shdr64.sh_info = cpu_convert_to_target32(s->sh_info, endian);
372         shdr = &shdr64;
373     }
374
375     ret = fd_write_vmcore(&shdr, shdr_size, s);
376     if (ret < 0) {
377         dump_error(s, "dump: failed to write section header table.\n");
378         return -1;
379     }
380
381     return 0;
382 }
383
384 static int write_data(DumpState *s, void *buf, int length)
385 {
386     int ret;
387
388     ret = fd_write_vmcore(buf, length, s);
389     if (ret < 0) {
390         dump_error(s, "dump: failed to save memory.\n");
391         return -1;
392     }
393
394     return 0;
395 }
396
397 /* write the memroy to vmcore. 1 page per I/O. */
398 static int write_memory(DumpState *s, RAMBlock *block, ram_addr_t start,
399                         int64_t size)
400 {
401     int64_t i;
402     int ret;
403
404     for (i = 0; i < size / TARGET_PAGE_SIZE; i++) {
405         ret = write_data(s, block->host + start + i * TARGET_PAGE_SIZE,
406                          TARGET_PAGE_SIZE);
407         if (ret < 0) {
408             return ret;
409         }
410     }
411
412     if ((size % TARGET_PAGE_SIZE) != 0) {
413         ret = write_data(s, block->host + start + i * TARGET_PAGE_SIZE,
414                          size % TARGET_PAGE_SIZE);
415         if (ret < 0) {
416             return ret;
417         }
418     }
419
420     return 0;
421 }
422
423 /* get the memory's offset in the vmcore */
424 static target_phys_addr_t get_offset(target_phys_addr_t phys_addr,
425                                      DumpState *s)
426 {
427     RAMBlock *block;
428     target_phys_addr_t offset = s->memory_offset;
429     int64_t size_in_block, start;
430
431     if (s->has_filter) {
432         if (phys_addr < s->begin || phys_addr >= s->begin + s->length) {
433             return -1;
434         }
435     }
436
437     QLIST_FOREACH(block, &ram_list.blocks, next) {
438         if (s->has_filter) {
439             if (block->offset >= s->begin + s->length ||
440                 block->offset + block->length <= s->begin) {
441                 /* This block is out of the range */
442                 continue;
443             }
444
445             if (s->begin <= block->offset) {
446                 start = block->offset;
447             } else {
448                 start = s->begin;
449             }
450
451             size_in_block = block->length - (start - block->offset);
452             if (s->begin + s->length < block->offset + block->length) {
453                 size_in_block -= block->offset + block->length -
454                                  (s->begin + s->length);
455             }
456         } else {
457             start = block->offset;
458             size_in_block = block->length;
459         }
460
461         if (phys_addr >= start && phys_addr < start + size_in_block) {
462             return phys_addr - start + offset;
463         }
464
465         offset += size_in_block;
466     }
467
468     return -1;
469 }
470
471 static int write_elf_loads(DumpState *s)
472 {
473     target_phys_addr_t offset;
474     MemoryMapping *memory_mapping;
475     uint32_t phdr_index = 1;
476     int ret;
477     uint32_t max_index;
478
479     if (s->have_section) {
480         max_index = s->sh_info;
481     } else {
482         max_index = s->phdr_num;
483     }
484
485     QTAILQ_FOREACH(memory_mapping, &s->list.head, next) {
486         offset = get_offset(memory_mapping->phys_addr, s);
487         if (s->dump_info.d_class == ELFCLASS64) {
488             ret = write_elf64_load(s, memory_mapping, phdr_index++, offset);
489         } else {
490             ret = write_elf32_load(s, memory_mapping, phdr_index++, offset);
491         }
492
493         if (ret < 0) {
494             return -1;
495         }
496
497         if (phdr_index >= max_index) {
498             break;
499         }
500     }
501
502     return 0;
503 }
504
505 /* write elf header, PT_NOTE and elf note to vmcore. */
506 static int dump_begin(DumpState *s)
507 {
508     int ret;
509
510     /*
511      * the vmcore's format is:
512      *   --------------
513      *   |  elf header |
514      *   --------------
515      *   |  PT_NOTE    |
516      *   --------------
517      *   |  PT_LOAD    |
518      *   --------------
519      *   |  ......     |
520      *   --------------
521      *   |  PT_LOAD    |
522      *   --------------
523      *   |  sec_hdr    |
524      *   --------------
525      *   |  elf note   |
526      *   --------------
527      *   |  memory     |
528      *   --------------
529      *
530      * we only know where the memory is saved after we write elf note into
531      * vmcore.
