=head1 Introduction C is a thread-safe C library for manipulating sets and relations of integer points bounded by affine constraints. The descriptions of the sets and relations may involve both parameters and existentially quantified variables. All computations are performed in exact integer arithmetic using C. The C library offers functionality that is similar to that offered by the C and C libraries, but the underlying algorithms are in most cases completely different. The library is by no means complete and some fairly basic functionality is still missing. Still, even in its current form, the library has been successfully used as a backend polyhedral library for the polyhedral scanner C and as part of an equivalence checker of static affine programs. For bug reports, feature requests and questions, visit the the discussion group at L. =head2 Backward Incompatible Changes =head3 Changes since isl-0.02 =over =item * The old printing functions have been deprecated and replaced by C functions, see L. =item * Most functions related to dependence analysis have acquired an extra C argument. To obtain the old behavior, this argument should be given the value 1. See L. =back =head3 Changes since isl-0.03 =over =item * The function C has been renamed to C. Similarly, C has been renamed to C. =back =head3 Changes since isl-0.04 =over =item * All header files have been renamed from C to C. =back =head3 Changes since isl-0.05 =over =item * The functions C and C no longer print a newline. =item * The functions C and C now return the accesses for which no source could be found instead of the iterations where those accesses occur. =item * The functions C and C now take a B space as input. An old call C can be rewritten to C. =item * The function C no longer takes a parameter position as input. Instead, the exponent is now expressed as the domain of the resulting relation. =back =head3 Changes since isl-0.06 =over =item * The format of C's C output has changed. Use C to obtain the old output. =item * The C<*_fast_*> functions have been renamed to C<*_plain_*>. Some of the old names have been kept for backward compatibility, but they will be removed in the future. =back =head3 Changes since isl-0.07 =over =item * The function C has been renamed to C. Similarly, the function C has been renamed to C. =item * The C type has been renamed to C along with the associated functions. Some of the old names have been kept for backward compatibility, but they will be removed in the future. =item * Spaces of maps, sets and parameter domains are now treated differently. The distinction between map spaces and set spaces has always been made on a conceptual level, but proper use of such spaces was never checked. Furthermore, up until isl-0.07 there was no way of explicitly creating a parameter space. These can now be created directly using C or from other spaces using C. =item * The space in which C, C, C, C, C and C objects live is now a map space instead of a set space. This means, for example, that the dimensions of the domain of an C are now considered to be of type C instead of C. Extra functions have been added to obtain the domain space. Some of the constructors still take a domain space and have therefore been renamed. =item * The functions C and C now take an C instead of an C. An C can be created from an C using C. =item * The C type has been removed. Functions that used to return an C now return an C. Note that the space of an C is that of relation. When replacing a call to C by a call to C any C argument needs to be replaced by C. A call to C can be replaced by a call to C. A call to C call be replaced by the nested call isl_qpolynomial_from_aff(isl_aff_floor(div)) The function C has also been renamed to C. =item * The C argument has been removed from C and similar functions. When reading input in the original PolyLib format, the result will have no parameters. If parameters are expected, the caller may want to perform dimension manipulation on the result. =back =head3 Changes since isl-0.09 =over =item * The C option has been replaced by the C option. =item * The first argument of C is now an C instead of an C. A call C can be replaced by isl_pw_aff_cond(isl_set_indicator_function(a), b, c) =back =head3 Changes since isl-0.10 =over =item * The functions C and C have been renamed to C and C. The new C and C have slightly different meanings. =back =head1 License C is released under the MIT license. =over Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. =back Note that C currently requires C, which is released under the GNU Lesser General Public License (LGPL). This means that code linked against C is also linked against LGPL code. =head1 Installation The source of C can be obtained either as a tarball or from the git repository. Both are available from L. The installation process depends on how you obtained the source. =head2 Installation from the git repository =over =item 1 Clone or update the repository The first time the source is obtained, you need to clone the repository. git clone git://repo.or.cz/isl.git To obtain updates, you need to pull in the latest changes git pull =item 2 Generate C ./autogen.sh =back After performing the above steps, continue with the L. =head2 Common installation instructions =over =item 1 Obtain C Building C requires C, including its headers files. Your distribution may not provide these header files by default and you may need to install a package called C or something similar. Alternatively, C can be built from source, available from L. =item 2 Configure C uses the standard C C script. To run it, just type ./configure optionally followed by some configure options. A complete list of options can be obtained by running ./configure --help Below we discuss some of the more common options. C can optionally use C, but no C functionality is currently used by default. The C<--with-piplib> option can be used to specify which C library to use, either an installed version (C), an externally built version (C) or no version (C). The option C is mostly useful in C scripts of larger projects that bundle both C and C. =over =item C<--prefix> Installation prefix for C =item C<--with-gmp-prefix> Installation prefix for C (architecture-independent files). =item C<--with-gmp-exec-prefix> Installation prefix for C (architecture-dependent files). =item C<--with-piplib> Which copy of C to use, either C (default), C or C. =item C<--with-piplib-prefix> Installation prefix for C C (architecture-independent files). =item C<--with-piplib-exec-prefix> Installation prefix for C C (architecture-dependent files). =item C<--with-piplib-builddir> Location where C C was built. =back =item 3 Compile make =item 4 Install (optional) make install =back =head1 Integer Set Library =head2 Initialization All manipulations of integer sets and relations occur within the context of an C. A given C can only be used within a single thread. All arguments of a function are required to have been allocated within the same context. There are currently no functions available for moving an object from one C to another C. This means that there is currently no way of safely moving an object from one thread to another, unless the whole C is moved. An C can be allocated using C and freed using C. All objects allocated within an C should be freed before the C itself is freed. isl_ctx *isl_ctx_alloc(); void isl_ctx_free(isl_ctx *ctx); =head2 Values An C represents an integer value, a rational value or one of three special values, infinity, negative infinity and NaN. Some predefined values can be created using the following functions. #include __isl_give isl_val *isl_val_zero(isl_ctx *ctx); __isl_give isl_val *isl_val_one(isl_ctx *ctx); __isl_give isl_val *isl_val_nan(isl_ctx *ctx); __isl_give isl_val *isl_val_infty(isl_ctx *ctx); __isl_give isl_val *isl_val_neginfty(isl_ctx *ctx); Specific integer values can be created using the following functions. #include __isl_give isl_val *isl_val_int_from_si(isl_ctx *ctx, long i); __isl_give isl_val *isl_val_int_from_ui(isl_ctx *ctx, unsigned long u); They can be copied and freed using the following functions. #include __isl_give isl_val *isl_val_copy(__isl_keep isl_val *v); void *isl_val_free(__isl_take isl_val *v); They can be inspected using the following functions. #include isl_ctx *isl_val_get_ctx(__isl_keep isl_val *val); long isl_val_get_num_si(__isl_keep isl_val *v); long isl_val_get_den_si(__isl_keep isl_val *v); double isl_val_get_d(__isl_keep isl_val *v); Note that C, C and C can only be applied to rational values. An C can be modified using the following function. #include __isl_give isl_val *isl_val_set_si(__isl_take isl_val *v, long i); The following unary properties are defined on Cs. #include int isl_val_sgn(__isl_keep isl_val *v); int isl_val_is_zero(__isl_keep isl_val *v); int isl_val_is_one(__isl_keep isl_val *v); int isl_val_is_negone(__isl_keep isl_val *v); int isl_val_is_nonneg(__isl_keep isl_val *v); int isl_val_is_nonpos(__isl_keep isl_val *v); int isl_val_is_pos(__isl_keep isl_val *v); int isl_val_is_neg(__isl_keep isl_val *v); int isl_val_is_int(__isl_keep isl_val *v); int isl_val_is_rat(__isl_keep isl_val *v); int isl_val_is_nan(__isl_keep isl_val *v); int isl_val_is_infty(__isl_keep isl_val *v); int isl_val_is_neginfty(__isl_keep isl_val *v); Note that the sign of NaN is undefined. The following binary properties are defined on pairs of Cs. #include int isl_val_lt(__isl_keep isl_val *v1, __isl_keep isl_val *v2); int isl_val_le(__isl_keep isl_val *v1, __isl_keep isl_val *v2); int isl_val_gt(__isl_keep isl_val *v1, __isl_keep isl_val *v2); int isl_val_ge(__isl_keep isl_val *v1, __isl_keep isl_val *v2); int isl_val_eq(__isl_keep isl_val *v1, __isl_keep isl_val *v2); int isl_val_ne(__isl_keep isl_val *v1, __isl_keep isl_val *v2); For integer Cs we additionally have the following binary property. #include int isl_val_is_divisible_by(__isl_keep isl_val *v1, __isl_keep isl_val *v2); An C can also be compared to an integer using the following function. The result is undefined for NaN. #include int isl_val_cmp_si(__isl_keep isl_val *v, long i); The following unary operations are available on Cs. #include __isl_give isl_val *isl_val_abs(__isl_take isl_val *v); __isl_give isl_val *isl_val_neg(__isl_take isl_val *v); __isl_give isl_val *isl_val_floor(__isl_take isl_val *v); __isl_give isl_val *isl_val_ceil(__isl_take isl_val *v); __isl_give isl_val *isl_val_trunc(__isl_take isl_val *v); The following binary operations are available on Cs. #include __isl_give isl_val *isl_val_abs(__isl_take isl_val *v); __isl_give isl_val *isl_val_neg(__isl_take isl_val *v); __isl_give isl_val *isl_val_floor(__isl_take isl_val *v); __isl_give isl_val *isl_val_ceil(__isl_take isl_val *v); __isl_give isl_val *isl_val_trunc(__isl_take isl_val *v); __isl_give isl_val *isl_val_2exp(__isl_take isl_val *v); __isl_give isl_val *isl_val_min(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_max(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_add(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_add_ui(__isl_take isl_val *v1, unsigned long v2); __isl_give isl_val *isl_val_sub(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_sub_ui(__isl_take isl_val *v1, unsigned long v2); __isl_give isl_val *isl_val_mul(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_mul_ui(__isl_take isl_val *v1, unsigned long v2); __isl_give isl_val *isl_val_div(__isl_take isl_val *v1, __isl_take isl_val *v2); On integer values, we additionally have the following operations. #include __isl_give isl_val *isl_val_2exp(__isl_take isl_val *v); __isl_give isl_val *isl_val_mod(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_gcd(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_gcdext(__isl_take isl_val *v1, __isl_take isl_val *v2, __isl_give isl_val **x, __isl_give isl_val **y); The function C returns the greatest common divisor g of C and C as well as two integers C<*x> and C<*y> such that C<*x> * C + C<*y> * C = g. A value can be read from input using #include __isl_give isl_val *isl_val_read_from_str(isl_ctx *ctx, const char *str); A value can be printed using #include __isl_give isl_printer *isl_printer_print_val( __isl_take isl_printer *p, __isl_keep isl_val *v); =head3 GMP specific functions These functions are only available if C has been compiled with C support. Specific integer and rational values can be created from C values using the following functions. #include __isl_give isl_val *isl_val_int_from_gmp(isl_ctx *ctx, mpz_t z); __isl_give isl_val *isl_val_from_gmp(isl_ctx *ctx, const mpz_t n, const mpz_t d); The numerator and denominator of a rational value can be extracted as C values using the following functions. #include int isl_val_get_num_gmp(__isl_keep isl_val *v, mpz_t z); int isl_val_get_den_gmp(__isl_keep isl_val *v, mpz_t z); =head2 Integers (obsolescent) All operations on integers, mainly the coefficients of the constraints describing the sets and relations, are performed in exact integer arithmetic using C. However, to allow future versions of C to optionally support fixed integer arithmetic, all calls to C are wrapped inside C specific macros. The basic type is C and the operations below are available on this type. The meanings of these operations are essentially the same as their C C counterparts. As always with C types, Cs need to be initialized with C before they can be used and they need to be released with C after the last use. The user should not assume that an C is represented as a C, but should instead explicitly convert between Cs and Cs using C and C whenever a C is required. =over =item isl_int_init(i) =item isl_int_clear(i) =item isl_int_set(r,i) =item isl_int_set_si(r,i) =item isl_int_set_gmp(r,g) =item isl_int_get_gmp(i,g) =item isl_int_abs(r,i) =item isl_int_neg(r,i) =item isl_int_swap(i,j) =item isl_int_swap_or_set(i,j) =item isl_int_add_ui(r,i,j) =item isl_int_sub_ui(r,i,j) =item isl_int_add(r,i,j) =item isl_int_sub(r,i,j) =item isl_int_mul(r,i,j) =item isl_int_mul_ui(r,i,j) =item isl_int_addmul(r,i,j) =item isl_int_submul(r,i,j) =item isl_int_gcd(r,i,j) =item isl_int_lcm(r,i,j) =item isl_int_divexact(r,i,j) =item isl_int_cdiv_q(r,i,j) =item isl_int_fdiv_q(r,i,j) =item isl_int_fdiv_r(r,i,j) =item isl_int_fdiv_q_ui(r,i,j) =item isl_int_read(r,s) =item isl_int_print(out,i,width) =item isl_int_sgn(i) =item isl_int_cmp(i,j) =item isl_int_cmp_si(i,si) =item isl_int_eq(i,j) =item isl_int_ne(i,j) =item isl_int_lt(i,j) =item isl_int_le(i,j) =item isl_int_gt(i,j) =item isl_int_ge(i,j) =item isl_int_abs_eq(i,j) =item isl_int_abs_ne(i,j) =item isl_int_abs_lt(i,j) =item isl_int_abs_gt(i,j) =item isl_int_abs_ge(i,j) =item isl_int_is_zero(i) =item isl_int_is_one(i) =item isl_int_is_negone(i) =item isl_int_is_pos(i) =item isl_int_is_neg(i) =item isl_int_is_nonpos(i) =item isl_int_is_nonneg(i) =item isl_int_is_divisible_by(i,j) =back =head2 Sets and Relations C uses six types of objects for representing sets and relations, C, C, C, C, C and C. C and C represent sets and relations that can be described as a conjunction of affine constraints, while C and C represent unions of Cs and Cs, respectively. However, all Cs or Cs in the union need to live in the same space. Cs and Cs represent unions of Cs or Cs in I spaces, where spaces are considered different if they have a different number of dimensions and/or different names (see L<"Spaces">). The difference between sets and relations (maps) is that sets have one set of variables, while relations have two sets of variables, input variables and output variables. =head2 Memory Management Since a high-level operation on sets and/or relations usually involves several substeps and since the user is usually not interested in the intermediate results, most functions that return a new object will also release all the objects passed as arguments. If the user still wants to use one or more of these arguments after the function call, she should pass along a copy of the object rather than the object itself. The user is then responsible for making sure that the original object gets used somewhere else or is explicitly freed. The arguments and return values of all documented functions are annotated to make clear which arguments are released and which arguments are preserved. In particular, the following annotations are used =over =item C<__isl_give> C<__isl_give> means that a new object is returned. The user should make sure that the returned pointer is used exactly once as a value for an C<__isl_take> argument. In between, it can be used as a value for as many C<__isl_keep> arguments as the user likes. There is one exception, and that is the case where the pointer returned is C. Is this case, the user is free to use it as an C<__isl_take> argument or not. =item C<__isl_take> C<__isl_take> means that the object the argument points to is taken over by the function and may no longer be used by the user as an argument to any other function. The pointer value must be one returned by a function returning an C<__isl_give> pointer. If the user passes in a C value, then this will be treated as an error in the sense that the function will not perform its usual operation. However, it will still make sure that all the other C<__isl_take> arguments are released. =item C<__isl_keep> C<__isl_keep> means that the function will only use the object temporarily. After the function has finished, the user can still use it as an argument to other functions. A C value will be treated in the same way as a C value for an C<__isl_take> argument. =back =head2 Error Handling C supports different ways to react in case a runtime error is triggered. Runtime errors arise, e.g., if a function such as C is called with two maps that have incompatible spaces. There are three possible ways to react on error: to warn, to continue or to abort. The default behavior is to warn. In this mode, C prints a warning, stores the last error in the corresponding C and the function in which the error was triggered returns C. An error does not corrupt internal state, such that isl can continue to be used. C also provides functions to read the last error and to reset the memory that stores the last error. The last error is only stored for information purposes. Its presence does not change the behavior of C. Hence, resetting an error is not required to continue to use isl, but only to observe new errors. #include enum isl_error isl_ctx_last_error(isl_ctx *ctx); void isl_ctx_reset_error(isl_ctx *ctx); Another option is to continue on error. This is similar to warn on error mode, except that C does not print any warning. This allows a program to implement its own error reporting. The last option is to directly abort the execution of the program from within the isl library. This makes it obviously impossible to recover from an error, but it allows to directly spot the error location. By aborting on error, debuggers break at the location the error occurred and can provide a stack trace. Other tools that automatically provide stack traces on abort or that do not want to continue execution after an error was triggered may also prefer to abort on error. The on error behavior of isl can be specified by calling C or by setting the command line option C<--isl-on-error>. Valid arguments for the function call are C, C and C. The choices for the command line option are C, C and C. It is also possible to query the current error mode. #include int isl_options_set_on_error(isl_ctx *ctx, int val); int isl_options_get_on_error(isl_ctx *ctx); =head2 Identifiers Identifiers are used to identify both individual dimensions and tuples of dimensions. They consist of an optional name and an optional user pointer. The name and the user pointer cannot both be C, however. Identifiers with the same name but different pointer values are considered to be distinct. Similarly, identifiers with different names but the same pointer value are also considered to be distinct. Equal identifiers are represented using the same object. Pairs of identifiers can therefore be tested for equality using the C<==> operator. Identifiers can be constructed, copied, freed, inspected and printed using the following functions. #include __isl_give isl_id *isl_id_alloc(isl_ctx *ctx, __isl_keep const char *name, void *user); __isl_give isl_id *isl_id_set_free_user( __isl_take isl_id *id, __isl_give void (*free_user)(void *user)); __isl_give isl_id *isl_id_copy(isl_id *id); void *isl_id_free(__isl_take isl_id *id); isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id); void *isl_id_get_user(__isl_keep isl_id *id); __isl_keep const char *isl_id_get_name(__isl_keep isl_id *id); __isl_give isl_printer *isl_printer_print_id( __isl_take isl_printer *p, __isl_keep isl_id *id); The callback set by C is called on the user pointer when the last reference to the C is freed. Note that C returns a pointer to some internal data structure, so the result can only be used while the corresponding C is alive. =head2 Spaces Whenever a new set, relation or similiar object is created from scratch, the space in which it lives needs to be specified using an C. Each space involves zero or more parameters and zero, one or two tuples of set or input/output dimensions. The parameters and dimensions are identified by an C and a position. The type C refers to parameters, the type C refers to set dimensions (for spaces with a single tuple of dimensions) and the types C and C refer to input and output dimensions (for spaces with two tuples of dimensions). Local spaces (see L) also contain dimensions of type C. Note that parameters are only identified by their position within a given object. Across different objects, parameters are (usually) identified by their names or identifiers. Only unnamed parameters are identified by their positions across objects. The use of unnamed parameters is discouraged. #include __isl_give isl_space *isl_space_alloc(isl_ctx *ctx, unsigned nparam, unsigned n_in, unsigned n_out); __isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx, unsigned nparam); __isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx, unsigned nparam, unsigned dim); __isl_give isl_space *isl_space_copy(__isl_keep isl_space *space); void *isl_space_free(__isl_take isl_space *space); unsigned isl_space_dim(__isl_keep isl_space *space, enum isl_dim_type