temporarily make isl_val_int_from_isl_int available
[platform/upstream/isl.git] / basis_reduction_templ.c
index 60dcead..7f4b28f 100644 (file)
@@ -1,4 +1,19 @@
+/*
+ * Copyright 2006-2007 Universiteit Leiden
+ * Copyright 2008-2009 Katholieke Universiteit Leuven
+ *
+ * Use of this software is governed by the MIT license
+ *
+ * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
+ * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
+ * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
+ * B-3001 Leuven, Belgium
+ */
+
 #include <stdlib.h>
+#include <isl_ctx_private.h>
+#include <isl_map_private.h>
+#include <isl_options_private.h>
 #include "isl_basis_reduction.h"
 
 static void save_alpha(GBR_LP *lp, int first, int n, GBR_type *alpha)
@@ -10,19 +25,23 @@ static void save_alpha(GBR_LP *lp, int first, int n, GBR_type *alpha)
 }
 
 /* Compute a reduced basis for the set represented by the tableau "tab".
- * tab->basis, must be initialized by the calling function to a unimodular
- * basis, is updated to reflect the reduced basis.
- * The first tab->n_zero rows of the basis are assumed to correspond
- * to equalities and are left untouched.
+ * tab->basis, which must be initialized by the calling function to an affine
+ * unimodular basis, is updated to reflect the reduced basis.
+ * The first tab->n_zero rows of the basis (ignoring the constant row)
+ * are assumed to correspond to equalities and are left untouched.
  * tab->n_zero is updated to reflect any additional equalities that
  * have been detected in the first rows of the new basis.
+ * The final tab->n_unbounded rows of the basis are assumed to correspond
+ * to unbounded directions and are also left untouched.
+ * In particular this means that the remaining rows are assumed to
+ * correspond to bounded directions.
  *
  * This function implements the algorithm described in
  * "An Implementation of the Generalized Basis Reduction Algorithm
  *  for Integer Programming" of Cook el al. to compute a reduced basis.
  * We use \epsilon = 1/4.
  *
- * If ctx->gbr_only_first is set, the user is only interested
+ * If ctx->opt->gbr_only_first is set, the user is only interested
  * in the first direction.  In this case we stop the basis reduction when
  * the width in the first direction becomes smaller than 2.
  */
@@ -30,7 +49,7 @@ struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
 {
        unsigned dim;
        struct isl_ctx *ctx;
-       struct isl_mat *basis;
+       struct isl_mat *B;
        int unbounded;
        int i;
        GBR_LP *lp = NULL;
@@ -51,17 +70,24 @@ struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
        int fixed = 0;
        int fixed_saved = 0;
        int mu_fixed[2];
+       int n_bounded;
+       int gbr_only_first;
 
        if (!tab)
                return NULL;
 
+       if (tab->empty)
+               return tab;
+
        ctx = tab->mat->ctx;
+       gbr_only_first = ctx->opt->gbr_only_first;
        dim = tab->n_var;
-       basis = tab->basis;
-       if (!basis)
+       B = tab->basis;
+       if (!B)
                return tab;
 
-       if (dim <= tab->n_zero + 1)
+       n_bounded = dim - tab->n_unbounded;
+       if (n_bounded <= tab->n_zero + 1)
                return tab;
 
        isl_int_init(tmp);
@@ -81,15 +107,15 @@ struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
        if (!b_tmp)
                goto error;
 
-       F = isl_alloc_array(ctx, GBR_type, dim);
-       alpha_buffer[0] = isl_alloc_array(ctx, GBR_type, dim);
-       alpha_buffer[1] = isl_alloc_array(ctx, GBR_type, dim);
+       F = isl_alloc_array(ctx, GBR_type, n_bounded);
+       alpha_buffer[0] = isl_alloc_array(ctx, GBR_type, n_bounded);
+       alpha_buffer[1] = isl_alloc_array(ctx, GBR_type, n_bounded);
        alpha_saved = alpha_buffer[0];
 
        if (!F || !alpha_buffer[0] || !alpha_buffer[1])
                goto error;
 