532      */
533
534     /* write elf header to vmcore */
535     if (s->dump_info.d_class == ELFCLASS64) {
536         ret = write_elf64_header(s);
537     } else {
538         ret = write_elf32_header(s);
539     }
540     if (ret < 0) {
541         return -1;
542     }
543
544     if (s->dump_info.d_class == ELFCLASS64) {
545         /* write PT_NOTE to vmcore */
546         if (write_elf64_note(s) < 0) {
547             return -1;
548         }
549
550         /* write all PT_LOAD to vmcore */
551         if (write_elf_loads(s) < 0) {
552             return -1;
553         }
554
555         /* write section to vmcore */
556         if (s->have_section) {
557             if (write_elf_section(s, 1) < 0) {
558                 return -1;
559             }
560         }
561
562         /* write notes to vmcore */
563         if (write_elf64_notes(s) < 0) {
564             return -1;
565         }
566
567     } else {
568         /* write PT_NOTE to vmcore */
569         if (write_elf32_note(s) < 0) {
570             return -1;
571         }
572
573         /* write all PT_LOAD to vmcore */
574         if (write_elf_loads(s) < 0) {
575             return -1;
576         }
577
578         /* write section to vmcore */
579         if (s->have_section) {
580             if (write_elf_section(s, 0) < 0) {
581                 return -1;
582             }
583         }
584
585         /* write notes to vmcore */
586         if (write_elf32_notes(s) < 0) {
587             return -1;
588         }
589     }
590
591     return 0;
592 }
593
594 /* write PT_LOAD to vmcore */
595 static int dump_completed(DumpState *s)
596 {
597     dump_cleanup(s);
598     return 0;
599 }
600
601 static int get_next_block(DumpState *s, RAMBlock *block)
602 {
603     while (1) {
604         block = QLIST_NEXT(block, next);
605         if (!block) {
606             /* no more block */
607             return 1;
608         }
609
610         s->start = 0;
611         s->block = block;
612         if (s->has_filter) {
613             if (block->offset >= s->begin + s->length ||
614                 block->offset + block->length <= s->begin) {
615                 /* This block is out of the range */
616                 continue;
617             }
618
619             if (s->begin > block->offset) {
620                 s->start = s->begin - block->offset;
621             }
622         }
623
624         return 0;
625     }
626 }
627
628 /* write all memory to vmcore */
629 static int dump_iterate(DumpState *s)
630 {
631     RAMBlock *block;
632     int64_t size;
633     int ret;
634
635     while (1) {
636         block = s->block;
637
638         size = block->length;
639         if (s->has_filter) {
640             size -= s->start;
641             if (s->begin + s->length < block->offset + block->length) {
642                 size -= block->offset + block->length - (s->begin + s->length);
643             }
644         }
645         ret = write_memory(s, block, s->start, size);
646         if (ret == -1) {
647             return ret;
648         }
649
650         ret = get_next_block(s, block);
651         if (ret == 1) {
652             dump_completed(s);
653             return 0;
654         }
655     }
656 }
657
658 static int create_vmcore(DumpState *s)
659 {
660     int ret;
661
662     ret = dump_begin(s);
663     if (ret < 0) {
664         return -1;
665     }
666
667     ret = dump_iterate(s);
668     if (ret < 0) {
669         return -1;
670     }
671
672     return 0;
673 }
674
675 static ram_addr_t get_start_block(DumpState *s)
676 {
677     RAMBlock *block;
678
679     if (!s->has_filter) {
680         s->block = QLIST_FIRST(&ram_list.blocks);
681         return 0;
682     }
683
684     QLIST_FOREACH(block, &ram_list.blocks, next) {
685         if (block->offset >= s->begin + s->length ||
686             block->offset + block->length <= s->begin) {
687             /* This block is out of the range */
688             continue;
689         }
690
691         s->block = block;
692         if (s->begin > block->offset) {
693             s->start = s->begin - block->offset;
694         } else {
695             s->start = 0;
696         }
697         return s->start;
698     }
699
700     return -1;
701 }
702
703 static int dump_init(DumpState *s, int fd, bool paging, bool has_filter,
704                      int64_t begin, int64_t length, Error **errp)
705 {
706     CPUArchState *env;
707     int nr_cpus;
708     int ret;
709
710     if (runstate_is_running()) {
711         vm_stop(RUN_STATE_SAVE_VM);
712         s->resume = true;
713     } else {
714         s->resume = false;
715     }
716
717     s->errp = errp;
718     s->fd = fd;
719     s->has_filter = has_filter;
720     s->begin = begin;
721     s->length = length;
722     s->start = get_start_block(s);
723     if (s->start == -1) {
724         error_set(errp, QERR_INVALID_PARAMETER, "begin");
725         goto cleanup;
726     }
727
728     /*
729      * get dump info: endian, class and architecture.