type); The space used for creating a parameter domain needs to be created using C. For other sets, the space needs to be created using C, while for a relation, the space needs to be created using C. C can be used to find out the number of dimensions of each type in a space, where type may be C, C (only for relations), C (only for relations), C (only for sets) or C. To check whether a given space is that of a set or a map or whether it is a parameter space, use these functions: #include int isl_space_is_params(__isl_keep isl_space *space); int isl_space_is_set(__isl_keep isl_space *space); int isl_space_is_map(__isl_keep isl_space *space); Spaces can be compared using the following functions: #include int isl_space_is_equal(__isl_keep isl_space *space1, __isl_keep isl_space *space2); int isl_space_is_domain(__isl_keep isl_space *space1, __isl_keep isl_space *space2); int isl_space_is_range(__isl_keep isl_space *space1, __isl_keep isl_space *space2); C checks whether the first argument is equal to the domain of the second argument. This requires in particular that the first argument is a set space and that the second argument is a map space. It is often useful to create objects that live in the same space as some other object. This can be accomplished by creating the new objects (see L or L) based on the space of the original object. #include __isl_give isl_space *isl_basic_set_get_space( __isl_keep isl_basic_set *bset); __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set); #include __isl_give isl_space *isl_union_set_get_space( __isl_keep isl_union_set *uset); #include __isl_give isl_space *isl_basic_map_get_space( __isl_keep isl_basic_map *bmap); __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map); #include __isl_give isl_space *isl_union_map_get_space( __isl_keep isl_union_map *umap); #include __isl_give isl_space *isl_constraint_get_space( __isl_keep isl_constraint *constraint); #include __isl_give isl_space *isl_qpolynomial_get_domain_space( __isl_keep isl_qpolynomial *qp); __isl_give isl_space *isl_qpolynomial_get_space( __isl_keep isl_qpolynomial *qp); __isl_give isl_space *isl_qpolynomial_fold_get_space( __isl_keep isl_qpolynomial_fold *fold); __isl_give isl_space *isl_pw_qpolynomial_get_domain_space( __isl_keep isl_pw_qpolynomial *pwqp); __isl_give isl_space *isl_pw_qpolynomial_get_space( __isl_keep isl_pw_qpolynomial *pwqp); __isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space( __isl_keep isl_pw_qpolynomial_fold *pwf); __isl_give isl_space *isl_pw_qpolynomial_fold_get_space( __isl_keep isl_pw_qpolynomial_fold *pwf); __isl_give isl_space *isl_union_pw_qpolynomial_get_space( __isl_keep isl_union_pw_qpolynomial *upwqp); __isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space( __isl_keep isl_union_pw_qpolynomial_fold *upwf); #include __isl_give isl_space *isl_multi_val_get_space( __isl_keep isl_multi_val *mv); #include __isl_give isl_space *isl_aff_get_domain_space( __isl_keep isl_aff *aff); __isl_give isl_space *isl_aff_get_space( __isl_keep isl_aff *aff); __isl_give isl_space *isl_pw_aff_get_domain_space( __isl_keep isl_pw_aff *pwaff); __isl_give isl_space *isl_pw_aff_get_space( __isl_keep isl_pw_aff *pwaff); __isl_give isl_space *isl_multi_aff_get_domain_space( __isl_keep isl_multi_aff *maff); __isl_give isl_space *isl_multi_aff_get_space( __isl_keep isl_multi_aff *maff); __isl_give isl_space *isl_pw_multi_aff_get_domain_space( __isl_keep isl_pw_multi_aff *pma); __isl_give isl_space *isl_pw_multi_aff_get_space( __isl_keep isl_pw_multi_aff *pma); __isl_give isl_space *isl_union_pw_multi_aff_get_space( __isl_keep isl_union_pw_multi_aff *upma); __isl_give isl_space *isl_multi_pw_aff_get_domain_space( __isl_keep isl_multi_pw_aff *mpa); __isl_give isl_space *isl_multi_pw_aff_get_space( __isl_keep isl_multi_pw_aff *mpa); #include __isl_give isl_space *isl_point_get_space( __isl_keep isl_point *pnt); The identifiers or names of the individual dimensions may be set or read off using the following functions. #include __isl_give isl_space *isl_space_set_dim_id( __isl_take isl_space *space, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); int isl_space_has_dim_id(__isl_keep isl_space *space, enum isl_dim_type type, unsigned pos); __isl_give isl_id *isl_space_get_dim_id( __isl_keep isl_space *space, enum isl_dim_type type, unsigned pos); __isl_give isl_space *isl_space_set_dim_name( __isl_take isl_space *space, enum isl_dim_type type, unsigned pos, __isl_keep const char *name); int isl_space_has_dim_name(__isl_keep isl_space *space, enum isl_dim_type type, unsigned pos); __isl_keep const char *isl_space_get_dim_name( __isl_keep isl_space *space, enum isl_dim_type type, unsigned pos); Note that C returns a pointer to some internal data structure, so the result can only be used while the corresponding C is alive. Also note that every function that operates on two sets or relations requires that both arguments have the same parameters. This also means that if one of the arguments has named parameters, then the other needs to have named parameters too and the names need to match. Pairs of C, C, C and/or C arguments may have different parameters (as long as they are named), in which case the result will have as parameters the union of the parameters of the arguments. Given the identifier or name of a dimension (typically a parameter), its position can be obtained from the following function. #include int isl_space_find_dim_by_id(__isl_keep isl_space *space, enum isl_dim_type type, __isl_keep isl_id *id); int isl_space_find_dim_by_name(__isl_keep isl_space *space, enum isl_dim_type type, const char *name); The identifiers or names of entire spaces may be set or read off using the following functions. #include __isl_give isl_space *isl_space_set_tuple_id( __isl_take isl_space *space, enum isl_dim_type type, __isl_take isl_id *id); __isl_give isl_space *isl_space_reset_tuple_id( __isl_take isl_space *space, enum isl_dim_type type); int isl_space_has_tuple_id(__isl_keep isl_space *space, enum isl_dim_type type); __isl_give isl_id *isl_space_get_tuple_id( __isl_keep isl_space *space, enum isl_dim_type type); __isl_give isl_space *isl_space_set_tuple_name( __isl_take isl_space *space, enum isl_dim_type type, const char *s); int isl_space_has_tuple_name(__isl_keep isl_space *space, enum isl_dim_type type); const char *isl_space_get_tuple_name(__isl_keep isl_space *space, enum isl_dim_type type); The C argument needs to be one of C, C or C. As with C, the C function returns a pointer to some internal data structure. Binary operations require the corresponding spaces of their arguments to have the same name. Spaces can be nested. In particular, the domain of a set or the domain or range of a relation can be a nested relation. The following functions can be used to construct and deconstruct such nested spaces. #include int isl_space_is_wrapping(__isl_keep isl_space *space); __isl_give isl_space *isl_space_wrap(__isl_take isl_space *space); __isl_give isl_space *isl_space_unwrap(__isl_take isl_space *space); The input to C and C should be the space of a set, while that of C should be the space of a relation. Conversely, the output of C is the space of a relation, while that of C is the space of a set. Spaces can be created from other spaces using the following functions. __isl_give isl_space *isl_space_domain(__isl_take isl_space *space); __isl_give isl_space *isl_space_from_domain(__isl_take isl_space *space); __isl_give isl_space *isl_space_range(__isl_take isl_space *space); __isl_give isl_space *isl_space_from_range(__isl_take isl_space *space); __isl_give isl_space *isl_space_params( __isl_take isl_space *space); __isl_give isl_space *isl_space_set_from_params( __isl_take isl_space *space); __isl_give isl_space *isl_space_reverse(__isl_take isl_space *space); __isl_give isl_space *isl_space_join(__isl_take isl_space *left, __isl_take isl_space *right); __isl_give isl_space *isl_space_align_params( __isl_take isl_space *space1, __isl_take isl_space *space2) __isl_give isl_space *isl_space_insert_dims(__isl_take isl_space *space, enum isl_dim_type type, unsigned pos, unsigned n); __isl_give isl_space *isl_space_add_dims(__isl_take isl_space *space, enum isl_dim_type type, unsigned n); __isl_give isl_space *isl_space_drop_dims(__isl_take isl_space *space, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_space *isl_space_move_dims(__isl_take isl_space *space, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); __isl_give isl_space *isl_space_map_from_set( __isl_take isl_space *space); __isl_give isl_space *isl_space_map_from_domain_and_range( __isl_take isl_space *domain, __isl_take isl_space *range); __isl_give isl_space *isl_space_zip(__isl_take isl_space *space); __isl_give isl_space *isl_space_curry( __isl_take isl_space *space); __isl_give isl_space *isl_space_uncurry( __isl_take isl_space *space); Note that if dimensions are added or removed from a space, then the name and the internal structure are lost. =head2 Local Spaces A local space is essentially a space with zero or more existentially quantified variables. The local space of a (constraint of a) basic set or relation can be obtained using the following functions. #include __isl_give isl_local_space *isl_constraint_get_local_space( __isl_keep isl_constraint *constraint); #include __isl_give isl_local_space *isl_basic_set_get_local_space( __isl_keep isl_basic_set *bset); #include __isl_give isl_local_space *isl_basic_map_get_local_space( __isl_keep isl_basic_map *bmap); A new local space can be created from a space using #include __isl_give isl_local_space *isl_local_space_from_space( __isl_take isl_space *space); They can be inspected, modified, copied and freed using the following functions. #include isl_ctx *isl_local_space_get_ctx( __isl_keep isl_local_space *ls); int isl_local_space_is_set(__isl_keep isl_local_space *ls); int isl_local_space_dim(__isl_keep isl_local_space *ls, enum isl_dim_type type); int isl_local_space_has_dim_id( __isl_keep isl_local_space *ls, enum isl_dim_type type, unsigned pos); __isl_give isl_id *isl_local_space_get_dim_id( __isl_keep isl_local_space *ls, enum isl_dim_type type, unsigned pos); int isl_local_space_has_dim_name( __isl_keep isl_local_space *ls, enum isl_dim_type type, unsigned pos) const char *isl_local_space_get_dim_name( __isl_keep isl_local_space *ls, enum isl_dim_type type, unsigned pos); __isl_give isl_local_space *isl_local_space_set_dim_name( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos, const char *s); __isl_give isl_local_space *isl_local_space_set_dim_id( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); __isl_give isl_space *isl_local_space_get_space( __isl_keep isl_local_space *ls); __isl_give isl_aff *isl_local_space_get_div( __isl_keep isl_local_space *ls, int pos); __isl_give isl_local_space *isl_local_space_copy( __isl_keep isl_local_space *ls); void *isl_local_space_free(__isl_take isl_local_space *ls); Note that C can only be used on local spaces of sets. Two local spaces can be compared using int isl_local_space_is_equal(__isl_keep isl_local_space *ls1, __isl_keep isl_local_space *ls2); Local spaces can be created from other local spaces using the following functions. __isl_give isl_local_space *isl_local_space_domain( __isl_take isl_local_space *ls); __isl_give isl_local_space *isl_local_space_range( __isl_take isl_local_space *ls); __isl_give isl_local_space *isl_local_space_from_domain( __isl_take isl_local_space *ls); __isl_give isl_local_space *isl_local_space_intersect( __isl_take isl_local_space *ls1, __isl_take isl_local_space *ls2); __isl_give isl_local_space *isl_local_space_add_dims( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned n); __isl_give isl_local_space *isl_local_space_insert_dims( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_local_space *isl_local_space_drop_dims( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned first, unsigned n); =head2 Input and Output C supports its own input/output format, which is similar to the C format, but also supports the C format in some cases. =head3 C format The C format is similar to that of C, but has a different syntax for describing the parameters and allows for the definition of an existentially quantified variable as the integer division of an affine expression. For example, the set of integers C between C<0> and C such that C can be described as [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and i - 10 a <= 6) } A set or relation can have several disjuncts, separated by the keyword C. Each disjunct is either a conjunction of constraints or a projection (C) of a conjunction of constraints. The constraints are separated by the keyword C. =head3 C format If the represented set is a union, then the first line contains a single number representing the number of disjuncts. Otherwise, a line containing the number C<1> is optional. Each disjunct is represented by a matrix of constraints. The first line contains two numbers representing the number of rows and columns, where the number of rows is equal to the number of constraints and the number of columns is equal to two plus the number of variables. The following lines contain the actual rows of the constraint matrix. In each row, the first column indicates whether the constraint is an equality (C<0>) or inequality (C<1>). The final column corresponds to the constant term. If the set is parametric, then the coefficients of the parameters appear in the last columns before the constant column. The coefficients of any existentially quantified variables appear between those of the set variables and those of the parameters. =head3 Extended C format The extended C format is nearly identical to the C format. The only difference is that the line containing the number of rows and columns of a constraint matrix also contains four additional numbers: the number of output dimensions, the number of input dimensions, the number of local dimensions (i.e., the number of existentially quantified variables) and the number of parameters. For sets, the number of ``output'' dimensions is equal to the number of set dimensions, while the number of ``input'' dimensions is zero. =head3 Input #include __isl_give isl_basic_set *isl_basic_set_read_from_file( isl_ctx *ctx, FILE *input); __isl_give isl_basic_set *isl_basic_set_read_from_str( isl_ctx *ctx, const char *str); __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx, FILE *input); __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx, const char *str); #include __isl_give isl_basic_map *isl_basic_map_read_from_file( isl_ctx *ctx, FILE *input); __isl_give isl_basic_map *isl_basic_map_read_from_str( isl_ctx *ctx, const char *str); __isl_give isl_map *isl_map_read_from_file( isl_ctx *ctx, FILE *input); __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx, const char *str); #include __isl_give isl_union_set *isl_union_set_read_from_file( isl_ctx *ctx, FILE *input); __isl_give isl_union_set *isl_union_set_read_from_str( isl_ctx *ctx, const char *str); #include __isl_give isl_union_map *isl_union_map_read_from_file( isl_ctx *ctx, FILE *input); __isl_give isl_union_map *isl_union_map_read_from_str( isl_ctx *ctx, const char *str); The input format is autodetected and may be either the C format or the C format. =head3 Output Before anything can be printed, an C needs to be created. __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx, FILE *file); __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx); void *isl_printer_free(__isl_take isl_printer *printer); __isl_give char *isl_printer_get_str( __isl_keep isl_printer *printer); The printer can be inspected using the following functions. FILE *isl_printer_get_file( __isl_keep isl_printer *printer); int isl_printer_get_output_format( __isl_keep isl_printer *p); The behavior of the printer can be modified in various ways __isl_give isl_printer *isl_printer_set_output_format( __isl_take isl_printer *p, int output_format); __isl_give isl_printer *isl_printer_set_indent( __isl_take isl_printer *p, int indent); __isl_give isl_printer *isl_printer_indent( __isl_take isl_printer *p, int indent); __isl_give isl_printer *isl_printer_set_prefix( __isl_take isl_printer *p, const char *prefix); __isl_give isl_printer *isl_printer_set_suffix( __isl_take isl_printer *p, const char *suffix); The C may be either C, C, C, C or C and defaults to C. Each line in the output is indented by C (set by C) spaces (default: 0), prefixed by C and suffixed by C. In the C format output, the coefficients of the existentially quantified variables appear between those of the set variables and those of the parameters. The function C increases the indentation by the specified amount (which may be negative). To actually print something, use #include __isl_give isl_printer *isl_printer_print_double( __isl_take isl_printer *p, double d); #include __isl_give isl_printer *isl_printer_print_basic_set( __isl_take isl_printer *printer, __isl_keep isl_basic_set *bset); __isl_give isl_printer *isl_printer_print_set( __isl_take isl_printer *printer, __isl_keep isl_set *set); #include __isl_give isl_printer *isl_printer_print_basic_map( __isl_take isl_printer *printer, __isl_keep isl_basic_map *bmap); __isl_give isl_printer *isl_printer_print_map( __isl_take isl_printer *printer, __isl_keep isl_map *map); #include __isl_give isl_printer *isl_printer_print_union_set( __isl_take isl_printer *p, __isl_keep isl_union_set *uset); #include __isl_give isl_printer *isl_printer_print_union_map( __isl_take isl_printer *p, __isl_keep isl_union_map *umap); When called on a file printer, the following function flushes the file. When called on a string printer, the buffer is cleared. __isl_give isl_printer *isl_printer_flush( __isl_take isl_printer *p); =head2 Creating New Sets and Relations C has functions for creating some standard sets and relations. =over =item * Empty sets and relations __isl_give isl_basic_set *isl_basic_set_empty( __isl_take isl_space *space); __isl_give isl_basic_map *isl_basic_map_empty( __isl_take isl_space *space); __isl_give isl_set *isl_set_empty( __isl_take isl_space *space); __isl_give isl_map *isl_map_empty( __isl_take isl_space *space); __isl_give isl_union_set *isl_union_set_empty( __isl_take isl_space *space); __isl_give isl_union_map *isl_union_map_empty( __isl_take isl_space *space); For Cs and Cs, the space is only used to specify the parameters. =item * Universe sets and relations __isl_give isl_basic_set *isl_basic_set_universe( __isl_take isl_space *space); __isl_give isl_basic_map *isl_basic_map_universe( __isl_take isl_space *space); __isl_give isl_set *isl_set_universe( __isl_take isl_space *space); __isl_give isl_map *isl_map_universe( __isl_take isl_space *space); __isl_give isl_union_set *isl_union_set_universe( __isl_take isl_union_set *uset); __isl_give isl_union_map *isl_union_map_universe( __isl_take isl_union_map *umap); The sets and relations constructed by the functions above contain all integer values, while those constructed by the functions below only contain non-negative values. __isl_give isl_basic_set *isl_basic_set_nat_universe( __isl_take isl_space *space); __isl_give isl_basic_map *isl_basic_map_nat_universe( __isl_take isl_space *space); __isl_give isl_set *isl_set_nat_universe( __isl_take isl_space *space); __isl_give isl_map *isl_map_nat_universe( __isl_take isl_space *space); =item * Identity relations __isl_give isl_basic_map *isl_basic_map_identity( __isl_take isl_space *space); __isl_give isl_map *isl_map_identity( __isl_take isl_space *space); The number of input and output dimensions in C needs to be the same. =item * Lexicographic order __isl_give isl_map *isl_map_lex_lt( __isl_take isl_space *set_space); __isl_give isl_map *isl_map_lex_le( __isl_take isl_space *set_space); __isl_give isl_map *isl_map_lex_gt( __isl_take isl_space *set_space); __isl_give isl_map *isl_map_lex_ge( __isl_take isl_space *set_space); __isl_give isl_map *isl_map_lex_lt_first( __isl_take isl_space *space, unsigned n); __isl_give isl_map *isl_map_lex_le_first( __isl_take isl_space *space, unsigned n); __isl_give isl_map *isl_map_lex_gt_first( __isl_take isl_space *space, unsigned n); __isl_give isl_map *isl_map_lex_ge_first( __isl_take isl_space *space, unsigned n); The first four functions take a space for a B and return relations that express that the elements in the domain are lexicographically less (C), less or equal (C), greater (C) or greater or equal (C) than the elements in the range. The last four functions take a space for a map and return relations that express that the first C dimensions in the domain are lexicographically less (C), less or equal (C), greater (C) or greater or equal (C) than the first C dimensions in the range. =back A basic set or relation can be converted to a set or relation using the following functions. __isl_give isl_set *isl_set_from_basic_set( __isl_take isl_basic_set *bset); __isl_give isl_map *isl_map_from_basic_map( __isl_take isl_basic_map *bmap); Sets and relations can be converted to union sets and relations using the following functions. __isl_give isl_union_set *isl_union_set_from_basic_set( __isl_take isl_basic_set *bset); __isl_give isl_union_map *isl_union_map_from_basic_map( __isl_take isl_basic_map *bmap); __isl_give isl_union_set *isl_union_set_from_set( __isl_take isl_set *set); __isl_give isl_union_map *isl_union_map_from_map( __isl_take isl_map *map); The inverse conversions below can only be used if the input union set or relation is known to contain elements in exactly one space. __isl_give isl_set *isl_set_from_union_set( __isl_take isl_union_set *uset); __isl_give isl_map *isl_map_from_union_map( __isl_take isl_union_map *umap); A zero-dimensional (basic) set can be constructed on a given parameter domain using the following function. __isl_give isl_basic_set *isl_basic_set_from_params( __isl_take isl_basic_set *bset); __isl_give isl_set *isl_set_from_params( __isl_take isl_set *set); Sets and relations can be copied and freed again using the following functions. __isl_give isl_basic_set *isl_basic_set_copy( __isl_keep isl_basic_set *bset); __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set); __isl_give isl_union_set *isl_union_set_copy( __isl_keep isl_union_set *uset); __isl_give isl_basic_map *isl_basic_map_copy( __isl_keep isl_basic_map *bmap); __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map); __isl_give isl_union_map *isl_union_map_copy( __isl_keep isl_union_map *umap); void *isl_basic_set_free(__isl_take isl_basic_set *bset); void *isl_set_free(__isl_take isl_set *set); void *isl_union_set_free(__isl_take isl_union_set *uset); void *isl_basic_map_free(__isl_take isl_basic_map *bmap); void *isl_map_free(__isl_take isl_map *map); void *isl_union_map_free(__isl_take isl_union_map *umap); Other sets and relations can be constructed by starting from a universe set or relation, adding equality and/or inequality constraints and then projecting out the existentially quantified variables, if any. Constraints can be constructed, manipulated and added to (or removed from) (basic) sets and relations using the following functions. #include __isl_give isl_constraint *isl_equality_alloc( __isl_take isl_local_space *ls); __isl_give isl_constraint *isl_inequality_alloc( __isl_take isl_local_space *ls); __isl_give isl_constraint *isl_constraint_set_constant( __isl_take isl_constraint *constraint, isl_int v); __isl_give isl_constraint *isl_constraint_set_constant_si( __isl_take isl_constraint *constraint, int v); __isl_give isl_constraint *isl_constraint_set_constant_val( __isl_take isl_constraint *constraint, __isl_take isl_val *v); __isl_give isl_constraint *isl_constraint_set_coefficient( __isl_take isl_constraint *constraint, enum isl_dim_type type, int pos, isl_int v); __isl_give isl_constraint *isl_constraint_set_coefficient_si( __isl_take isl_constraint *constraint, enum isl_dim_type type, int pos, int v); __isl_give isl_constraint * isl_constraint_set_coefficient_val( __isl_take isl_constraint *constraint, enum isl_dim_type type, int pos, isl_val *v); __isl_give isl_basic_map *isl_basic_map_add_constraint( __isl_take isl_basic_map *bmap, __isl_take isl_constraint *constraint); __isl_give isl_basic_set *isl_basic_set_add_constraint( __isl_take isl_basic_set *bset, __isl_take isl_constraint *constraint); __isl_give isl_map *isl_map_add_constraint( __isl_take isl_map *map, __isl_take isl_constraint *constraint); __isl_give isl_set *isl_set_add_constraint( __isl_take isl_set *set, __isl_take isl_constraint *constraint); __isl_give isl_basic_set *isl_basic_set_drop_constraint( __isl_take isl_basic_set *bset, __isl_take isl_constraint *constraint); For example, to create a set containing the even integers between 10 and 42, you would use the following code. isl_space *space; isl_local_space *ls; isl_constraint *c; isl_basic_set *bset; space = isl_space_set_alloc(ctx, 0, 2); bset = isl_basic_set_universe(isl_space_copy(space)); ls = isl_local_space_from_space(space); c = isl_equality_alloc(isl_local_space_copy(ls)); c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1); c = isl_constraint_set_coefficient_si(c, isl_dim_set, 1, 2); bset = isl_basic_set_add_constraint(bset, c); c = isl_inequality_alloc(isl_local_space_copy(ls)); c = isl_constraint_set_constant_si(c, -10); c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, 1); bset = isl_basic_set_add_constraint(bset, c); c = isl_inequality_alloc(ls); c = isl_constraint_set_constant_si(c, 42); c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1); bset = isl_basic_set_add_constraint(bset, c); bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1); Or, alternatively, isl_basic_set *bset; bset = isl_basic_set_read_from_str(ctx, "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}"); A basic set or relation can also be constructed from two matrices describing the equalities and the inequalities. __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices( __isl_take isl_space *space, __isl_take isl_mat *eq, __isl_take isl_mat *ineq, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4); __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices( __isl_take isl_space *space, __isl_take isl_mat *eq, __isl_take isl_mat *ineq, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4, enum isl_dim_type c5); The C arguments indicate the order in which different kinds of variables appear in the input matrices and should be a permutation of C, C, C and C for sets and of C, C, C, C and C for relations. A (basic or union) set or relation can also be constructed from a (union) (piecewise) (multiple) affine expression or a list of affine expressions (See L<"Piecewise Quasi Affine Expressions"> and L<"Piecewise Multiple Quasi Affine Expressions">). __isl_give isl_basic_map *isl_basic_map_from_aff( __isl_take isl_aff *aff); __isl_give isl_map *isl_map_from_aff( __isl_take isl_aff *aff); __isl_give isl_set *isl_set_from_pw_aff( __isl_take isl_pw_aff *pwaff); __isl_give isl_map *isl_map_from_pw_aff( __isl_take isl_pw_aff *pwaff); __isl_give isl_basic_map *isl_basic_map_from_aff_list( __isl_take isl_space *domain_space, __isl_take isl_aff_list *list); __isl_give isl_basic_map *isl_basic_map_from_multi_aff( __isl_take isl_multi_aff *maff) __isl_give isl_map *isl_map_from_multi_aff( __isl_take isl_multi_aff *maff) __isl_give isl_set *isl_set_from_pw_multi_aff( __isl_take isl_pw_multi_aff *pma); __isl_give isl_map *isl_map_from_pw_multi_aff( __isl_take isl_pw_multi_aff *pma); __isl_give isl_union_map * isl_union_map_from_union_pw_multi_aff( __isl_take isl_union_pw_multi_aff *upma); The C argument describes the domain of the resulting basic relation. It is required because the C may consist of zero affine expressions. =head2 Inspecting Sets and Relations Usually, the user should not have to care about the actual constraints of the sets and maps, but should instead apply the abstract operations explained in the following sections. Occasionally, however, it may be required to inspect the individual coefficients of the constraints. This section explains how to do so. In these cases, it may also be useful to have C compute an explicit representation of the existentially quantified variables. __isl_give isl_set *isl_set_compute_divs( __isl_take isl_set *set); __isl_give isl_map *isl_map_compute_divs( __isl_take isl_map *map); __isl_give isl_union_set *isl_union_set_compute_divs( __isl_take isl_union_set *uset); __isl_give isl_union_map *isl_union_map_compute_divs( __isl_take isl_union_map *umap); This explicit representation defines the existentially quantified variables as integer divisions of the other variables, possibly including earlier existentially quantified variables. An explicitly represented existentially quantified variable therefore has a unique value when the values of the other variables are known. If, furthermore, the same existentials, i.e., existentials with the same explicit representations, should appear in the same order in each of the disjuncts of a set or map, then the user should call either of the following functions. __isl_give isl_set *isl_set_align_divs( __isl_take isl_set *set); __isl_give isl_map *isl_map_align_divs( __isl_take isl_map *map); Alternatively, the existentially quantified variables can be removed using the following functions, which compute an overapproximation. __isl_give isl_basic_set *isl_basic_set_remove_divs( __isl_take isl_basic_set *bset); __isl_give isl_basic_map *isl_basic_map_remove_divs( __isl_take isl_basic_map *bmap); __isl_give isl_set *isl_set_remove_divs( __isl_take isl_set *set); __isl_give isl_map *isl_map_remove_divs( __isl_take isl_map *map); It is also possible to only remove those divs that are defined in terms of a given range of dimensions or only those for which no explicit representation is known. __isl_give isl_basic_set * isl_basic_set_remove_divs_involving_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_map * isl_basic_map_remove_divs_involving_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_set *isl_set_remove_divs_involving_dims( __isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_map *isl_map_remove_divs_involving_dims( __isl_take isl_map *map, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_set * isl_basic_set_remove_unknown_divs( __isl_take isl_basic_set *bset); __isl_give isl_set *isl_set_remove_unknown_divs( __isl_take isl_set *set); __isl_give isl_map *isl_map_remove_unknown_divs( __isl_take isl_map *map); To iterate over all the sets or maps in a union set or map, use int isl_union_set_foreach_set(__isl_keep isl_union_set *uset, int (*fn)(__isl_take isl_set *set, void *user), void *user); int isl_union_map_foreach_map(__isl_keep isl_union_map *umap, int (*fn)(__isl_take isl_map *map, void *user), void *user); The number of sets or maps in a union set or map can be obtained from int isl_union_set_n_set(__isl_keep isl_union_set *uset); int isl_union_map_n_map(__isl_keep isl_union_map *umap); To extract the set or map in a given space from a union, use __isl_give isl_set *isl_union_set_extract_set( __isl_keep isl_union_set *uset, __isl_take isl_space *space); __isl_give isl_map *isl_union_map_extract_map( __isl_keep isl_union_map *umap, __isl_take isl_space *space); To iterate over all the basic sets or maps in a set or map, use int isl_set_foreach_basic_set(__isl_keep isl_set *set, int (*fn)(__isl_take isl_basic_set *bset, void *user), void *user); int isl_map_foreach_basic_map(__isl_keep isl_map *map, int (*fn)(__isl_take isl_basic_map *bmap, void *user), void *user); The callback function C should return 0 if successful and -1 if an error occurs. In the latter case, or if any other error occurs, the above functions will return -1. It should be noted that C does not guarantee that the basic sets or maps passed to C are disjoint. If this is required, then the user should call one of the following functions first. __isl_give isl_set *isl_set_make_disjoint( __isl_take isl_set *set); __isl_give isl_map *isl_map_make_disjoint( __isl_take isl_map *map); The number of basic sets in a set can be obtained from int isl_set_n_basic_set(__isl_keep isl_set *set); To iterate over the constraints of a basic set or map, use #include int isl_basic_set_n_constraint( __isl_keep isl_basic_set *bset); int isl_basic_set_foreach_constraint( __isl_keep isl_basic_set *bset, int (*fn)(__isl_take isl_constraint *c, void *user), void *user); int isl_basic_map_foreach_constraint( __isl_keep isl_basic_map *bmap, int (*fn)(__isl_take isl_constraint *c, void *user), void *user); void *isl_constraint_free(__isl_take isl_constraint *c); Again, the callback function C should return 0 if successful and -1 if an error occurs. In the latter case, or if any other error occurs, the above functions will return -1. The constraint C represents either an equality or an inequality. Use the following function to find out whether a constraint represents an equality. If not, it represents an inequality. int isl_constraint_is_equality( __isl_keep isl_constraint *constraint); The coefficients of the constraints can be inspected using the following functions. int isl_constraint_is_lower_bound( __isl_keep isl_constraint *constraint, enum isl_dim_type type, unsigned pos); int isl_constraint_is_upper_bound( __isl_keep isl_constraint *constraint, enum isl_dim_type type, unsigned pos); void isl_constraint_get_constant( __isl_keep isl_constraint *constraint, isl_int *v); __isl_give isl_val *isl_constraint_get_constant_val( __isl_keep isl_constraint *constraint); void isl_constraint_get_coefficient( __isl_keep isl_constraint *constraint, enum isl_dim_type type, int pos, isl_int *v); __isl_give isl_val *isl_constraint_get_coefficient_val( __isl_keep isl_constraint *constraint, enum isl_dim_type type, int pos); int isl_constraint_involves_dims( __isl_keep isl_constraint *constraint, enum isl_dim_type type, unsigned first, unsigned n); The explicit representations of the existentially quantified variables can be inspected using the following function. Note that the user is only allowed to use this function if the inspected set or map is the result of a call to C or C. The existentially quantified variable is equal to the floor of the returned affine expression. The affine expression itself can be inspected using the functions in L<"Piecewise Quasi Affine Expressions">. __isl_give isl_aff *isl_constraint_get_div( __isl_keep isl_constraint *constraint, int pos); To obtain the constraints of a basic set or map in matrix form, use the following functions. __isl_give isl_mat *isl_basic_set_equalities_matrix( __isl_keep isl_basic_set *bset, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4); __isl_give isl_mat *isl_basic_set_inequalities_matrix( __isl_keep isl_basic_set *bset, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4); __isl_give isl_mat *isl_basic_map_equalities_matrix( __isl_keep isl_basic_map *bmap, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4, enum isl_dim_type c5); __isl_give isl_mat *isl_basic_map_inequalities_matrix( __isl_keep isl_basic_map *bmap, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4, enum isl_dim_type c5); The C arguments dictate the order in which different kinds of variables appear in the resulting matrix and should be a permutation of C, C, C, C and C. The number of parameters, input, output or set dimensions can be obtained using the following functions. unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset, enum isl_dim_type type); unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap, enum isl_dim_type type); unsigned isl_set_dim(__isl_keep isl_set *set, enum isl_dim_type type); unsigned isl_map_dim(__isl_keep isl_map *map, enum isl_dim_type type); To check whether the description of a set or relation depends on one or more given dimensions, it is not necessary to iterate over all constraints. Instead the following functions can be used. int isl_basic_set_involves_dims( __isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n); int isl_set_involves_dims(__isl_keep isl_set *set, enum isl_dim_type type, unsigned first, unsigned n); int isl_basic_map_involves_dims( __isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n); int isl_map_involves_dims(__isl_keep isl_map *map, enum isl_dim_type type, unsigned first, unsigned n); Similarly, the following functions can be used to check whether a given dimension is involved in any lower or upper bound. int isl_set_dim_has_any_lower_bound(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); int isl_set_dim_has_any_upper_bound(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); Note that these functions return true even if there is a bound on the dimension on only some of the basic sets of C. To check if they have a bound for all of the basic sets in C, use the following functions instead. int isl_set_dim_has_lower_bound(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); int isl_set_dim_has_upper_bound(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); The identifiers or names of the domain and range spaces of a set or relation can be read off or set using the following functions. __isl_give isl_set *isl_set_set_tuple_id( __isl_take isl_set *set, __isl_take isl_id *id); __isl_give isl_set *isl_set_reset_tuple_id( __isl_take isl_set *set); int isl_set_has_tuple_id(__isl_keep isl_set *set); __isl_give isl_id *isl_set_get_tuple_id( __isl_keep isl_set *set); __isl_give isl_map *isl_map_set_tuple_id( __isl_take isl_map *map, enum isl_dim_type type, __isl_take isl_id *id); __isl_give isl_map *isl_map_reset_tuple_id( __isl_take isl_map *map, enum isl_dim_type type); int isl_map_has_tuple_id(__isl_keep isl_map *map, enum isl_dim_type type); __isl_give isl_id *isl_map_get_tuple_id( __isl_keep isl_map *map, enum isl_dim_type type); const char *isl_basic_set_get_tuple_name( __isl_keep isl_basic_set *bset); __isl_give isl_basic_set *isl_basic_set_set_tuple_name( __isl_take isl_basic_set *set, const char *s); int isl_set_has_tuple_name(__isl_keep isl_set *set); const char *isl_set_get_tuple_name( __isl_keep isl_set *set); const char *isl_basic_map_get_tuple_name( __isl_keep isl_basic_map *bmap, enum isl_dim_type type); __isl_give isl_basic_map *isl_basic_map_set_tuple_name( __isl_take isl_basic_map *bmap, enum isl_dim_type type, const char *s); int isl_map_has_tuple_name(__isl_keep isl_map *map, enum isl_dim_type type); const char *isl_map_get_tuple_name( __isl_keep isl_map *map, enum isl_dim_type type); As with C, the value returned points to an internal data structure. The identifiers, positions or names of individual dimensions can be read off using the following functions. __isl_give isl_id *isl_basic_set_get_dim_id( __isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned pos); __isl_give isl_set *isl_set_set_dim_id( __isl_take isl_set *set, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); int isl_set_has_dim_id(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); __isl_give isl_id *isl_set_get_dim_id( __isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); int isl_basic_map_has_dim_id( __isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos); __isl_give isl_map *isl_map_set_dim_id( __isl_take isl_map *map, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); int isl_map_has_dim_id(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos); __isl_give isl_id *isl_map_get_dim_id( __isl_keep isl_map *map, enum isl_dim_type type, unsigned pos); int isl_set_find_dim_by_id(__isl_keep isl_set *set, enum isl_dim_type type, __isl_keep isl_id *id); int isl_map_find_dim_by_id(__isl_keep isl_map *map, enum isl_dim_type type, __isl_keep isl_id *id); int isl_set_find_dim_by_name(__isl_keep isl_set *set, enum isl_dim_type type, const char *name); int isl_map_find_dim_by_name(__isl_keep isl_map *map, enum isl_dim_type type, const char *name); const char *isl_constraint_get_dim_name( __isl_keep isl_constraint *constraint, enum isl_dim_type type, unsigned pos); const char *isl_basic_set_get_dim_name( __isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned pos); int isl_set_has_dim_name(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); const char *isl_set_get_dim_name( __isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); const char *isl_basic_map_get_dim_name( __isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos); int isl_map_has_dim_name(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos); const char *isl_map_get_dim_name( __isl_keep isl_map *map, enum isl_dim_type type, unsigned pos); These functions are mostly useful to obtain the identifiers, positions or names of the parameters. Identifiers of individual dimensions are essentially only useful for printing. They are ignored by all other operations and may not be preserved across those operations. =head2 Properties =head3 Unary Properties =over =item * Emptiness The following functions test whether the given set or relation contains any integer points. The ``plain'' variants do not perform any computations, but simply check if the given set or relation is already known to be empty. int isl_basic_set_plain_is_empty(__isl_keep isl_basic_set *bset); int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset); int isl_set_plain_is_empty(__isl_keep isl_set *set); int isl_set_is_empty(__isl_keep isl_set *set); int isl_union_set_is_empty(__isl_keep isl_union_set *uset); int isl_basic_map_plain_is_empty(__isl_keep isl_basic_map *bmap); int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap); int isl_map_plain_is_empty(__isl_keep isl_map *map); int isl_map_is_empty(__isl_keep isl_map *map); int isl_union_map_is_empty(__isl_keep isl_union_map *umap); =item * Universality int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset); int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap); int isl_set_plain_is_universe(__isl_keep isl_set *set); =item * Single-valuedness int isl_basic_map_is_single_valued( __isl_keep isl_basic_map *bmap); int isl_map_plain_is_single_valued( __isl_keep isl_map *map); int isl_map_is_single_valued(__isl_keep isl_map *map); int isl_union_map_is_single_valued(__isl_keep isl_union_map *umap); =item * Injectivity int isl_map_plain_is_injective(__isl_keep isl_map *map); int isl_map_is_injective(__isl_keep isl_map *map); int isl_union_map_plain_is_injective( __isl_keep isl_union_map *umap); int isl_union_map_is_injective( __isl_keep isl_union_map *umap); =item * Bijectivity int isl_map_is_bijective(__isl_keep isl_map *map); int isl_union_map_is_bijective(__isl_keep isl_union_map *umap); =item * Position int isl_basic_map_plain_is_fixed( __isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, isl_int *val); int isl_set_plain_is_fixed(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos, isl_int *val); int isl_map_plain_is_fixed(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos, isl_int *val); Check if the relation obviously lies on a hyperplane where the given dimension has a fixed value and if so, return that value in C<*val>. =item * Space To check whether a set is a parameter domain, use this function: int isl_set_is_params(__isl_keep isl_set *set); int isl_union_set_is_params( __isl_keep isl_union_set *uset); =item * Wrapping The following functions check whether the domain of the given (basic) set is a wrapped relation. int isl_basic_set_is_wrapping( __isl_keep isl_basic_set *bset); int isl_set_is_wrapping(__isl_keep isl_set *set); =item * Internal Product int isl_basic_map_can_zip( __isl_keep isl_basic_map *bmap); int isl_map_can_zip(__isl_keep isl_map *map); Check whether the product of domain and range of the given relation can be computed, i.e., whether both domain and range are nested relations. =item * Currying int isl_basic_map_can_curry( __isl_keep isl_basic_map *bmap); int isl_map_can_curry(__isl_keep isl_map *map); Check whether the domain of the (basic) relation is a wrapped relation. int isl_basic_map_can_uncurry( __isl_keep isl_basic_map *bmap); int isl_map_can_uncurry(__isl_keep isl_map *map); Check whether the range of the (basic) relation is a wrapped relation. =back =head3 Binary Properties =over =item * Equality int isl_set_plain_is_equal(__isl_keep isl_set *set1, __isl_keep isl_set *set2); int isl_set_is_equal(__isl_keep isl_set *set1, __isl_keep isl_set *set2); int isl_union_set_is_equal( __isl_keep isl_union_set *uset1, __isl_keep isl_union_set *uset2); int isl_basic_map_is_equal( __isl_keep isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2); int isl_map_is_equal(__isl_keep isl_map *map1, __isl_keep isl_map *map2); int isl_map_plain_is_equal(__isl_keep isl_map *map1, __isl_keep isl_map *map2); int isl_union_map_is_equal( __isl_keep isl_union_map *umap1, __isl_keep