-       for (i = 0; i < dim; ++i) {
+       for (i = 0; i < n_bounded; ++i) {
                GBR_init(F[i]);
                GBR_init(alpha_buffer[0][i]);
                GBR_init(alpha_buffer[1][i]);
@@ -104,7 +130,7 @@ struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
 
        i = tab->n_zero;
 
-       GBR_lp_set_obj(lp, basis->row[i], dim);
+       GBR_lp_set_obj(lp, B->row[1+i]+1, dim);
        ctx->stats->gbr_solved_lps++;
        unbounded = GBR_lp_solve(lp);
        isl_assert(ctx, !unbounded, goto error);
@@ -112,7 +138,7 @@ struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
 
        if (GBR_lt(F[i], one)) {
                if (!GBR_is_zero(F[i])) {
-                       empty = GBR_lp_cut(lp, basis->row[i]);
+                       empty = GBR_lp_cut(lp, B->row[1+i]+1);
                        if (empty)
                                goto done;
                        GBR_set_ui(F[i], 0);
@@ -122,7 +148,7 @@ struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
 
        do {
                if (i+1 == tab->n_zero) {
-                       GBR_lp_set_obj(lp, basis->row[i+1], dim);
+                       GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
                        ctx->stats->gbr_solved_lps++;
                        unbounded = GBR_lp_solve(lp);
                        isl_assert(ctx, !unbounded, goto error);
@@ -136,8 +162,8 @@ struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
                        fixed = fixed_saved;
                        GBR_set(alpha, alpha_saved[i]);
                } else {
-                       row = GBR_lp_add_row(lp, basis->row[i], dim);
-                       GBR_lp_set_obj(lp, basis->row[i+1], dim);
+                       row = GBR_lp_add_row(lp, B->row[1+i]+1, dim);
+                       GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
                        ctx->stats->gbr_solved_lps++;
                        unbounded = GBR_lp_solve(lp);
                        isl_assert(ctx, !unbounded, goto error);
@@ -149,7 +175,8 @@ struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
                        if (i > 0)
                                save_alpha(lp, row-i, i, alpha_saved);
 
-                       GBR_lp_del_row(lp);
+                       if (GBR_lp_del_row(lp) < 0)
+                               goto error;
                }
                GBR_set(F[i+1], F_new);
 
@@ -164,8 +191,8 @@ struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
                        for (j = 0; j <= 1; ++j) {
                                isl_int_set(tmp, mu[j]);
                                isl_seq_combine(b_tmp->el,
-                                               ctx->one, basis->row[i+1],
-                                               tmp, basis->row[i], dim);
+                                               ctx->one, B->row[1+i+1]+1,
+                                               tmp, B->row[1+i]+1, dim);
                                GBR_lp_set_obj(lp, b_tmp->el, dim);
                                ctx->stats->gbr_solved_lps++;
                                unbounded = GBR_lp_solve(lp);
@@ -186,12 +213,12 @@ struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
                        fixed = mu_fixed[j];
                        alpha_saved = alpha_buffer[j];
                }
-               isl_seq_combine(basis->row[i+1], ctx->one, basis->row[i+1],
-                               tmp, basis->row[i], dim);
+               isl_seq_combine(B->row[1+i+1]+1, ctx->one, B->row[1+i+1]+1,
+                               tmp, B->row[1+i]+1, dim);
 
                if (i+1 == tab->n_zero && fixed) {
                        if (!GBR_is_zero(F[i+1])) {
-                               empty = GBR_lp_cut(lp, basis->row[i+1]);
+                               empty = GBR_lp_cut(lp, B->row[1+i+1]+1);
                                if (empty)
                                        goto done;
                                GBR_set_ui(F[i+1], 0);
@@ -208,21 +235,22 @@ struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
                GBR_set_ui(mu_F[1], 3);
                GBR_mul(mu_F[1], mu_F[1], F_old);
                if (GBR_lt(mu_F[0], mu_F[1])) {
-                       basis = isl_mat_swap_rows(basis, i, i + 1);
+                       B = isl_mat_swap_rows(B, 1 + i, 1 + i + 1);
                        if (i > tab->n_zero) {
                                use_saved = 1;
                                GBR_set(F_saved, F_new);
                                fixed_saved = fixed;
-                               GBR_lp_del_row(lp);
+                               if (GBR_lp_del_row(lp) < 0)
+                                       goto error;
                                --i;
                        } else {
                                GBR_set(F[tab->n_zero], F_new);
-                               if (ctx->gbr_only_first && GBR_lt(F[tab->n_zero], two))
+                               if (gbr_only_first && GBR_lt(F[tab->n_zero], two))
                                        break;
 