730      * If the target architecture is not supported, cpu_get_dump_info() will
731      * return -1.
732      *
733      * if we use kvm, we should synchronize the register before we get dump
734      * info.
735      */
736     nr_cpus = 0;
737     for (env = first_cpu; env != NULL; env = env->next_cpu) {
738         cpu_synchronize_state(env);
739         nr_cpus++;
740     }
741
742     ret = cpu_get_dump_info(&s->dump_info);
743     if (ret < 0) {
744         error_set(errp, QERR_UNSUPPORTED);
745         goto cleanup;
746     }
747
748     s->note_size = cpu_get_note_size(s->dump_info.d_class,
749                                      s->dump_info.d_machine, nr_cpus);
750     if (ret < 0) {
751         error_set(errp, QERR_UNSUPPORTED);
752         goto cleanup;
753     }
754
755     /* get memory mapping */
756     memory_mapping_list_init(&s->list);
757     if (paging) {
758         qemu_get_guest_memory_mapping(&s->list);
759     } else {
760         qemu_get_guest_simple_memory_mapping(&s->list);
761     }
762
763     if (s->has_filter) {
764         memory_mapping_filter(&s->list, s->begin, s->length);
765     }
766
767     /*
768      * calculate phdr_num
769      *
770      * the type of ehdr->e_phnum is uint16_t, so we should avoid overflow
771      */
772     s->phdr_num = 1; /* PT_NOTE */
773     if (s->list.num < UINT16_MAX - 2) {
774         s->phdr_num += s->list.num;
775         s->have_section = false;
776     } else {
777         s->have_section = true;
778         s->phdr_num = PN_XNUM;
779         s->sh_info = 1; /* PT_NOTE */
780
781         /* the type of shdr->sh_info is uint32_t, so we should avoid overflow */
782         if (s->list.num <= UINT32_MAX - 1) {
783             s->sh_info += s->list.num;
784         } else {
785             s->sh_info = UINT32_MAX;
786         }
787     }
788
789     if (s->dump_info.d_class == ELFCLASS64) {
790         if (s->have_section) {
791             s->memory_offset = sizeof(Elf64_Ehdr) +
792                                sizeof(Elf64_Phdr) * s->sh_info +
793                                sizeof(Elf64_Shdr) + s->note_size;
794         } else {
795             s->memory_offset = sizeof(Elf64_Ehdr) +
796                                sizeof(Elf64_Phdr) * s->phdr_num + s->note_size;
797         }
798     } else {
799         if (s->have_section) {
800             s->memory_offset = sizeof(Elf32_Ehdr) +
801                                sizeof(Elf32_Phdr) * s->sh_info +
802                                sizeof(Elf32_Shdr) + s->note_size;
803         } else {
804             s->memory_offset = sizeof(Elf32_Ehdr) +
805                                sizeof(Elf32_Phdr) * s->phdr_num + s->note_size;
806         }
807     }
808
809     return 0;
810
811 cleanup:
812     if (s->resume) {
813         vm_start();
814     }
815
816     return -1;
817 }
818
819 void qmp_dump_guest_memory(bool paging, const char *file, bool has_begin,
820                            int64_t begin, bool has_length, int64_t length,
821                            Error **errp)
822 {
823     const char *p;
824     int fd = -1;
825     DumpState *s;
826     int ret;
827
828     if (has_begin && !has_length) {
829         error_set(errp, QERR_MISSING_PARAMETER, "length");
830         return;
831     }
832     if (!has_begin && has_length) {
833         error_set(errp, QERR_MISSING_PARAMETER, "begin");
834         return;
835     }
836
837 #if !defined(WIN32)
838     if (strstart(file, "fd:", &p)) {
839         fd = monitor_get_fd(cur_mon, p);
840         if (fd == -1) {
841             error_set(errp, QERR_FD_NOT_FOUND, p);
842             return;
843         }
844     }
845 #endif
846
847     if  (strstart(file, "file:", &p)) {
848         fd = qemu_open(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR);
849         if (fd < 0) {
850             error_set(errp, QERR_OPEN_FILE_FAILED, p);
851             return;
852         }
853     }
854
855     if (fd == -1) {
856         error_set(errp, QERR_INVALID_PARAMETER, "protocol");
857         return;
858     }
859
860     s = g_malloc(sizeof(DumpState));
861
862     ret = dump_init(s, fd, paging, has_begin, begin, length, errp);
863     if (ret < 0) {
864         g_free(s);
865         return;
866     }
867
868     if (create_vmcore(s) < 0 && !error_is_set(s->errp)) {
869         error_set(errp, QERR_IO_ERROR);
870     }
871
872     g_free(s);
873 }