isl_union_map *umap2); =item * Disjointness int isl_set_plain_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2); int isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2); int isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2); =item * Subset int isl_basic_set_is_subset( __isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2); int isl_set_is_subset(__isl_keep isl_set *set1, __isl_keep isl_set *set2); int isl_set_is_strict_subset( __isl_keep isl_set *set1, __isl_keep isl_set *set2); int isl_union_set_is_subset( __isl_keep isl_union_set *uset1, __isl_keep isl_union_set *uset2); int isl_union_set_is_strict_subset( __isl_keep isl_union_set *uset1, __isl_keep isl_union_set *uset2); int isl_basic_map_is_subset( __isl_keep isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2); int isl_basic_map_is_strict_subset( __isl_keep isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2); int isl_map_is_subset( __isl_keep isl_map *map1, __isl_keep isl_map *map2); int isl_map_is_strict_subset( __isl_keep isl_map *map1, __isl_keep isl_map *map2); int isl_union_map_is_subset( __isl_keep isl_union_map *umap1, __isl_keep isl_union_map *umap2); int isl_union_map_is_strict_subset( __isl_keep isl_union_map *umap1, __isl_keep isl_union_map *umap2); Check whether the first argument is a (strict) subset of the second argument. =item * Order int isl_set_plain_cmp(__isl_keep isl_set *set1, __isl_keep isl_set *set2); This function is useful for sorting Cs. The order depends on the internal representation of the inputs. The order is fixed over different calls to the function (assuming the internal representation of the inputs has not changed), but may change over different versions of C. =back =head2 Unary Operations =over =item * Complement __isl_give isl_set *isl_set_complement( __isl_take isl_set *set); __isl_give isl_map *isl_map_complement( __isl_take isl_map *map); =item * Inverse map __isl_give isl_basic_map *isl_basic_map_reverse( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_reverse( __isl_take isl_map *map); __isl_give isl_union_map *isl_union_map_reverse( __isl_take isl_union_map *umap); =item * Projection __isl_give isl_basic_set *isl_basic_set_project_out( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_map *isl_basic_map_project_out( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_set *isl_basic_set_params( __isl_take isl_basic_set *bset); __isl_give isl_basic_set *isl_basic_map_domain( __isl_take isl_basic_map *bmap); __isl_give isl_basic_set *isl_basic_map_range( __isl_take isl_basic_map *bmap); __isl_give isl_set *isl_set_params(__isl_take isl_set *set); __isl_give isl_set *isl_map_params(__isl_take isl_map *map); __isl_give isl_set *isl_map_domain( __isl_take isl_map *bmap); __isl_give isl_set *isl_map_range( __isl_take isl_map *map); __isl_give isl_set *isl_union_set_params( __isl_take isl_union_set *uset); __isl_give isl_set *isl_union_map_params( __isl_take isl_union_map *umap); __isl_give isl_union_set *isl_union_map_domain( __isl_take isl_union_map *umap); __isl_give isl_union_set *isl_union_map_range( __isl_take isl_union_map *umap); __isl_give isl_basic_map *isl_basic_map_domain_map( __isl_take isl_basic_map *bmap); __isl_give isl_basic_map *isl_basic_map_range_map( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map); __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map); __isl_give isl_union_map *isl_union_map_domain_map( __isl_take isl_union_map *umap); __isl_give isl_union_map *isl_union_map_range_map( __isl_take isl_union_map *umap); The functions above construct a (basic, regular or union) relation that maps (a wrapped version of) the input relation to its domain or range. =item * Elimination __isl_give isl_basic_set *isl_basic_set_eliminate( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_set *isl_set_eliminate( __isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_map *isl_basic_map_eliminate( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_map *isl_map_eliminate( __isl_take isl_map *map, enum isl_dim_type type, unsigned first, unsigned n); Eliminate the coefficients for the given dimensions from the constraints, without removing the dimensions. =item * Slicing __isl_give isl_basic_set *isl_basic_set_fix( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned pos, isl_int value); __isl_give isl_basic_set *isl_basic_set_fix_si( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_set *isl_set_fix(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, isl_int value); __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_basic_map *isl_basic_map_fix_si( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_map *isl_map_fix(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, isl_int value); __isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, int value); Intersect the set or relation with the hyperplane where the given dimension has the fixed given value. __isl_give isl_basic_map *isl_basic_map_lower_bound_si( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_basic_map *isl_basic_map_upper_bound_si( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_set *isl_set_lower_bound( __isl_take isl_set *set, enum isl_dim_type type, unsigned pos, isl_int value); __isl_give isl_set *isl_set_lower_bound_si( __isl_take isl_set *set, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_map *isl_map_lower_bound_si( __isl_take isl_map *map, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_set *isl_set_upper_bound( __isl_take isl_set *set, enum isl_dim_type type, unsigned pos, isl_int value); __isl_give isl_set *isl_set_upper_bound_si( __isl_take isl_set *set, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_map *isl_map_upper_bound_si( __isl_take isl_map *map, enum isl_dim_type type, unsigned pos, int value); Intersect the set or relation with the half-space where the given dimension has a value bounded by the fixed given value. __isl_give isl_set *isl_set_equate(__isl_take isl_set *set, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); __isl_give isl_basic_map *isl_basic_map_equate( __isl_take isl_basic_map *bmap, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); __isl_give isl_map *isl_map_equate(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); Intersect the set or relation with the hyperplane where the given dimensions are equal to each other. __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); Intersect the relation with the hyperplane where the given dimensions have opposite values. __isl_give isl_basic_map *isl_basic_map_order_ge( __isl_take isl_basic_map *bmap, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); __isl_give isl_map *isl_map_order_lt(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); __isl_give isl_basic_map *isl_basic_map_order_gt( __isl_take isl_basic_map *bmap, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); __isl_give isl_map *isl_map_order_gt(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); Intersect the relation with the half-space where the given dimensions satisfy the given ordering. =item * Identity __isl_give isl_map *isl_set_identity( __isl_take isl_set *set); __isl_give isl_union_map *isl_union_set_identity( __isl_take isl_union_set *uset); Construct an identity relation on the given (union) set. =item * Deltas __isl_give isl_basic_set *isl_basic_map_deltas( __isl_take isl_basic_map *bmap); __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map); __isl_give isl_union_set *isl_union_map_deltas( __isl_take isl_union_map *umap); These functions return a (basic) set containing the differences between image elements and corresponding domain elements in the input. __isl_give isl_basic_map *isl_basic_map_deltas_map( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_deltas_map( __isl_take isl_map *map); __isl_give isl_union_map *isl_union_map_deltas_map( __isl_take isl_union_map *umap); The functions above construct a (basic, regular or union) relation that maps (a wrapped version of) the input relation to its delta set. =item * Coalescing Simplify the representation of a set or relation by trying to combine pairs of basic sets or relations into a single basic set or relation. __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set); __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map); __isl_give isl_union_set *isl_union_set_coalesce( __isl_take isl_union_set *uset); __isl_give isl_union_map *isl_union_map_coalesce( __isl_take isl_union_map *umap); One of the methods for combining pairs of basic sets or relations can result in coefficients that are much larger than those that appear in the constraints of the input. By default, the coefficients are not allowed to grow larger, but this can be changed by unsetting the following option. int isl_options_set_coalesce_bounded_wrapping( isl_ctx *ctx, int val); int isl_options_get_coalesce_bounded_wrapping( isl_ctx *ctx); =item * Detecting equalities __isl_give isl_basic_set *isl_basic_set_detect_equalities( __isl_take isl_basic_set *bset); __isl_give isl_basic_map *isl_basic_map_detect_equalities( __isl_take isl_basic_map *bmap); __isl_give isl_set *isl_set_detect_equalities( __isl_take isl_set *set); __isl_give isl_map *isl_map_detect_equalities( __isl_take isl_map *map); __isl_give isl_union_set *isl_union_set_detect_equalities( __isl_take isl_union_set *uset); __isl_give isl_union_map *isl_union_map_detect_equalities( __isl_take isl_union_map *umap); Simplify the representation of a set or relation by detecting implicit equalities. =item * Removing redundant constraints __isl_give isl_basic_set *isl_basic_set_remove_redundancies( __isl_take isl_basic_set *bset); __isl_give isl_set *isl_set_remove_redundancies( __isl_take isl_set *set); __isl_give isl_basic_map *isl_basic_map_remove_redundancies( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_remove_redundancies( __isl_take isl_map *map); =item * Convex hull __isl_give isl_basic_set *isl_set_convex_hull( __isl_take isl_set *set); __isl_give isl_basic_map *isl_map_convex_hull( __isl_take isl_map *map); If the input set or relation has any existentially quantified variables, then the result of these operations is currently undefined. =item * Simple hull __isl_give isl_basic_set * isl_set_unshifted_simple_hull( __isl_take isl_set *set); __isl_give isl_basic_map * isl_map_unshifted_simple_hull( __isl_take isl_map *map); __isl_give isl_basic_set *isl_set_simple_hull( __isl_take isl_set *set); __isl_give isl_basic_map *isl_map_simple_hull( __isl_take isl_map *map); __isl_give isl_union_map *isl_union_map_simple_hull( __isl_take isl_union_map *umap); These functions compute a single basic set or relation that contains the whole input set or relation. In particular, the output is described by translates of the constraints describing the basic sets or relations in the input. In case of C, only the original constraints are used, without any translation. =begin latex (See \autoref{s:simple hull}.) =end latex =item * Affine hull __isl_give isl_basic_set *isl_basic_set_affine_hull( __isl_take isl_basic_set *bset); __isl_give isl_basic_set *isl_set_affine_hull( __isl_take isl_set *set); __isl_give isl_union_set *isl_union_set_affine_hull( __isl_take isl_union_set *uset); __isl_give isl_basic_map *isl_basic_map_affine_hull( __isl_take isl_basic_map *bmap); __isl_give isl_basic_map *isl_map_affine_hull( __isl_take isl_map *map); __isl_give isl_union_map *isl_union_map_affine_hull( __isl_take isl_union_map *umap); In case of union sets and relations, the affine hull is computed per space. =item * Polyhedral hull __isl_give isl_basic_set *isl_set_polyhedral_hull( __isl_take isl_set *set); __isl_give isl_basic_map *isl_map_polyhedral_hull( __isl_take isl_map *map); __isl_give isl_union_set *isl_union_set_polyhedral_hull( __isl_take isl_union_set *uset); __isl_give isl_union_map *isl_union_map_polyhedral_hull( __isl_take isl_union_map *umap); These functions compute a single basic set or relation not involving any existentially quantified variables that contains the whole input set or relation. In case of union sets and relations, the polyhedral hull is computed per space. =item * Other approximations __isl_give isl_basic_set * isl_basic_set_drop_constraints_involving_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_map * isl_basic_map_drop_constraints_involving_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_set * isl_basic_set_drop_constraints_not_involving_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_set * isl_set_drop_constraints_involving_dims( __isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_map * isl_map_drop_constraints_involving_dims( __isl_take isl_map *map, enum isl_dim_type type, unsigned first, unsigned n); These functions drop any constraints (not) involving the specified dimensions. Note that the result depends on the representation of the input. =item * Feasibility __isl_give isl_basic_set *isl_basic_set_sample( __isl_take isl_basic_set *bset); __isl_give isl_basic_set *isl_set_sample( __isl_take isl_set *set); __isl_give isl_basic_map *isl_basic_map_sample( __isl_take isl_basic_map *bmap); __isl_give isl_basic_map *isl_map_sample( __isl_take isl_map *map); If the input (basic) set or relation is non-empty, then return a singleton subset of the input. Otherwise, return an empty set. =item * Optimization #include enum isl_lp_result isl_basic_set_max( __isl_keep isl_basic_set *bset, __isl_keep isl_aff *obj, isl_int *opt) enum isl_lp_result isl_set_min(__isl_keep isl_set *set, __isl_keep isl_aff *obj, isl_int *opt); enum isl_lp_result isl_set_max(__isl_keep isl_set *set, __isl_keep isl_aff *obj, isl_int *opt); Compute the minimum or maximum of the integer affine expression C over the points in C, returning the result in C. The return value may be one of C, C, C or C. =item * Parametric optimization __isl_give isl_pw_aff *isl_set_dim_min( __isl_take isl_set *set, int pos); __isl_give isl_pw_aff *isl_set_dim_max( __isl_take isl_set *set, int pos); __isl_give isl_pw_aff *isl_map_dim_max( __isl_take isl_map *map, int pos); Compute the minimum or maximum of the given set or output dimension as a function of the parameters (and input dimensions), but independently of the other set or output dimensions. For lexicographic optimization, see L<"Lexicographic Optimization">. =item * Dual The following functions compute either the set of (rational) coefficient values of valid constraints for the given set or the set of (rational) values satisfying the constraints with coefficients from the given set. Internally, these two sets of functions perform essentially the same operations, except that the set of coefficients is assumed to be a cone, while the set of values may be any polyhedron. The current implementation is based on the Farkas lemma and Fourier-Motzkin elimination, but this may change or be made optional in future. In particular, future implementations may use different dualization algorithms or skip the elimination step. __isl_give isl_basic_set *isl_basic_set_coefficients( __isl_take isl_basic_set *bset); __isl_give isl_basic_set *isl_set_coefficients( __isl_take isl_set *set); __isl_give isl_union_set *isl_union_set_coefficients( __isl_take isl_union_set *bset); __isl_give isl_basic_set *isl_basic_set_solutions( __isl_take isl_basic_set *bset); __isl_give isl_basic_set *isl_set_solutions( __isl_take isl_set *set); __isl_give isl_union_set *isl_union_set_solutions( __isl_take isl_union_set *bset); =item * Power __isl_give isl_map *isl_map_fixed_power( __isl_take isl_map *map, isl_int exp); __isl_give isl_union_map *isl_union_map_fixed_power( __isl_take isl_union_map *umap, isl_int exp); Compute the given power of C, where C is assumed to be non-zero. If the exponent C is negative, then the -C th power of the inverse of C is computed. __isl_give isl_map *isl_map_power(__isl_take isl_map *map, int *exact); __isl_give isl_union_map *isl_union_map_power( __isl_take isl_union_map *umap, int *exact); Compute a parametric representation for all positive powers I of C. The result maps I to a nested relation corresponding to the Ith power of C. The result may be an overapproximation. If the result is known to be exact, then C<*exact> is set to C<1>. =item * Transitive closure __isl_give isl_map *isl_map_transitive_closure( __isl_take isl_map *map, int *exact); __isl_give isl_union_map *isl_union_map_transitive_closure( __isl_take isl_union_map *umap, int *exact); Compute the transitive closure of C. The result may be an overapproximation. If the result is known to be exact, then C<*exact> is set to C<1>. =item * Reaching path lengths __isl_give isl_map *isl_map_reaching_path_lengths( __isl_take isl_map *map, int *exact); Compute a relation that maps each element in the range of C to the lengths of all paths composed of edges in C that end up in the given element. The result may be an overapproximation. If the result is known to be exact, then C<*exact> is set to C<1>. To compute the I path length, the resulting relation should be postprocessed by C. In particular, if the input relation is a dependence relation (mapping sources to sinks), then the maximal path length corresponds to the free schedule. Note, however, that C expects the maximum to be finite, so if the path lengths are unbounded (possibly due to the overapproximation), then you will get an error message. =item * Wrapping __isl_give isl_basic_set *isl_basic_map_wrap( __isl_take isl_basic_map *bmap); __isl_give isl_set *isl_map_wrap( __isl_take isl_map *map); __isl_give isl_union_set *isl_union_map_wrap( __isl_take isl_union_map *umap); __isl_give isl_basic_map *isl_basic_set_unwrap( __isl_take isl_basic_set *bset); __isl_give isl_map *isl_set_unwrap( __isl_take isl_set *set); __isl_give isl_union_map *isl_union_set_unwrap( __isl_take isl_union_set *uset); =item * Flattening Remove any internal structure of domain (and range) of the given set or relation. If there is any such internal structure in the input, then the name of the space is also removed. __isl_give isl_basic_set *isl_basic_set_flatten( __isl_take isl_basic_set *bset); __isl_give isl_set *isl_set_flatten( __isl_take isl_set *set); __isl_give isl_basic_map *isl_basic_map_flatten_domain( __isl_take isl_basic_map *bmap); __isl_give isl_basic_map *isl_basic_map_flatten_range( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_flatten_range( __isl_take isl_map *map); __isl_give isl_map *isl_map_flatten_domain( __isl_take isl_map *map); __isl_give isl_basic_map *isl_basic_map_flatten( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_flatten( __isl_take isl_map *map); __isl_give isl_map *isl_set_flatten_map( __isl_take isl_set *set); The function above constructs a relation that maps the input set to a flattened version of the set. =item * Lifting Lift the input set to a space with extra dimensions corresponding to the existentially quantified variables in the input. In particular, the result lives in a wrapped map where the domain is the original space and the range corresponds to the original existentially quantified variables. __isl_give isl_basic_set *isl_basic_set_lift( __isl_take isl_basic_set *bset); __isl_give isl_set *isl_set_lift( __isl_take isl_set *set); __isl_give isl_union_set *isl_union_set_lift( __isl_take isl_union_set *uset); Given a local space that contains the existentially quantified variables of a set, a basic relation that, when applied to a basic set, has essentially the same effect as C, can be constructed using the following function. #include __isl_give isl_basic_map *isl_local_space_lifting( __isl_take isl_local_space *ls); =item * Internal Product __isl_give isl_basic_map *isl_basic_map_zip( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_zip( __isl_take isl_map *map); __isl_give isl_union_map *isl_union_map_zip( __isl_take isl_union_map *umap); Given a relation with nested relations for domain and range, interchange the range of the domain with the domain of the range. =item * Currying __isl_give isl_basic_map *isl_basic_map_curry( __isl_take isl_basic_map *bmap); __isl_give isl_basic_map *isl_basic_map_uncurry( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_curry( __isl_take isl_map *map); __isl_give isl_map *isl_map_uncurry( __isl_take isl_map *map); __isl_give isl_union_map *isl_union_map_curry( __isl_take isl_union_map *umap); __isl_give isl_union_map *isl_union_map_uncurry( __isl_take isl_union_map *umap); Given a relation with a nested relation for domain, the C functions move the range of the nested relation out of the domain and use it as the domain of a nested relation in the range, with the original range as range of this nested relation. The C functions perform the inverse operation. =item * Aligning parameters __isl_give isl_basic_set *isl_basic_set_align_params( __isl_take isl_basic_set *bset, __isl_take isl_space *model); __isl_give isl_set *isl_set_align_params( __isl_take isl_set *set, __isl_take isl_space *model); __isl_give isl_basic_map *isl_basic_map_align_params( __isl_take isl_basic_map *bmap, __isl_take isl_space *model); __isl_give isl_map *isl_map_align_params( __isl_take isl_map *map, __isl_take isl_space *model); Change the order of the parameters of the given set or relation such that the first parameters match those of C. This may involve the introduction of extra parameters. All parameters need to be named. =item * Dimension manipulation __isl_give isl_basic_set *isl_basic_set_add_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned n); __isl_give isl_set *isl_set_add_dims( __isl_take isl_set *set, enum isl_dim_type type, unsigned n); __isl_give isl_map *isl_map_add_dims( __isl_take isl_map *map, enum isl_dim_type type, unsigned n); __isl_give isl_basic_set *isl_basic_set_insert_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned pos, unsigned n); __isl_give isl_basic_map *isl_basic_map_insert_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, unsigned n); __isl_give isl_set *isl_set_insert_dims( __isl_take isl_set *set, enum isl_dim_type type, unsigned pos, unsigned n); __isl_give isl_map *isl_map_insert_dims( __isl_take isl_map *map, enum isl_dim_type type, unsigned pos, unsigned n); __isl_give isl_basic_set *isl_basic_set_move_dims( __isl_take isl_basic_set *bset, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); __isl_give isl_basic_map *isl_basic_map_move_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); __isl_give