                                if (fixed) {
                                        if (!GBR_is_zero(F[tab->n_zero])) {
-                                               empty = GBR_lp_cut(lp, basis->row[tab->n_zero]);
+                                               empty = GBR_lp_cut(lp, B->row[1+tab->n_zero]+1);
                                                if (empty)
                                                        goto done;
                                                GBR_set_ui(F[tab->n_zero], 0);
@@ -231,24 +259,24 @@ struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
                                }
                        }
                } else {
-                       GBR_lp_add_row(lp, basis->row[i], dim);
+                       GBR_lp_add_row(lp, B->row[1+i]+1, dim);
                        ++i;
                }
-       } while (i < dim-1);
+       } while (i < n_bounded - 1);
 
        if (0) {
 done:
                if (empty < 0) {
 error:
-                       isl_mat_free(basis);
-                       basis = NULL;
+                       isl_mat_free(B);
+                       B = NULL;
                }
        }
 
        GBR_lp_delete(lp);
 
        if (alpha_buffer[1])
-               for (i = 0; i < dim; ++i) {
+               for (i = 0; i < n_bounded; ++i) {
                        GBR_clear(F[i]);
                        GBR_clear(alpha_buffer[0][i]);
                        GBR_clear(alpha_buffer[1][i]);
@@ -272,20 +300,51 @@ error:
        isl_int_clear(mu[0]);
        isl_int_clear(mu[1]);
 
-       tab->basis = basis;
+       tab->basis = B;
 
        return tab;
 }
 
+/* Compute an affine form of a reduced basis of the given basic
+ * non-parametric set, which is assumed to be bounded and not
+ * include any integer divisions.
+ * The first column and the first row correspond to the constant term.
+ *
+ * If the input contains any equalities, we first create an initial
+ * basis with the equalities first.  Otherwise, we start off with
+ * the identity matrix.
+ */
 struct isl_mat *isl_basic_set_reduced_basis(struct isl_basic_set *bset)
 {
        struct isl_mat *basis;
        struct isl_tab *tab;
 
-       isl_assert(bset->ctx, bset->n_eq == 0, return NULL);
+       if (!bset)
+               return NULL;
+
+       if (isl_basic_set_dim(bset, isl_dim_div) != 0)
+               isl_die(bset->ctx, isl_error_invalid,
+                       "no integer division allowed", return NULL);
+       if (isl_basic_set_dim(bset, isl_dim_param) != 0)
+               isl_die(bset->ctx, isl_error_invalid,
+                       "no parameters allowed", return NULL);
 
-       tab = isl_tab_from_basic_set(bset);
-       tab->basis = isl_mat_identity(bset->ctx, tab->n_var);
+       tab = isl_tab_from_basic_set(bset, 0);
+       if (!tab)
+               return NULL;
+
+       if (bset->n_eq == 0)
+               tab->basis = isl_mat_identity(bset->ctx, 1 + tab->n_var);
+       else {
+               isl_mat *eq;
+               unsigned nvar = isl_basic_set_total_dim(bset);
+               eq = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq,
+                                       1, nvar);
+               eq = isl_mat_left_hermite(eq, 0, NULL, &tab->basis);
+               tab->basis = isl_mat_lin_to_aff(tab->basis);
+               tab->n_zero = bset->n_eq;
+               isl_mat_free(eq);
+       }
        tab = isl_tab_compute_reduced_basis(tab);
        if (!tab)
                return NULL;