isl_set *isl_set_move_dims( __isl_take isl_set *set, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); __isl_give isl_map *isl_map_move_dims( __isl_take isl_map *map, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); It is usually not advisable to directly change the (input or output) space of a set or a relation as this removes the name and the internal structure of the space. However, the above functions can be useful to add new parameters, assuming C and C are not sufficient. =back =head2 Binary Operations The two arguments of a binary operation not only need to live in the same C, they currently also need to have the same (number of) parameters. =head3 Basic Operations =over =item * Intersection __isl_give isl_basic_set *isl_basic_set_intersect_params( __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2); __isl_give isl_basic_set *isl_basic_set_intersect( __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2); __isl_give isl_set *isl_set_intersect_params( __isl_take isl_set *set, __isl_take isl_set *params); __isl_give isl_set *isl_set_intersect( __isl_take isl_set *set1, __isl_take isl_set *set2); __isl_give isl_union_set *isl_union_set_intersect_params( __isl_take isl_union_set *uset, __isl_take isl_set *set); __isl_give isl_union_map *isl_union_map_intersect_params( __isl_take isl_union_map *umap, __isl_take isl_set *set); __isl_give isl_union_set *isl_union_set_intersect( __isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2); __isl_give isl_basic_map *isl_basic_map_intersect_domain( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *bset); __isl_give isl_basic_map *isl_basic_map_intersect_range( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *bset); __isl_give isl_basic_map *isl_basic_map_intersect( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_map *isl_map_intersect_params( __isl_take isl_map *map, __isl_take isl_set *params); __isl_give isl_map *isl_map_intersect_domain( __isl_take isl_map *map, __isl_take isl_set *set); __isl_give isl_map *isl_map_intersect_range( __isl_take isl_map *map, __isl_take isl_set *set); __isl_give isl_map *isl_map_intersect( __isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_union_map *isl_union_map_intersect_domain( __isl_take isl_union_map *umap, __isl_take isl_union_set *uset); __isl_give isl_union_map *isl_union_map_intersect_range( __isl_take isl_union_map *umap, __isl_take isl_union_set *uset); __isl_give isl_union_map *isl_union_map_intersect( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); The second argument to the C<_params> functions needs to be a parametric (basic) set. For the other functions, a parametric set for either argument is only allowed if the other argument is a parametric set as well. =item * Union __isl_give isl_set *isl_basic_set_union( __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2); __isl_give isl_map *isl_basic_map_union( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_set *isl_set_union( __isl_take isl_set *set1, __isl_take isl_set *set2); __isl_give isl_map *isl_map_union( __isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_union_set *isl_union_set_union( __isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2); __isl_give isl_union_map *isl_union_map_union( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); =item * Set difference __isl_give isl_set *isl_set_subtract( __isl_take isl_set *set1, __isl_take isl_set *set2); __isl_give isl_map *isl_map_subtract( __isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_map *isl_map_subtract_domain( __isl_take isl_map *map, __isl_take isl_set *dom); __isl_give isl_map *isl_map_subtract_range( __isl_take isl_map *map, __isl_take isl_set *dom); __isl_give isl_union_set *isl_union_set_subtract( __isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2); __isl_give isl_union_map *isl_union_map_subtract( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_give isl_union_map *isl_union_map_subtract_domain( __isl_take isl_union_map *umap, __isl_take isl_union_set *dom); __isl_give isl_union_map *isl_union_map_subtract_range( __isl_take isl_union_map *umap, __isl_take isl_union_set *dom); =item * Application __isl_give isl_basic_set *isl_basic_set_apply( __isl_take isl_basic_set *bset, __isl_take isl_basic_map *bmap); __isl_give isl_set *isl_set_apply( __isl_take isl_set *set, __isl_take isl_map *map); __isl_give isl_union_set *isl_union_set_apply( __isl_take isl_union_set *uset, __isl_take isl_union_map *umap); __isl_give isl_basic_map *isl_basic_map_apply_domain( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_basic_map *isl_basic_map_apply_range( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_map *isl_map_apply_domain( __isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_union_map *isl_union_map_apply_domain( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_give isl_map *isl_map_apply_range( __isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_union_map *isl_union_map_apply_range( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); =item * Preimage __isl_give isl_basic_set * isl_basic_set_preimage_multi_aff( __isl_take isl_basic_set *bset, __isl_take isl_multi_aff *ma); __isl_give isl_set *isl_set_preimage_multi_aff( __isl_take isl_set *set, __isl_take isl_multi_aff *ma); __isl_give isl_set *isl_set_preimage_pw_multi_aff( __isl_take isl_set *set, __isl_take isl_pw_multi_aff *pma); __isl_give isl_map *isl_map_preimage_domain_multi_aff( __isl_take isl_map *map, __isl_take isl_multi_aff *ma); __isl_give isl_union_map * isl_union_map_preimage_domain_multi_aff( __isl_take isl_union_map *umap, __isl_take isl_multi_aff *ma); These functions compute the preimage of the given set or map domain under the given function. In other words, the expression is plugged into the set description or into the domain of the map. Objects of types C and C are described in L. =item * Cartesian Product __isl_give isl_set *isl_set_product( __isl_take isl_set *set1, __isl_take isl_set *set2); __isl_give isl_union_set *isl_union_set_product( __isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2); __isl_give isl_basic_map *isl_basic_map_domain_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_basic_map *isl_basic_map_range_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_basic_map *isl_basic_map_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_map *isl_map_domain_product( __isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_map *isl_map_range_product( __isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_union_map *isl_union_map_domain_product( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_give isl_union_map *isl_union_map_range_product( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_give isl_map *isl_map_product( __isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_union_map *isl_union_map_product( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); The above functions compute the cross product of the given sets or relations. The domains and ranges of the results are wrapped maps between domains and ranges of the inputs. To obtain a ``flat'' product, use the following functions instead. __isl_give isl_basic_set *isl_basic_set_flat_product( __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2); __isl_give isl_set *isl_set_flat_product( __isl_take isl_set *set1, __isl_take isl_set *set2); __isl_give isl_basic_map *isl_basic_map_flat_range_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_map *isl_map_flat_domain_product( __isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_map *isl_map_flat_range_product( __isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_union_map *isl_union_map_flat_range_product( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_give isl_basic_map *isl_basic_map_flat_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_map *isl_map_flat_product( __isl_take isl_map *map1, __isl_take isl_map *map2); =item * Simplification __isl_give isl_basic_set *isl_basic_set_gist( __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context); __isl_give isl_set *isl_set_gist(__isl_take isl_set *set, __isl_take isl_set *context); __isl_give isl_set *isl_set_gist_params( __isl_take isl_set *set, __isl_take isl_set *context); __isl_give isl_union_set *isl_union_set_gist( __isl_take isl_union_set *uset, __isl_take isl_union_set *context); __isl_give isl_union_set *isl_union_set_gist_params( __isl_take isl_union_set *uset, __isl_take isl_set *set); __isl_give isl_basic_map *isl_basic_map_gist( __isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context); __isl_give isl_map *isl_map_gist(__isl_take isl_map *map, __isl_take isl_map *context); __isl_give isl_map *isl_map_gist_params( __isl_take isl_map *map, __isl_take isl_set *context); __isl_give isl_map *isl_map_gist_domain( __isl_take isl_map *map, __isl_take isl_set *context); __isl_give isl_map *isl_map_gist_range( __isl_take isl_map *map, __isl_take isl_set *context); __isl_give isl_union_map *isl_union_map_gist( __isl_take isl_union_map *umap, __isl_take isl_union_map *context); __isl_give isl_union_map *isl_union_map_gist_params( __isl_take isl_union_map *umap, __isl_take isl_set *set); __isl_give isl_union_map *isl_union_map_gist_domain( __isl_take isl_union_map *umap, __isl_take isl_union_set *uset); __isl_give isl_union_map *isl_union_map_gist_range( __isl_take isl_union_map *umap, __isl_take isl_union_set *uset); The gist operation returns a set or relation that has the same intersection with the context as the input set or relation. Any implicit equality in the intersection is made explicit in the result, while all inequalities that are redundant with respect to the intersection are removed. In case of union sets and relations, the gist operation is performed per space. =back =head3 Lexicographic Optimization Given a (basic) set C (or C) and a zero-dimensional domain C, the following functions compute a set that contains the lexicographic minimum or maximum of the elements in C (or C) for those values of the parameters that satisfy C. If C is not C, then C<*empty> is assigned a set that contains the parameter values in C for which C (or C) has no elements. In other words, the union of the parameter values for which the result is non-empty and of C<*empty> is equal to C. __isl_give isl_set *isl_basic_set_partial_lexmin( __isl_take isl_basic_set *bset, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_set *isl_basic_set_partial_lexmax( __isl_take isl_basic_set *bset, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_set *isl_set_partial_lexmin( __isl_take isl_set *set, __isl_take isl_set *dom, __isl_give isl_set **empty); __isl_give isl_set *isl_set_partial_lexmax( __isl_take isl_set *set, __isl_take isl_set *dom, __isl_give isl_set **empty); Given a (basic) set C (or C), the following functions simply return a set containing the lexicographic minimum or maximum of the elements in C (or C). In case of union sets, the optimum is computed per space. __isl_give isl_set *isl_basic_set_lexmin( __isl_take isl_basic_set *bset); __isl_give isl_set *isl_basic_set_lexmax( __isl_take isl_basic_set *bset); __isl_give isl_set *isl_set_lexmin( __isl_take isl_set *set); __isl_give isl_set *isl_set_lexmax( __isl_take isl_set *set); __isl_give isl_union_set *isl_union_set_lexmin( __isl_take isl_union_set *uset); __isl_give isl_union_set *isl_union_set_lexmax( __isl_take isl_union_set *uset); Given a (basic) relation C (or C) and a domain C, the following functions compute a relation that maps each element of C to the single lexicographic minimum or maximum of the elements that are associated to that same element in C (or C). If C is not C, then C<*empty> is assigned a set that contains the elements in C that do not map to any elements in C (or C). In other words, the union of the domain of the result and of C<*empty> is equal to C. __isl_give isl_map *isl_basic_map_partial_lexmax( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_map *isl_basic_map_partial_lexmin( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_map *isl_map_partial_lexmax( __isl_take isl_map *map, __isl_take isl_set *dom, __isl_give isl_set **empty); __isl_give isl_map *isl_map_partial_lexmin( __isl_take isl_map *map, __isl_take isl_set *dom, __isl_give isl_set **empty); Given a (basic) map C (or C), the following functions simply return a map mapping each element in the domain of C (or C) to the lexicographic minimum or maximum of all elements associated to that element. In case of union relations, the optimum is computed per space. __isl_give isl_map *isl_basic_map_lexmin( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_basic_map_lexmax( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_lexmin( __isl_take isl_map *map); __isl_give isl_map *isl_map_lexmax( __isl_take isl_map *map); __isl_give isl_union_map *isl_union_map_lexmin( __isl_take isl_union_map *umap); __isl_give isl_union_map *isl_union_map_lexmax( __isl_take isl_union_map *umap); The following functions return their result in the form of a piecewise multi-affine expression (See L<"Piecewise Multiple Quasi Affine Expressions">), but are otherwise equivalent to the corresponding functions returning a basic set or relation. __isl_give isl_pw_multi_aff * isl_basic_map_lexmin_pw_multi_aff( __isl_take isl_basic_map *bmap); __isl_give isl_pw_multi_aff * isl_basic_set_partial_lexmin_pw_multi_aff( __isl_take isl_basic_set *bset, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_pw_multi_aff * isl_basic_set_partial_lexmax_pw_multi_aff( __isl_take isl_basic_set *bset, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_pw_multi_aff * isl_basic_map_partial_lexmin_pw_multi_aff( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_pw_multi_aff * isl_basic_map_partial_lexmax_pw_multi_aff( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_pw_multi_aff *isl_set_lexmin_pw_multi_aff( __isl_take isl_set *set); __isl_give isl_pw_multi_aff *isl_set_lexmax_pw_multi_aff( __isl_take isl_set *set); __isl_give isl_pw_multi_aff *isl_map_lexmin_pw_multi_aff( __isl_take isl_map *map); __isl_give isl_pw_multi_aff *isl_map_lexmax_pw_multi_aff( __isl_take isl_map *map); =head2 Lists Lists are defined over several element types, including C, C, C, C, C, C, C, C and C. Here we take lists of Cs as an example. Lists can be created, copied, modified and freed using the following functions. #include __isl_give isl_set_list *isl_set_list_from_set( __isl_take isl_set *el); __isl_give isl_set_list *isl_set_list_alloc( isl_ctx *ctx, int n); __isl_give isl_set_list *isl_set_list_copy( __isl_keep isl_set_list *list); __isl_give isl_set_list *isl_set_list_insert( __isl_take isl_set_list *list, unsigned pos, __isl_take isl_set *el); __isl_give isl_set_list *isl_set_list_add( __isl_take isl_set_list *list, __isl_take isl_set *el); __isl_give isl_set_list *isl_set_list_drop( __isl_take isl_set_list *list, unsigned first, unsigned n); __isl_give isl_set_list *isl_set_list_set_set( __isl_take isl_set_list *list, int index, __isl_take isl_set *set); __isl_give isl_set_list *isl_set_list_concat( __isl_take isl_set_list *list1, __isl_take isl_set_list *list2); __isl_give isl_set_list *isl_set_list_sort( __isl_take isl_set_list *list, int (*cmp)(__isl_keep isl_set *a, __isl_keep isl_set *b, void *user), void *user); void *isl_set_list_free(__isl_take isl_set_list *list); C creates an empty list with a capacity for C elements. C creates a list with a single element. Lists can be inspected using the following functions. #include isl_ctx *isl_set_list_get_ctx(__isl_keep isl_set_list *list); int isl_set_list_n_set(__isl_keep isl_set_list *list); __isl_give isl_set *isl_set_list_get_set( __isl_keep isl_set_list *list, int index); int isl_set_list_foreach(__isl_keep isl_set_list *list, int (*fn)(__isl_take isl_set *el, void *user), void *user); int isl_set_list_foreach_scc(__isl_keep isl_set_list *list, int (*follows)(__isl_keep isl_set *a, __isl_keep isl_set *b, void *user), void *follows_user int (*fn)(__isl_take isl_set *el, void *user), void *fn_user); The function C calls C on each of the strongly connected components of the graph with as vertices the elements of C and a directed edge from vertex C to vertex C iff C returns C<1>. The callbacks C and C should return C<-1> on error. Lists can be printed using #include __isl_give isl_printer *isl_printer_print_set_list( __isl_take isl_printer *p, __isl_keep isl_set_list *list); =head2 Multiple Values An C object represents a sequence of zero or more values, living in a set space. An C can be constructed from an C using the following function #include __isl_give isl_multi_val *isl_multi_val_from_val_list( __isl_take isl_space *space, __isl_take isl_val_list *list); The zero multiple value (with value zero for each set dimension) can be created using the following function. #include __isl_give isl_multi_val *isl_multi_val_zero( __isl_take isl_space *space); Multiple values can be copied and freed using #include __isl_give isl_multi_val *isl_multi_val_copy( __isl_keep isl_multi_val *mv); void *isl_multi_val_free(__isl_take isl_multi_val *mv); They can be inspected using #include isl_ctx *isl_multi_val_get_ctx( __isl_keep isl_multi_val *mv); unsigned isl_multi_val_dim(__isl_keep isl_multi_val *mv, enum isl_dim_type type); __isl_give isl_val *isl_multi_val_get_val( __isl_keep isl_multi_val *mv, int pos); const char *isl_multi_val_get_tuple_name( __isl_keep isl_multi_val *mv, enum isl_dim_type type); They can be modified using #include __isl_give isl_multi_val *isl_multi_val_set_val( __isl_take isl_multi_val *mv, int pos, __isl_take isl_val *val); __isl_give isl_multi_val *isl_multi_val_set_dim_name( __isl_take isl_multi_val *mv, enum isl_dim_type type, unsigned pos, const char *s); __isl_give isl_multi_val *isl_multi_val_set_tuple_name( __isl_take isl_multi_val *mv, enum isl_dim_type type, const char *s); __isl_give isl_multi_val *isl_multi_val_set_tuple_id( __isl_take isl_multi_val *mv, enum isl_dim_type type, __isl_take isl_id *id); __isl_give isl_multi_val *isl_multi_val_insert_dims( __isl_take isl_multi_val *mv, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_multi_val *isl_multi_val_add_dims( __isl_take isl_multi_val *mv, enum isl_dim_type type, unsigned n); __isl_give isl_multi_val *isl_multi_val_drop_dims( __isl_take isl_multi_val *mv, enum isl_dim_type type, unsigned first, unsigned n); Operations include #include __isl_give isl_multi_val *isl_multi_val_align_params( __isl_take isl_multi_val *mv, __isl_take isl_space *model); __isl_give isl_multi_val *isl_multi_val_range_splice( __isl_take isl_multi_val *mv1, unsigned pos, __isl_take isl_multi_val *mv2); __isl_give isl_multi_val *isl_multi_val_range_product( __isl_take isl_multi_val *mv1, __isl_take isl_multi_val *mv2); __isl_give isl_multi_val *isl_multi_val_flat_range_product( __isl_take isl_multi_val *mv1, __isl_take isl_multi_aff *mv2); __isl_give isl_multi_val *isl_multi_val_add_val( __isl_take isl_multi_val *mv, __isl_take isl_val *v); __isl_give isl_multi_val *isl_multi_val_mod_val( __isl_take isl_multi_val *mv, __isl_take isl_val *v); =head2 Vectors Vectors can be created, copied and freed using the following functions. #include __isl_give isl_vec *isl_vec_alloc(isl_ctx *ctx, unsigned size); __isl_give isl_vec *isl_vec_copy(__isl_keep isl_vec *vec); void *isl_vec_free(__isl_take isl_vec *vec); Note that the elements of a newly created vector may have arbitrary values. The elements can be changed and inspected using the following functions. isl_ctx *isl_vec_get_ctx(__isl_keep isl_vec *vec); int isl_vec_size(__isl_keep isl_vec *vec); int isl_vec_get_element(__isl_keep isl_vec *vec, int pos, isl_int *v); __isl_give isl_val *isl_vec_get_element_val( __isl_keep isl_vec *vec, int pos); __isl_give isl_vec *isl_vec_set_element( __isl_take isl_vec *vec, int pos, isl_int v); __isl_give isl_vec *isl_vec_set_element_si( __isl_take isl_vec *vec, int pos, int v); __isl_give isl_vec *isl_vec_set_element_val( __isl_take isl_vec *vec, int pos, __isl_take isl_val *v); __isl_give isl_vec *isl_vec_set(__isl_take isl_vec *vec, isl_int v); __isl_give isl_vec *isl_vec_set_si(__isl_take isl_vec *vec, int v); __isl_give isl_vec *isl_vec_set_val( __isl_take isl_vec *vec, __isl_take isl_val *v); __isl_give isl_vec *isl_vec_fdiv_r(__isl_take isl_vec *vec, isl_int m); C will return a negative value if anything went wrong. In that case, the value of C<*v> is undefined. The following function can be used to concatenate two vectors. __isl_give isl_vec *isl_vec_concat(__isl_take isl_vec *vec1, __isl_take isl_vec *vec2); =head2 Matrices Matrices can be created, copied and freed using the following functions. #include __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx, unsigned n_row, unsigned n_col); __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat); void *isl_mat_free(__isl_take isl_mat *mat); Note that the elements of a newly created matrix may have arbitrary values. The elements can be changed and inspected using the following functions. isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat); int isl_mat_rows(__isl_keep isl_mat *mat); int isl_mat_cols(__isl_keep isl_mat *mat); int isl_mat_get_element(__isl_keep isl_mat *mat, int row, int col, isl_int *v); __isl_give isl_val *isl_mat_get_element_val( __isl_keep isl_mat *mat, int row, int col); __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat, int row, int col, isl_int v); __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat, int row, int col, int v); __isl_give isl_mat *isl_mat_set_element_val( __isl_take isl_mat *mat, int row, int col, __isl_take isl_val *v); C will return a negative value if anything went wrong. In that case, the value of C<*v> is undefined. The following function can be used to compute the (right) inverse of a matrix, i.e., a matrix such that the product of the original and the inverse (in that order) is a multiple of the identity matrix. The input matrix is assumed to be of full row-rank. __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat); The following function can be used to compute the (right) kernel (or null space) of a matrix, i.e., a matrix such that the product of the original and the kernel (in that order) is the zero matrix. __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat); =head2 Piecewise Quasi Affine Expressions The zero quasi affine expression or the quasi affine expression that is equal to a specified dimension on a given domain can be created using __isl_give isl_aff *isl_aff_zero_on_domain( __isl_take isl_local_space *ls); __isl_give isl_pw_aff *isl_pw_aff_zero_on_domain( __isl_take isl_local_space *ls); __isl_give isl_aff *isl_aff_var_on_domain( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos); __isl_give isl_pw_aff *isl_pw_aff_var_on_domain( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos); Note that the space in which the resulting objects live is a map space with the given space as domain and a one-dimensional range. An empty piecewise quasi affine expression (one with no cells) or a piecewise quasi affine expression with a single cell can be created using the following functions. #include __isl_give isl_pw_aff *isl_pw_aff_empty( __isl_take isl_space *space); __isl_give isl_pw_aff *isl_pw_aff_alloc( __isl_take isl_set *set, __isl_take isl_aff *aff); __isl_give isl_pw_aff *isl_pw_aff_from_aff( __isl_take isl_aff *aff); A piecewise quasi affine expression that is equal to 1 on a set and 0 outside the set can be created using the following function. #include __isl_give isl_pw_aff *isl_set_indicator_function( __isl_take isl_set *set); Quasi affine expressions can be copied and freed using #include __isl_give isl_aff *isl_aff_copy(__isl_keep isl_aff *aff); void *isl_aff_free(__isl_take isl_aff *aff); __isl_give isl_pw_aff *isl_pw_aff_copy( __isl_keep isl_pw_aff *pwaff); void *isl_pw_aff_free(__isl_take isl_pw_aff *pwaff); A (rational) bound on a dimension can be extracted from an C using the following function. The constraint is required to have a non-zero coefficient for the specified dimension. #include __isl_give isl_aff *isl_constraint_get_bound( __isl_keep isl_constraint *constraint, enum isl_dim_type type, int pos); The entire affine expression of the constraint can also be extracted using the following function. #include __isl_give isl_aff *isl_constraint_get_aff( __isl_keep isl_constraint *constraint); Conversely, an equality constraint equating the affine expression to zero or an inequality constraint enforcing the affine expression to be non-negative, can be constructed using __isl_give isl_constraint *isl_equality_from_aff( __isl_take isl_aff *aff); __isl_give isl_constraint *isl_inequality_from_aff( __isl_take isl_aff *aff); The expression can be inspected using #include isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff); int isl_aff_dim(__isl_keep isl_aff *aff, enum isl_dim_type type); __isl_give isl_local_space *isl_aff_get_domain_local_space( __isl_keep isl_aff *aff); __isl_give isl_local_space *isl_aff_get_local_space( __isl_keep isl_aff *aff); const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff, enum isl_dim_type type, unsigned pos); const char *isl_pw_aff_get_dim_name( __isl_keep isl_pw_aff *pa, enum isl_dim_type type, unsigned pos); int isl_pw_aff_has_dim_id(__isl_keep isl_pw_aff *pa, enum isl_dim_type type, unsigned pos); __isl_give isl_id *isl_pw_aff_get_dim_id( __isl_keep isl_pw_aff *pa, enum isl_dim_type type, unsigned pos); __isl_give isl_id *isl_pw_aff_get_tuple_id( __isl_keep isl_pw_aff *pa, enum isl_dim_type type); int isl_aff_get_constant(__isl_keep isl_aff *aff, isl_int *v); __isl_give isl_val *isl_aff_get_constant_val( __isl_keep isl_aff *aff); int isl_aff_get_coefficient(__isl_keep isl_aff *aff, enum isl_dim_type type, int pos, isl_int *v); __isl_give isl_val *isl_aff_get_coefficient_val( __isl_keep isl_aff *aff, enum isl_dim_type type, int pos); int isl_aff_get_denominator(__isl_keep isl_aff *aff, isl_int *v); __isl_give isl_val *isl_aff_get_denominator_val( __isl_keep isl_aff *aff); __isl_give isl_aff *isl_aff_get_div( __isl_keep isl_aff *aff, int pos); int isl_pw_aff_n_piece(__isl_keep isl_pw_aff *pwaff); int isl_pw_aff_foreach_piece(__isl_keep isl_pw_aff *pwaff, int (*fn)(__isl_take isl_set *set, __isl_take isl_aff *aff, void *user), void *user); int isl_aff_is_cst(__isl_keep isl_aff *aff); int isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff); int isl_aff_involves_dims(__isl_keep isl_aff *aff, enum isl_dim_type type, unsigned first, unsigned n); int isl_pw_aff_involves_dims(__isl_keep isl_pw_aff *pwaff, enum isl_dim_type type, unsigned first, unsigned n); isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pwaff); unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff, enum isl_dim_type type); int isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff); It can be modified using #include __isl_give isl_pw_aff *isl_pw_aff_set_tuple_id( __isl_take isl_pw_aff *pwaff, enum isl_dim_type type, __isl_take isl_id *id); __isl_give isl_aff *isl_aff_set_dim_name( __isl_take isl_aff *aff, enum isl_dim_type type, unsigned pos, const char *s); __isl_give isl_aff *isl_aff_set_dim_id( __isl_take isl_aff *aff, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); __isl_give isl_pw_aff *isl_pw_aff_set_dim_id( __isl_take isl_pw_aff *pma, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); __isl_give isl_aff *isl_aff_set_constant( __isl_take isl_aff *aff, isl_int v); __isl_give isl_aff *isl_aff_set_constant_si( __isl_take isl_aff *aff, int v); __isl_give isl_aff *isl_aff_set_constant_val( __isl_take isl_aff *aff, __isl_take isl_val *v); __isl_give isl_aff *isl_aff_set_coefficient( __isl_take isl_aff *aff, enum isl_dim_type type, int pos, isl_int v); __isl_give isl_aff *isl_aff_set_coefficient_si( __isl_take isl_aff *aff, enum isl_dim_type type, int pos, int v); __isl_give isl_aff *isl_aff_set_coefficient_val( __isl_take isl_aff *aff, enum isl_dim_type type, int pos, __isl_take isl_val *v); __isl_give isl_aff *isl_aff_set_denominator( __isl_take isl_aff *aff, isl_int v); __isl_give isl_aff *isl_aff_add_constant( __isl_take isl_aff *aff, isl_int v); __isl_give isl_aff *isl_aff_add_constant_si( __isl_take isl_aff *aff, int v); __isl_give isl_aff *isl_aff_add_constant_val( __isl_take isl_aff *aff, __isl_take isl_val *v); __isl_give isl_aff *isl_aff_add_constant_num( __isl_take isl_aff *aff, isl_int v); __isl_give isl_aff *isl_aff_add_constant_num_si( __isl_take isl_aff *aff, int v); __isl_give isl_aff *isl_aff_add_coefficient( __isl_take isl_aff *aff, enum isl_dim_type type, int pos, isl_int v); __isl_give isl_aff *isl_aff_add_coefficient_si( __isl_take isl_aff *aff, enum isl_dim_type type, int pos, int v); __isl_give isl_aff *isl_aff_add_coefficient_val( __isl_take isl_aff *aff, enum isl_dim_type type, int pos, __isl_take isl_val *v); __isl_give isl_aff *isl_aff_insert_dims( __isl_take isl_aff *aff, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_pw_aff *isl_pw_aff_insert_dims( __isl_take isl_pw_aff *pwaff, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_aff *isl_aff_add_dims( __isl_take isl_aff *aff, enum isl_dim_type type, unsigned n); __isl_give isl_pw_aff *isl_pw_aff_add_dims( __isl_take isl_pw_aff *pwaff, enum isl_dim_type type, unsigned n); __isl_give isl_aff *isl_aff_drop_dims( __isl_take isl_aff *aff, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_pw_aff *isl_pw_aff_drop_dims( __isl_take isl_pw_aff *pwaff, enum isl_dim_type type, unsigned first, unsigned n); Note that C, C, C and C set the I of the constant or coefficient, while C and C set the constant or coefficient as a whole. The C and C functions add an integer or rational value to the possibly rational constant or coefficient. The C functions add an integer value to the numerator. To check whether an affine expressions is obviously zero or obviously equal to some other affine expression, use #include int isl_aff_plain_is_zero(__isl_keep isl_aff *aff); int isl_aff_plain_is_equal(__isl_keep isl_aff *aff1, __isl_keep isl_aff *aff2); int isl_pw_aff_plain_is_equal( __isl_keep isl_pw_aff *pwaff1, __isl_keep isl_pw_aff *pwaff2); Operations include #include __isl_give isl_aff *isl_aff_add(__isl_take isl_aff *aff1, __isl_take isl_aff *aff2); __isl_give isl_pw_aff *isl_pw_aff_add( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_pw_aff *isl_pw_aff_min( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_pw_aff *isl_pw_aff_max( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_aff *isl_aff_sub(__isl_take isl_aff *aff1, __isl_take isl_aff *aff2); __isl_give isl_pw_aff *isl_pw_aff_sub( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_aff *isl_aff_neg(__isl_take isl_aff *aff); __isl_give isl_pw_aff *isl_pw_aff_neg( __isl_take isl_pw_aff *pwaff); __isl_give isl_aff *isl_aff_ceil(__isl_take isl_aff *aff); __isl_give isl_pw_aff *isl_pw_aff_ceil( __isl_take isl_pw_aff *pwaff); __isl_give isl_aff *isl_aff_floor(__isl_take isl_aff *aff); __isl_give isl_pw_aff *isl_pw_aff_floor( __isl_take isl_pw_aff *pwaff); __isl_give isl_aff *isl_aff_mod(__isl_take isl_aff *aff, isl_int mod); __isl_give isl_pw_aff *isl_pw_aff_mod( __isl_take isl_pw_aff *pwaff, isl_int mod); __isl_give isl_aff *isl_aff_scale(__isl_take isl_aff *aff, isl_int f); __isl_give isl_aff *isl_aff_scale_val(__isl_take isl_aff *aff, __isl_take isl_val *v); __isl_give isl_pw_aff *isl_pw_aff_scale( __isl_take isl_pw_aff *pwaff, isl_int f); __isl_give isl_aff *isl_aff_scale_down(__isl_take isl_aff *aff, isl_int f); __isl_give isl_aff *isl_aff_scale_down_ui( __isl_take isl_aff *aff, unsigned f); __isl_give isl_aff *isl_aff_scale_down_val( __isl_take isl_aff *aff, __isl_take isl_val *v); __isl_give isl_pw_aff *isl_pw_aff_scale_down( __isl_take isl_pw_aff *pwaff, isl_int f); __isl_give isl_pw_aff *isl_pw_aff_list_min( __isl_take isl_pw_aff_list *list); __isl_give isl_pw_aff *isl_pw_aff_list_max( __isl_take isl_pw_aff_list *list); __isl_give isl_pw_aff *isl_pw_aff_coalesce( __isl_take isl_pw_aff *pwqp); __isl_give isl_aff *isl_aff_align_params( __isl_take isl_aff *aff, __isl_take isl_space *model); __isl_give isl_pw_aff *isl_pw_aff_align_params( __isl_take isl_pw_aff *pwaff, __isl_take isl_space *model); __isl_give isl_aff *isl_aff_project_domain_on_params( __isl_take isl_aff *aff); __isl_give isl_aff *isl_aff_gist_params( __isl_take isl_aff *aff, __isl_take isl_set *context); __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff, __isl_take isl_set *context); __isl_give isl_pw_aff *isl_pw_aff_gist_params( __isl_take isl_pw_aff *pwaff, __isl_take isl_set *context); __isl_give isl_pw_aff *isl_pw_aff_gist( __isl_take isl_pw_aff *pwaff, __isl_take isl_set *context); __isl_give isl_set *isl_pw_aff_domain( __isl_take isl_pw_aff *pwaff); __isl_give isl_pw_aff *isl_pw_aff_intersect_domain( __isl_take isl_pw_aff *pa, __isl_take isl_set *set); __isl_give isl_pw_aff *isl_pw_aff_intersect_params( __isl_take isl_pw_aff *pa, __isl_take isl_set *set); __isl_give isl_aff *isl_aff_mul(__isl_take isl_aff *aff1, __isl_take isl_aff *aff2); __isl_give isl_aff *isl_aff_div(__isl_take isl_aff *aff1, __isl_take isl_aff *aff2); __isl_give isl_pw_aff *isl_pw_aff_mul( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_pw_aff *isl_pw_aff_div( __isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2); __isl_give isl_pw_aff *isl_pw_aff_tdiv_q( __isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2); __isl_give isl_pw_aff *isl_pw_aff_tdiv_r( __isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2); When multiplying two affine expressions, at least one of the two needs to be a constant. Similarly, when dividing an affine expression by another, the second expression needs to be a constant. C computes the quotient of an integer division with rounding towards zero. C computes the corresponding remainder. #include __isl_give isl_aff *isl_aff_pullback_multi_aff( __isl_take isl_aff *aff, __isl_take isl_multi_aff *ma); __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_aff( __isl_take isl_pw_aff *pa, __isl_take isl_multi_aff *ma); __isl_give isl_pw_aff *isl_pw_aff_pullback_pw_multi_aff( __isl_take isl_pw_aff *pa, __isl_take isl_pw_multi_aff *pma); These functions precompose the input expression by the given C or C. In other words, the C or C is plugged into the (piecewise) affine expression. Objects of type C are described in L. #include __isl_give isl_basic_set *isl_aff_zero_basic_set( __isl_take isl_aff *aff); __isl_give isl_basic_set *isl_aff_neg_basic_set( __isl_take isl_aff *aff); __isl_give isl_basic_set *isl_aff_le_basic_set( __isl_take isl_aff *aff1, __isl_take isl_aff *aff2); __isl_give isl_basic_set *isl_aff_ge_basic_set( __isl_take isl_aff *aff1, __isl_take isl_aff *aff2); __isl_give isl_set *isl_pw_aff_eq_set( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_set *isl_pw_aff_ne_set( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_set *isl_pw_aff_le_set( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_set *isl_pw_aff_lt_set( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_set *isl_pw_aff_ge_set( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_set *isl_pw_aff_gt_set( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_set *isl_pw_aff_list_eq_set( __isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2); __isl_give isl_set *isl_pw_aff_list_ne_set( __isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2); __isl_give isl_set *isl_pw_aff_list_le_set( __isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2); __isl_give isl_set *isl_pw_aff_list_lt_set( __isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2); __isl_give isl_set *isl_pw_aff_list_ge_set( __isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2); __isl_give isl_set *isl_pw_aff_list_gt_set( __isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2); The function C returns a basic set containing those elements in the domain space of C where C is negative. The function C returns a basic set containing those elements in the shared space of C and C where C is greater than or equal to C. The function C returns a set containing those elements in the shared domain of C and C where C is greater than or equal to C. The functions operating on C apply the corresponding C function to each pair of elements in the two lists. #include __isl_give isl_set *isl_pw_aff_nonneg_set( __isl_take isl_pw_aff *pwaff); __isl_give isl_set *isl_pw_aff_zero_set( __isl_take isl_pw_aff *pwaff); __isl_give isl_set *isl_pw_aff_non_zero_set( __isl_take isl_pw_aff *pwaff); The function C returns a set containing those elements in the domain of C where C is non-negative. #include __isl_give isl_pw_aff *isl_pw_aff_cond( __isl_take isl_pw_aff *cond, __isl_take isl_pw_aff *pwaff_true, __isl_take isl_pw_aff *pwaff_false); The function C performs a conditional operator and returns an expression that is equal to C for elements where C is non-zero and equal to C for elements where C is zero. #include __isl_give isl_pw_aff *isl_pw_aff_union_min( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_pw_aff *isl_pw_aff_union_max( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_pw_aff *isl_pw_aff_union_add( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); The function C computes a piecewise quasi-affine expression with a domain that is the union of those of C and C and such that on each cell, the quasi-affine expression is the maximum of those of C and C. If only one of C or C is defined on a given cell, then the associated expression is the defined one. An expression can be read from input using #include __isl_give isl_aff *isl_aff_read_from_str( isl_ctx *ctx, const char *str); __isl_give isl_pw_aff *isl_pw_aff_read_from_str( isl_ctx *ctx, const char *str); An expression can be printed using #include __isl_give isl_printer *isl_printer_print_aff( __isl_take isl_printer *p, __isl_keep isl_aff *aff); __isl_give isl_printer *isl_printer_print_pw_aff( __isl_take isl_printer *p, __isl_keep isl_pw_aff *pwaff); =head2 Piecewise Multiple Quasi Affine Expressions An C object represents a sequence of zero or more affine expressions, all defined on the same domain space. Similarly, an C object represents a sequence of zero or more piecewise affine expressions. An C can be constructed from a single C or an C using the following functions. Similarly for C. #include __isl_give isl_multi_aff *isl_multi_aff_from_aff( __isl_take isl_aff *aff); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_pw_aff( __isl_take isl_pw_aff *pa); __isl_give isl_multi_aff *isl_multi_aff_from_aff_list( __isl_take isl_space *space, __isl_take isl_aff_list *list); An empty piecewise multiple quasi affine expression (one with no cells), the zero piecewise multiple quasi affine expression (with value zero for each output dimension), a piecewise multiple quasi affine expression with a single cell (with either a universe or a specified domain) or a zero-dimensional piecewise multiple quasi affine expression on a given domain can be created using the following functions. #include __isl_give isl_pw_multi_aff *isl_pw_multi_aff_empty( __isl_take isl_space *space); __isl_give isl_multi_aff *isl_multi_aff_zero( __isl_take isl_space *space); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_zero( __isl_take isl_space *space); __isl_give isl_multi_aff *isl_multi_aff_identity( __isl_take isl_space *space); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_identity( __isl_take isl_space *space); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_identity( __isl_take isl_space *space); __isl_give isl_pw_multi_aff * isl_pw_multi_aff_from_multi_aff( __isl_take isl_multi_aff *ma); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_alloc( __isl_take isl_set *set, __isl_take isl_multi_aff *maff); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_domain( __isl_take isl_set *set); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_empty( __isl_take isl_space *space); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_add_pw_multi_aff( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_pw_multi_aff *pma); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_from_domain( __isl_take isl_union_set *uset); A piecewise multiple quasi affine expression can also be initialized from an C or C, provided the C is a singleton and the C is single-valued. In case of a conversion from an C or an C to an C, these properties need to hold in each space. __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set( __isl_take isl_set *set); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map( __isl_take isl_map *map); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_from_union_set( __isl_take isl_union_set *uset); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_from_union_map( __isl_take isl_union_map *umap); Multiple quasi affine expressions can be copied and freed using #include __isl_give isl_multi_aff *isl_multi_aff_copy( __isl_keep isl_multi_aff *maff); void *isl_multi_aff_free(__isl_take isl_multi_aff *maff); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_copy( __isl_keep isl_pw_multi_aff *pma); void *isl_pw_multi_aff_free( __isl_take isl_pw_multi_aff *pma); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_copy( __isl_keep isl_union_pw_multi_aff *upma); void *isl_union_pw_multi_aff_free( __isl_take isl_union_pw_multi_aff *upma); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_copy( __isl_keep isl_multi_pw_aff *mpa); void *isl_multi_pw_aff_free( __isl_take isl_multi_pw_aff *mpa); The expression can be inspected using #include isl_ctx *isl_multi_aff_get_ctx( __isl_keep isl_multi_aff *maff); isl_ctx *isl_pw_multi_aff_get_ctx( __isl_keep isl_pw_multi_aff *pma); isl_ctx *isl_union_pw_multi_aff_get_ctx( __isl_keep isl_union_pw_multi_aff *upma); isl_ctx *isl_multi_pw_aff_get_ctx( __isl_keep isl_multi_pw_aff *mpa); unsigned isl_multi_aff_dim(__isl_keep isl_multi_aff *maff, enum isl_dim_type type); unsigned isl_pw_multi_aff_dim( __isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type); unsigned isl_multi_pw_aff_dim( __isl_keep isl_multi_pw_aff *mpa, enum isl_dim_type type); __isl_give isl_aff *isl_multi_aff_get_aff( __isl_keep isl_multi_aff *multi, int pos); __isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff( __isl_keep isl_pw_multi_aff *pma, int pos); __isl_give isl_pw_aff *isl_multi_pw_aff_get_pw_aff( __isl_keep isl_multi_pw_aff *mpa, int pos); const char *isl_pw_multi_aff_get_dim_name( __isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type, unsigned pos); __isl_give isl_id *isl_pw_multi_aff_get_dim_id( __isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type, unsigned pos); const char *isl_multi_aff_get_tuple_name( __isl_keep isl_multi_aff *multi, enum isl_dim_type type); int isl_pw_multi_aff_has_tuple_name( __isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type); const char *isl_pw_multi_aff_get_tuple_name( __isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type); int isl_pw_multi_aff_has_tuple_id( __isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type); __isl_give isl_id *isl_pw_multi_aff_get_tuple_id( __isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type); int isl_pw_multi_aff_foreach_piece( __isl_keep isl_pw_multi_aff *pma, int (*fn)(__isl_take isl_set *set, __isl_take isl_multi_aff *maff, void *user), void *user); int isl_union_pw_multi_aff_foreach_pw_multi_aff( __isl_keep isl_union_pw_multi_aff *upma, int (*fn)(__isl_take isl_pw_multi_aff *pma, void *user), void *user); It can be modified using #include __isl_give isl_multi_aff *isl_multi_aff_set_aff( __isl_take isl_multi_aff *multi, int pos, __isl_take isl_aff *aff); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_pw_aff( __isl_take isl_pw_multi_aff *pma, unsigned pos, __isl_take isl_pw_aff *pa); __isl_give isl_multi_aff *isl_multi_aff_set_dim_name( __isl_take isl_multi_aff *maff, enum isl_dim_type type, unsigned pos, const char *s); __isl_give isl_multi_aff *isl_multi_aff_set_tuple_name( __isl_take isl_multi_aff *maff, enum isl_dim_type type, const char *s); __isl_give isl_multi_aff *isl_multi_aff_set_tuple_id( __isl_take isl_multi_aff *maff, enum isl_dim_type type, __isl_take isl_id *id); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_tuple_id( __isl_take isl_pw_multi_aff *pma, enum isl_dim_type type, __isl_take isl_id *id); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_set_dim_name( __isl_take isl_multi_pw_aff *mpa, enum isl_dim_type type, unsigned pos, const char *s); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_set_tuple_name( __isl_take isl_multi_pw_aff *mpa, enum isl_dim_type type, const char *s); __isl_give isl_multi_aff *isl_multi_aff_insert_dims( __isl_take isl_multi_aff *ma, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_multi_aff *isl_multi_aff_add_dims( __isl_take isl_multi_aff *ma, enum isl_dim_type type, unsigned n); __isl_give isl_multi_aff *isl_multi_aff_drop_dims( __isl_take isl_multi_aff *maff, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_drop_dims( __isl_take isl_pw_multi_aff *pma, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_insert_dims( __isl_take isl_multi_pw_aff *mpa, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_add_dims( __isl_take isl_multi_pw_aff *mpa, enum isl_dim_type type, unsigned n); To check whether two multiple affine expressions are obviously equal to each other, use int isl_multi_aff_plain_is_equal(__isl_keep isl_multi_aff *maff1, __isl_keep isl_multi_aff *maff2); int isl_pw_multi_aff_plain_is_equal( __isl_keep isl_pw_multi_aff *pma1, __isl_keep isl_pw_multi_aff *pma2); Operations include #include __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmin( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmax( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_multi_aff *isl_multi_aff_add( __isl_take isl_multi_aff *maff1, __isl_take isl_multi_aff *maff2); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_add( __isl_take isl_union_pw_multi_aff *upma1, __isl_take isl_union_pw_multi_aff *upma2); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_multi_aff *isl_multi_aff_sub( __isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_sub( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_sub( __isl_take isl_union_pw_multi_aff *upma1, __isl_take isl_union_pw_multi_aff *upma2); C subtracts the second argument from the first. __isl_give isl_multi_aff *isl_multi_aff_scale( __isl_take isl_multi_aff *maff, isl_int f); __isl_give isl_multi_aff *isl_multi_aff_scale_vec( __isl_take isl_multi_aff *ma, __isl_take isl_vec *v); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_vec( __isl_take isl_pw_multi_aff *pma, __isl_take isl_vec *v); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_scale_vec( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_vec *v); C scales the first elements of C by the corresponding elements of C. __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_params( __isl_take isl_pw_multi_aff *pma, __isl_take isl_set *set); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_domain( __isl_take isl_pw_multi_aff *pma, __isl_take isl_set *set); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_intersect_domain( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_union_set *uset); __isl_give isl_multi_aff *isl_multi_aff_lift( __isl_take isl_multi_aff *maff, __isl_give isl_local_space **ls); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_coalesce( __isl_take isl_pw_multi_aff *pma); __isl_give isl_multi_aff *isl_multi_aff_align_params( __isl_take isl_multi_aff *multi, __isl_take isl_space *model); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_align_params( __isl_take isl_pw_multi_aff *pma, __isl_take isl_space *model); __isl_give isl_pw_multi_aff * isl_pw_multi_aff_project_domain_on_params( __isl_take isl_pw_multi_aff *pma); __isl_give isl_multi_aff *isl_multi_aff_gist_params( __isl_take isl_multi_aff *maff, __isl_take isl_set *context); __isl_give isl_multi_aff *isl_multi_aff_gist( __isl_take isl_multi_aff *maff, __isl_take isl_set *context); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist_params( __isl_take isl_pw_multi_aff *pma, __isl_take isl_set *set); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist( __isl_take isl_pw_multi_aff *pma, __isl_take isl_set *set); __isl_give isl_set *isl_pw_multi_aff_domain( __isl_take isl_pw_multi_aff *pma); __isl_give isl_union_set *isl_union_pw_multi_aff_domain( __isl_take isl_union_pw_multi_aff *upma); __isl_give isl_multi_aff *isl_multi_aff_range_splice( __isl_take isl_multi_aff *ma1, unsigned pos, __isl_take isl_multi_aff *ma2); __isl_give isl_multi_aff *isl_multi_aff_splice( __isl_take isl_multi_aff *ma1, unsigned in_pos, unsigned out_pos, __isl_take isl_multi_aff *ma2); __isl_give isl_multi_aff *isl_multi_aff_range_product( __isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2); __isl_give isl_multi_aff *isl_multi_aff_flat_range_product( __isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2); __isl_give isl_multi_aff *isl_multi_aff_product( __isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2); __isl_give isl_pw_multi_aff * isl_pw_multi_aff_range_product( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_pw_multi_aff * isl_pw_multi_aff_flat_range_product( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_product( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_flat_range_product( __isl_take isl_union_pw_multi_aff *upma1, __isl_take isl_union_pw_multi_aff *upma2); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_range_splice( __isl_take isl_multi_pw_aff *mpa1, unsigned pos, __isl_take isl_multi_pw_aff *mpa2); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_splice( __isl_take isl_multi_pw_aff *mpa1, unsigned in_pos, unsigned out_pos, __isl_take isl_multi_pw_aff *mpa2); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_range_product( __isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_flat_range_product( __isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2); If the C argument of C is not C, then it is assigned the local space that lies at the basis of the lifting applied. #include __isl_give isl_multi_aff *isl_multi_aff_pullback_multi_aff( __isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2); __isl_give isl_pw_multi_aff * isl_pw_multi_aff_pullback_multi_aff( __isl_take isl_pw_multi_aff *pma, __isl_take isl_multi_aff *ma); __isl_give isl_pw_multi_aff * isl_pw_multi_aff_pullback_pw_multi_aff( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); The function C precomposes C by C. In other words, C is plugged into C. __isl_give isl_set *isl_multi_aff_lex_le_set( __isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2); __isl_give isl_set *isl_multi_aff_lex_ge_set( __isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2); The function C returns a set containing those elements in the shared domain space where C is lexicographically smaller than or equal to C. An expression can be read from input using #include __isl_give isl_multi_aff *isl_multi_aff_read_from_str( isl_ctx *ctx, const char *str); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str( isl_ctx *ctx, const char *str); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_read_from_str( isl_ctx *ctx, const char *str); An expression can be printed using #include __isl_give isl_printer *isl_printer_print_multi_aff( __isl_take isl_printer *p, __isl_keep isl_multi_aff *maff); __isl_give isl_printer *isl_printer_print_pw_multi_aff( __isl_take isl_printer *p, __isl_keep isl_pw_multi_aff *pma); __isl_give isl_printer *isl_printer_print_union_pw_multi_aff( __isl_take isl_printer *p, __isl_keep isl_union_pw_multi_aff *upma); __isl_give isl_printer *isl_printer_print_multi_pw_aff( __isl_take isl_printer *p, __isl_keep isl_multi_pw_aff *mpa); =head2 Points Points are elements of a set. They can be used to construct simple sets (boxes) or they can be used to represent the individual elements of a set. The zero point (the origin) can be created using __isl_give isl_point *isl_point_zero(__isl_take isl_space *space); The coordinates of a point can be inspected, set and changed using int isl_point_get_coordinate(__isl_keep isl_point *pnt, enum isl_dim_type type, int pos, isl_int *v); __isl_give isl_val *isl_point_get_coordinate_val( __isl_keep isl_point *pnt, enum isl_dim_type type, int pos); __isl_give isl_point *isl_point_set_coordinate( __isl_take isl_point *pnt, enum isl_dim_type type, int pos, isl_int v); __isl_give isl_point *isl_point_set_coordinate_val( __isl_take isl_point *pnt, enum isl_dim_type type, int pos, __isl_take isl_val *v); __isl_give isl_point *isl_point_add_ui( __isl_take isl_point *pnt, enum isl_dim_type type, int pos, unsigned val); __isl_give isl_point *isl_point_sub_ui( __isl_take isl_point *pnt, enum isl_dim_type type, int pos, unsigned val); Other properties can be obtained using isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt); Points can be copied or freed using __isl_give isl_point *isl_point_copy( __isl_keep isl_point *pnt); void isl_point_free(__isl_take isl_point *pnt); A singleton set can be created from a point using __isl_give isl_basic_set *isl_basic_set_from_point( __isl_take isl_point *pnt); __isl_give isl_set *isl_set_from_point( __isl_take isl_point *pnt); and a box can be created from two opposite extremal points using __isl_give isl_basic_set *isl_basic_set_box_from_points( __isl_take isl_point *pnt1, __isl_take isl_point *pnt2); __isl_give isl_set *isl_set_box_from_points( __isl_take isl_point *pnt1, __isl_take isl_point *pnt2); All elements of a B (union) set can be enumerated using the following functions. int isl_set_foreach_point(__isl_keep isl_set *set, int (*fn)(__isl_take isl_point *pnt, void *user), void *user); int isl_union_set_foreach_point(__isl_keep isl_union_set *uset, int (*fn)(__isl_take isl_point *pnt, void *user), void *user); The function C is called for each integer point in C with as second argument the last argument of the C call. The function C should return C<0> on success and C<-1> on failure. In the latter case, C will stop enumerating and return C<-1> as well. If the enumeration is performed successfully and to completion, then C returns C<0>. To obtain a single point of a (basic) set, use __isl_give isl_point *isl_basic_set_sample_point( __isl_take isl_basic_set *bset); __isl_give isl_point *isl_set_sample_point( __isl_take isl_set *set); If C does not contain any (integer) points, then the resulting point will be ``void'', a property that can be tested using int isl_point_is_void(__isl_keep isl_point *pnt); =head2 Piecewise Quasipolynomials A piecewise quasipolynomial is a particular kind of function that maps a parametric point to a rational value. More specifically, a quasipolynomial is a polynomial expression in greatest integer parts of affine expressions of parameters and variables. A piecewise quasipolynomial is a subdivision of a given parametric domain into disjoint cells with a quasipolynomial associated to each cell. The value of the piecewise quasipolynomial at a given point is the value of the quasipolynomial associated to the cell that contains the point. Outside of the union of cells, the value is assumed to be zero. For example, the piecewise quasipolynomial [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 } maps C to C<1 + n - x> for values of C between C<0> and C. A given piecewise quasipolynomial has a fixed domain dimension. Union piecewise quasipolynomials are used to contain piecewise quasipolynomials defined over different domains. Piecewise quasipolynomials are mainly used by the C library for representing the number of elements in a parametric set or map. For example, the piecewise quasipolynomial above represents the number of points in the map [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n } =head3 Input and Output Piecewise quasipolynomials can be read from input using __isl_give isl_union_pw_qpolynomial * isl_union_pw_qpolynomial_read_from_str( isl_ctx *ctx, const char *str); Quasipolynomials and piecewise quasipolynomials can be printed using the following functions. __isl_give isl_printer *isl_printer_print_qpolynomial( __isl_take isl_printer *p, __isl_keep isl_qpolynomial *qp); __isl_give isl_printer *isl_printer_print_pw_qpolynomial( __isl_take isl_printer *p, __isl_keep isl_pw_qpolynomial *pwqp); __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial( __isl_take isl_printer *p, __isl_keep isl_union_pw_qpolynomial *upwqp); The output format of the printer needs to be set to either C or C. For C, only C is supported. In case of printing in C, the user may want to set the names of all dimensions __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name( __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned pos, const char *s); __isl_give isl_pw_qpolynomial * isl_pw_qpolynomial_set_dim_name( __isl_take isl_pw_qpolynomial *pwqp, enum isl_dim_type type, unsigned pos, const char *s); =head3 Creating New (Piecewise) Quasipolynomials Some simple quasipolynomials can be created using the following functions. More complicated quasipolynomials can be created by applying operations such as addition and multiplication on the resulting quasipolynomials __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain( __isl_take isl_space *domain); __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain( __isl_take isl_space *domain); __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain( __isl_take isl_space *domain); __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain( __isl_take isl_space *domain); __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain( __isl_take isl_space *domain); __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain( __isl_take isl_space *domain, const isl_int n, const isl_int d); __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain( __isl_take isl_space *domain, enum isl_dim_type type, unsigned pos); __isl_give isl_qpolynomial *isl_qpolynomial_from_aff( __isl_take isl_aff *aff); Note that the space in which a quasipolynomial lives is a map space with a one-dimensional range. The C argument in some of the functions above corresponds to the domain of this map space. The zero piecewise quasipolynomial or a piecewise quasipolynomial with a single cell can be created using the following functions. Multiple of these single cell piecewise quasipolynomials can be combined to create more complicated piecewise quasipolynomials. __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero( __isl_take isl_space *space); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc( __isl_take isl_set *set, __isl_take isl_qpolynomial *qp); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial( __isl_take isl_qpolynomial *qp); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff( __isl_take isl_pw_aff *pwaff); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero( __isl_take isl_space *space); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial( __isl_take isl_pw_qpolynomial *pwqp); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial( __isl_take isl_union_pw_qpolynomial *upwqp, __isl_take isl_pw_qpolynomial *pwqp); Quasipolynomials can be copied and freed again using the following functions. __isl_give isl_qpolynomial *isl_qpolynomial_copy( __isl_keep isl_qpolynomial *qp); void *isl_qpolynomial_free(__isl_take isl_qpolynomial *qp); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy( __isl_keep isl_pw_qpolynomial *pwqp); void *isl_pw_qpolynomial_free( __isl_take isl_pw_qpolynomial *pwqp); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy( __isl_keep isl_union_pw_qpolynomial *upwqp); void *isl_union_pw_qpolynomial_free( __isl_take isl_union_pw_qpolynomial *upwqp); =head3 Inspecting (Piecewise) Quasipolynomials To iterate over all piecewise quasipolynomials in a union piecewise quasipolynomial, use the following function int isl_union_pw_qpolynomial_foreach_pw_qpolynomial( __isl_keep isl_union_pw_qpolynomial *upwqp, int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user), void *user); To extract the piecewise quasipolynomial in a given space from a union, use __isl_give isl_pw_qpolynomial * isl_union_pw_qpolynomial_extract_pw_qpolynomial( __isl_keep isl_union_pw_qpolynomial *upwqp, __isl_take isl_space *space); To iterate over the cells in a piecewise quasipolynomial, use either of the following two functions int isl_pw_qpolynomial_foreach_piece( __isl_keep isl_pw_qpolynomial *pwqp, int (*fn)(__isl_take isl_set *set, __isl_take isl_qpolynomial *qp, void *user), void *user); int isl_pw_qpolynomial_foreach_lifted_piece( __isl_keep isl_pw_qpolynomial *pwqp, int (*fn)(__isl_take isl_set *set, __isl_take isl_qpolynomial *qp, void *user), void *user); As usual, the function C should return C<0> on success and C<-1> on failure. The difference between C and C is that C will first compute unique representations for all existentially quantified variables and then turn these existentially quantified variables into extra set variables, adapting the associated quasipolynomial accordingly. This means that the C passed to C will not have any existentially quantified variables, but that the dimensions of the sets may be different for different invocations of C. To iterate over all terms in a quasipolynomial, use int isl_qpolynomial_foreach_term( __isl_keep isl_qpolynomial *qp, int (*fn)(__isl_take isl_term *term, void *user), void *user); The terms themselves can be inspected and freed using these functions unsigned isl_term_dim(__isl_keep isl_term *term, enum isl_dim_type type); void isl_term_get_num(__isl_keep isl_term *term, isl_int *n); void isl_term_get_den(__isl_keep isl_term *term, isl_int *d); int isl_term_get_exp(__isl_keep isl_term *term, enum isl_dim_type type, unsigned pos); __isl_give isl_aff *isl_term_get_div( __isl_keep isl_term *term, unsigned pos); void isl_term_free(__isl_take isl_term *term); Each term is a product of parameters, set variables and integer divisions. The function C returns the exponent of a given dimensions in the given term. The Cs in the arguments of C and C need to have been initialized using C before calling these functions. =head3 Properties of (Piecewise) Quasipolynomials To check whether a quasipolynomial is actually a constant, use the following function. int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp, isl_int *n, isl_int *d); If C is a constant and if C and C are not C then the numerator and denominator of the constant are returned in C<*n> and C<*d>, respectively. To check whether two union piecewise quasipolynomials are obviously equal, use int isl_union_pw_qpolynomial_plain_is_equal( __isl_keep isl_union_pw_qpolynomial *upwqp1, __isl_keep isl_union_pw_qpolynomial *upwqp2); =head3 Operations on (Piecewise) Quasipolynomials __isl_give isl_qpolynomial *isl_qpolynomial_scale( __isl_take isl_qpolynomial *qp, isl_int v); __isl_give isl_qpolynomial *isl_qpolynomial_neg( __isl_take isl_qpolynomial *qp); __isl_give isl_qpolynomial *isl_qpolynomial_add( __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2); __isl_give isl_qpolynomial *isl_qpolynomial_sub( __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2); __isl_give isl_qpolynomial *isl_qpolynomial_mul( __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2); __isl_give isl_qpolynomial *isl_qpolynomial_pow( __isl_take isl_qpolynomial *qp, unsigned exponent); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add( __isl_take isl_pw_qpolynomial *pwqp1, __isl_take isl_pw_qpolynomial *pwqp2); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub( __isl_take isl_pw_qpolynomial *pwqp1, __isl_take isl_pw_qpolynomial *pwqp2); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint( __isl_take isl_pw_qpolynomial *pwqp1, __isl_take isl_pw_qpolynomial *pwqp2); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg( __isl_take isl_pw_qpolynomial *pwqp); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul( __isl_take isl_pw_qpolynomial *pwqp1, __isl_take isl_pw_qpolynomial *pwqp2); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow( __isl_take isl_pw_qpolynomial *pwqp, unsigned exponent); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add( __isl_take isl_union_pw_qpolynomial *upwqp1, __isl_take isl_union_pw_qpolynomial *upwqp2); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub( __isl_take isl_union_pw_qpolynomial *upwqp1, __isl_take isl_union_pw_qpolynomial *upwqp2); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul( __isl_take isl_union_pw_qpolynomial *upwqp1, __isl_take isl_union_pw_qpolynomial *upwqp2); __isl_give isl_qpolynomial *isl_pw_qpolynomial_eval( __isl_take isl_pw_qpolynomial *pwqp, __isl_take isl_point *pnt); __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_eval( __isl_take isl_union_pw_qpolynomial *upwqp, __isl_take isl_point *pnt); __isl_give isl_set *isl_pw_qpolynomial_domain( __isl_take isl_pw_qpolynomial *pwqp); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain( __isl_take isl_pw_qpolynomial *pwpq, __isl_take isl_set *set); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_params( __isl_take isl_pw_qpolynomial *pwpq, __isl_take isl_set *set); __isl_give isl_union_set *isl_union_pw_qpolynomial_domain( __isl_take isl_union_pw_qpolynomial *upwqp); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain( __isl_take isl_union_pw_qpolynomial *upwpq, __isl_take isl_union_set *uset); __isl_give isl_union_pw_qpolynomial * isl_union_pw_qpolynomial_intersect_params( __isl_take isl_union_pw_qpolynomial *upwpq, __isl_take isl_set *set); __isl_give isl_qpolynomial *isl_qpolynomial_align_params( __isl_take isl_qpolynomial *qp, __isl_take isl_space *model); __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params( __isl_take isl_qpolynomial *qp); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_project_domain_on_params( __isl_take isl_pw_qpolynomial *pwqp); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce( __isl_take isl_union_pw_qpolynomial *upwqp); __isl_give isl_qpolynomial *isl_qpolynomial_gist_params( __isl_take isl_qpolynomial *qp, __isl_take isl_set *context); __isl_give isl_qpolynomial *isl_qpolynomial_gist( __isl_take isl_qpolynomial *qp, __isl_take isl_set *context); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist_params( __isl_take isl_pw_qpolynomial *pwqp, __isl_take isl_set *context); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist( __isl_take isl_pw_qpolynomial *pwqp, __isl_take isl_set *context); __isl_give isl_union_pw_qpolynomial * isl_union_pw_qpolynomial_gist_params( __isl_take isl_union_pw_qpolynomial *upwqp, __isl_take isl_set *context); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist( __isl_take isl_union_pw_qpolynomial *upwqp, __isl_take isl_union_set *context); The gist operation applies the gist operation to each of the cells in the domain of the input piecewise quasipolynomial. The context is also exploited to simplify the quasipolynomials associated to each cell. __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial( __isl_take isl_pw_qpolynomial *pwqp, int sign); __isl_give isl_union_pw_qpolynomial * isl_union_pw_qpolynomial_to_polynomial( __isl_take isl_union_pw_qpolynomial *upwqp, int sign); Approximate each quasipolynomial by a polynomial. If C is positive, the polynomial will be an overapproximation. If C is negative, it will be an underapproximation. If C is zero, the approximation will lie somewhere in between. =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions A piecewise quasipolynomial reduction is a piecewise reduction (or fold) of quasipolynomials. In particular, the reduction can be maximum or a minimum. The objects are mainly used to represent the result of an upper or lower bound on a quasipolynomial over its domain, i.e., as the result of the following function. __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound( __isl_take isl_pw_qpolynomial *pwqp, enum isl_fold type, int *tight); __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound( __isl_take isl_union_pw_qpolynomial *upwqp, enum isl_fold type, int *tight); The C argument may be either C or C. If C is not C, then C<*tight> is set to C<1> is the returned bound is known be tight, i.e., for each value of the parameters there is at least one element in the domain that reaches the bound. If the domain of C is not wrapping, then the bound is computed over all elements in that domain and the result has a purely parametric domain. If the domain of C is wrapping, then the bound is computed over the range of the wrapped relation. The domain of the wrapped relation becomes the domain of the result. A (piecewise) quasipolynomial reduction can be copied or freed using the following functions. __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy( __isl_keep isl_qpolynomial_fold *fold); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy( __isl_keep isl_pw_qpolynomial_fold *pwf); __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy( __isl_keep isl_union_pw_qpolynomial_fold *upwf); void isl_qpolynomial_fold_free( __isl_take isl_qpolynomial_fold *fold); void *isl_pw_qpolynomial_fold_free( __isl_take isl_pw_qpolynomial_fold *pwf); void *isl_union_pw_qpolynomial_fold_free( __isl_take isl_union_pw_qpolynomial_fold *upwf); =head3 Printing Piecewise Quasipolynomial Reductions Piecewise quasipolynomial reductions can be printed using the following function. __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold( __isl_take isl_printer *p, __isl_keep isl_pw_qpolynomial_fold *pwf); __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold( __isl_take isl_printer *p, __isl_keep isl_union_pw_qpolynomial_fold *upwf); For C, output format of the printer needs to be set to either C or C. For C, output format of the printer needs to be set to C. In case of printing in C, the user may want to set the names of all dimensions __isl_give isl_pw_qpolynomial_fold * isl_pw_qpolynomial_fold_set_dim_name( __isl_take isl_pw_qpolynomial_fold *pwf, enum isl_dim_type type, unsigned pos, const char *s); =head3 Inspecting (Piecewise) Quasipolynomial Reductions To iterate over all piecewise quasipolynomial reductions in a union piecewise quasipolynomial reduction, use the following function int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold( __isl_keep isl_union_pw_qpolynomial_fold *upwf, int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf, void *user), void *user); To iterate over the cells in a piecewise quasipolynomial reduction, use either of the following two functions int isl_pw_qpolynomial_fold_foreach_piece( __isl_keep isl_pw_qpolynomial_fold *pwf, int (*fn)(__isl_take isl_set *set, __isl_take isl_qpolynomial_fold *fold, void *user), void *user); int isl_pw_qpolynomial_fold_foreach_lifted_piece( __isl_keep isl_pw_qpolynomial_fold *pwf, int (*fn)(__isl_take isl_set *set, __isl_take isl_qpolynomial_fold *fold, void *user), void *user); See L for an explanation of the difference between these two functions. To iterate over all quasipolynomials in a reduction, use int isl_qpolynomial_fold_foreach_qpolynomial( __isl_keep isl_qpolynomial_fold *fold, int (*fn)(__isl_take isl_qpolynomial *qp, void *user), void *user); =head3 Properties of Piecewise Quasipolynomial Reductions To check whether two union piecewise quasipolynomial reductions are obviously equal, use int isl_union_pw_qpolynomial_fold_plain_is_equal( __isl_keep isl_union_pw_qpolynomial_fold *upwf1, __isl_keep isl_union_pw_qpolynomial_fold *upwf2); =head3 Operations on Piecewise Quasipolynomial Reductions __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale( __isl_take isl_qpolynomial_fold *fold, isl_int v); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add( __isl_take isl_pw_qpolynomial_fold *pwf1, __isl_take isl_pw_qpolynomial_fold *pwf2); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold( __isl_take isl_pw_qpolynomial_fold *pwf1, __isl_take isl_pw_qpolynomial_fold *pwf2); __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold( __isl_take isl_union_pw_qpolynomial_fold *upwf1, __isl_take isl_union_pw_qpolynomial_fold *upwf2); __isl_give isl_qpolynomial *isl_pw_qpolynomial_fold_eval( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_point *pnt); __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_fold_eval( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_point *pnt); __isl_give isl_pw_qpolynomial_fold * isl_pw_qpolynomial_fold_intersect_params( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_set *set); __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain( __isl_take isl_union_pw_qpolynomial_fold *upwf); __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_union_set *uset); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_intersect_params( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_set *set); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_project_domain_on_params( __isl_take isl_pw_qpolynomial_fold *pwf); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce( __isl_take isl_pw_qpolynomial_fold *pwf); __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce( __isl_take isl_union_pw_qpolynomial_fold *upwf); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist_params( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *context); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *context); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_set *context); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist_params( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_set *context); __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_union_set *context); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_gist_params( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_set *context); The gist operation applies the gist operation to each of the cells in the domain of the input piecewise quasipolynomial reduction. In future, the operation will also exploit the context to simplify the quasipolynomial reductions associated to each cell. __isl_give isl_pw_qpolynomial_fold * isl_set_apply_pw_qpolynomial_fold( __isl_take isl_set *set, __isl_take isl_pw_qpolynomial_fold *pwf, int *tight); __isl_give isl_pw_qpolynomial_fold * isl_map_apply_pw_qpolynomial_fold( __isl_take isl_map *map, __isl_take isl_pw_qpolynomial_fold *pwf, int *tight); __isl_give isl_union_pw_qpolynomial_fold * isl_union_set_apply_union_pw_qpolynomial_fold( __isl_take isl_union_set *uset, __isl_take isl_union_pw_qpolynomial_fold *upwf, int *tight); __isl_give isl_union_pw_qpolynomial_fold * isl_union_map_apply_union_pw_qpolynomial_fold( __isl_take isl_union_map *umap, __isl_take isl_union_pw_qpolynomial_fold *upwf, int *tight); The functions taking a map compose the given map with the given piecewise quasipolynomial reduction. That is, compute a bound (of the same type as C or C itself) over all elements in the intersection of the range of the map and the domain of the piecewise quasipolynomial reduction as a function of an element in the domain of the map. The functions taking a set compute a bound over all elements in the intersection of the set and the domain of the piecewise quasipolynomial reduction. =head2 Parametric Vertex Enumeration The parametric vertex enumeration described in this section is mainly intended to be used internally and by the C library. #include __isl_give isl_vertices *isl_basic_set_compute_vertices( __isl_keep isl_basic_set *bset); The function C performs the actual computation of the parametric vertices and the chamber decomposition and store the result in an C object. This information can be queried by either iterating over all the vertices or iterating over all the chambers or cells and then iterating over all vertices that are active on the chamber. int isl_vertices_foreach_vertex( __isl_keep isl_vertices *vertices, int (*fn)(__isl_take isl_vertex *vertex, void *user), void *user); int isl_vertices_foreach_cell( __isl_keep isl_vertices *vertices, int (*fn)(__isl_take isl_cell *cell, void *user), void *user); int isl_cell_foreach_vertex(__isl_keep isl_cell *cell, int (*fn)(__isl_take isl_vertex *vertex, void *user), void *user); Other operations that can be performed on an C object are the following. isl_ctx *isl_vertices_get_ctx( __isl_keep isl_vertices *vertices); int isl_vertices_get_n_vertices( __isl_keep isl_vertices *vertices); void isl_vertices_free(__isl_take isl_vertices *vertices); Vertices can be inspected and destroyed using the following functions. isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex); int isl_vertex_get_id(__isl_keep isl_vertex *vertex); __isl_give isl_basic_set *isl_vertex_get_domain( __isl_keep isl_vertex *vertex); __isl_give isl_basic_set *isl_vertex_get_expr( __isl_keep isl_vertex *vertex); void isl_vertex_free(__isl_take isl_vertex *vertex); C returns a singleton parametric set describing the vertex, while C returns the activity domain of the vertex. Note that C and C return B basic sets, so they should mainly be used for inspection and should not be mixed with integer sets. Chambers can be inspected and destroyed using the following functions. isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell); __isl_give isl_basic_set *isl_cell_get_domain( __isl_keep isl_cell *cell); void isl_cell_free(__isl_take isl_cell *cell); =head1 Polyhedral Compilation Library This section collects functionality in C that has been specifically designed for use during polyhedral compilation. =head2 Dependence Analysis C contains specialized functionality for performing array dataflow analysis. That is, given a I access relation and a collection of possible I access relations, C can compute relations that describe for each iteration of the sink access, which iteration of which of the source access relations was the last to access the same data element before the given iteration of the sink access. The resulting dependence relations map source iterations to the corresponding sink iterations. To compute standard flow dependences, the sink should be a read, while the sources should be writes. If any of the source accesses are marked as being I accesses, then there will be a dependence from the last I access B from any I access that follows this last I access. In particular, if I sources are I accesses, then memory based dependence analysis is performed. If, on the other hand, all sources are I accesses, then value based dependence analysis is performed. #include typedef int (*isl_access_level_before)(void *first, void *second); __isl_give isl_access_info *isl_access_info_alloc( __isl_take isl_map *sink, void *sink_user, isl_access_level_before fn, int max_source); __isl_give isl_access_info *isl_access_info_add_source( __isl_take isl_access_info *acc, __isl_take isl_map *source, int must, void *source_user); void *isl_access_info_free(__isl_take isl_access_info *acc); __isl_give isl_flow *isl_access_info_compute_flow( __isl_take isl_access_info *acc); int isl_flow_foreach(__isl_keep isl_flow *deps, int (*fn)(__isl_take isl_map *dep, int must, void *dep_user, void *user), void *user); __isl_give isl_map *isl_flow_get_no_source( __isl_keep isl_flow *deps, int must); void isl_flow_free(__isl_take isl_flow *deps); The function C performs the actual dependence analysis. The other functions are used to construct the input for this function or to read off the output. The input is collected in an C, which can be created through a call to C. The arguments to this functions are the sink access relation C, a token C used to identify the sink access to the user, a callback function for specifying the relative order of source and sink accesses, and the number of source access relations that will be added. The callback function has type C. The function is called with two user supplied tokens identifying either a source or the sink and it should return the shared nesting level and the relative order of the two accesses. In particular, let I be the number of loops shared by the two accesses. If C precedes C textually, then the function should return I<2 * n + 1>; otherwise, it should return I<2 * n>. The sources can be added to the C by performing (at most) C calls to C. C indicates whether the source is a I access or a I access. Note that a multi-valued access relation should only be marked I if every iteration in the domain of the relation accesses I elements in its image. The C token is again used to identify the source access. The range of the source access relation C should have the same dimension as the range of the sink access relation. The C function should usually not be called explicitly, because it is called implicitly by C. The result of the dependence analysis is collected in an C. There may be elements of the sink access for which no preceding source access could be found or for which all preceding sources are I accesses. The relations containing these elements can be obtained through calls to C, the first with C set and the second with C unset. In the case of standard flow dependence analysis, with the sink a read and the sources I writes, the first relation corresponds to the reads from uninitialized array elements and the second relation is empty. The actual flow dependences can be extracted using C. This function will call the user-specified callback function C for each B dependence between a source and the sink. The callback function is called with four arguments, the actual flow dependence relation mapping source iterations to sink iterations, a boolean that indicates whether it is a I or I dependence, a token identifying the source and an additional C with value equal to the third argument of the C call. A dependence is marked I if it originates from a I source and if it is not followed by any I sources. After finishing with an C, the user should call C to free all associated memory. A higher-level interface to dependence analysis is provided by the following function. #include int isl_union_map_compute_flow(__isl_take isl_union_map *sink, __isl_take isl_union_map *must_source, __isl_take isl_union_map *may_source, __isl_take isl_union_map *schedule, __isl_give isl_union_map **must_dep, __isl_give isl_union_map **may_dep, __isl_give isl_union_map **must_no_source, __isl_give isl_union_map **may_no_source); The arrays are identified by the tuple names of the ranges of the accesses. The iteration domains by the tuple names of the domains of the accesses and of the schedule. The relative order of the iteration domains is given by the schedule. The relations returned through C and C are subsets of C. Any of C, C, C or C may be C, but a C value for any of the other arguments is treated as an error. =head3 Interaction with Dependence Analysis During the dependence analysis, we frequently need to perform the following operation. Given a relation between sink iterations and potential source iterations from a particular source domain, what is the last potential source iteration corresponding to each sink iteration. It can sometimes be convenient to adjust the set of potential source iterations before or after each such operation. The prototypical example is fuzzy array dataflow analysis, where we need to analyze if, based on data-dependent constraints, the sink iteration can ever be executed without one or more of the corresponding potential source iterations being executed. If so, we can introduce extra parameters and select an unknown but fixed source iteration from the potential source iterations. To be able to perform such manipulations, C provides the following function. #include typedef __isl_give isl_restriction *(*isl_access_restrict)( __isl_keep isl_map *source_map, __isl_keep isl_set *sink, void *source_user, void *user); __isl_give isl_access_info *isl_access_info_set_restrict( __isl_take isl_access_info *acc, isl_access_restrict fn, void *user); The function C should be called before calling C and registers a callback function that will be called any time C is about to compute the last potential source. The first argument is the (reverse) proto-dependence, mapping sink iterations to potential source iterations. The second argument represents the sink iterations for which we want to compute the last source iteration. The third argument is the token corresponding to the source and the final argument is the token passed to C. The callback is expected to return a restriction on either the input or the output of the operation computing the last potential source. If the input needs to be restricted then restrictions are needed for both the source and the sink iterations. The sink iterations and the potential source iterations will be intersected with these sets. If the output needs to be restricted then only a restriction on the source iterations is required. If any error occurs, the callback should return C. An C object can be created, freed and inspected using the following functions. #include __isl_give isl_restriction *isl_restriction_input( __isl_take isl_set *source_restr, __isl_take isl_set *sink_restr); __isl_give isl_restriction *isl_restriction_output( __isl_take isl_set *source_restr); __isl_give isl_restriction *isl_restriction_none( __isl_take isl_map *source_map); __isl_give isl_restriction *isl_restriction_empty( __isl_take isl_map *source_map); void *isl_restriction_free( __isl_take isl_restriction *restr); isl_ctx *isl_restriction_get_ctx( __isl_keep isl_restriction *restr); C and C are special cases of C. C is essentially equivalent to isl_restriction_input(isl_set_universe( isl_space_range(isl_map_get_space(source_map))), isl_set_universe( isl_space_domain(isl_map_get_space(source_map)))); whereas C is essentially equivalent to isl_restriction_input(isl_set_empty( isl_space_range(isl_map_get_space(source_map))), isl_set_universe( isl_space_domain(isl_map_get_space(source_map)))); =head2 Scheduling B The following function can be used to compute a schedule for a union of domains. By default, the algorithm used to construct the schedule is similar to that of C. Alternatively, Feautrier's multi-dimensional scheduling algorithm can be selected. The generated schedule respects all C dependences. That is, all dependence distances over these dependences in the scheduled space are lexicographically positive. The default algorithm tries to minimize the dependence distances over C dependences. Moreover, it tries to obtain sequences (bands) of schedule dimensions for groups of domains where the dependence distances have only non-negative values. When using Feautrier's algorithm, the C dependence distances are only minimized during the extension to a full-dimensional schedule. #include __isl_give isl_schedule *isl_union_set_compute_schedule( __isl_take isl_union_set *domain, __isl_take isl_union_map *validity, __isl_take isl_union_map *proximity); void *isl_schedule_free(__isl_take isl_schedule *sched); A mapping from the domains to the scheduled space can be obtained from an C using the following function. __isl_give isl_union_map *isl_schedule_get_map( __isl_keep isl_schedule *sched); A representation of the schedule can be printed using __isl_give isl_printer *isl_printer_print_schedule( __isl_take isl_printer *p, __isl_keep isl_schedule *schedule); A representation of the schedule as a forest of bands can be obtained using the following function. __isl_give isl_band_list *isl_schedule_get_band_forest( __isl_keep isl_schedule *schedule); The individual bands can be visited in depth-first post-order using the following function. #include int isl_schedule_foreach_band( __isl_keep isl_schedule *sched, int (*fn)(__isl_keep isl_band *band, void *user), void *user); The list can be manipulated as explained in L<"Lists">. The bands inside the list can be copied and freed using the following functions. #include __isl_give isl_band *isl_band_copy( __isl_keep isl_band *band); void *isl_band_free(__isl_take isl_band *band); Each band contains zero or more scheduling dimensions. These are referred to as the members of the band. The section of the schedule that corresponds to the band is referred to as the partial schedule of the band. For those nodes that participate in a band, the outer scheduling dimensions form the prefix schedule, while the inner scheduling dimensions form the suffix schedule. That is, if we take a cut of the band forest, then the union of the concatenations of the prefix, partial and suffix schedules of each band in the cut is equal to the entire schedule (modulo some possible padding at the end with zero scheduling dimensions). The properties of a band can be inspected using the following functions. #include isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band); int isl_band_has_children(__isl_keep isl_band *band); __isl_give isl_band_list *isl_band_get_children( __isl_keep isl_band *band); __isl_give isl_union_map *isl_band_get_prefix_schedule( __isl_keep isl_band *band); __isl_give isl_union_map *isl_band_get_partial_schedule( __isl_keep isl_band *band); __isl_give isl_union_map *isl_band_get_suffix_schedule( __isl_keep isl_band *band); int isl_band_n_member(__isl_keep isl_band *band); int isl_band_member_is_zero_distance( __isl_keep isl_band *band, int pos); int isl_band_list_foreach_band( __isl_keep isl_band_list *list, int (*fn)(__isl_keep isl_band *band, void *user), void *user); Note that a scheduling dimension is considered to be ``zero distance'' if it does not carry any proximity dependences within its band. That is, if the dependence distances of the proximity dependences are all zero in that direction (for fixed iterations of outer bands). Like C, the function C calls C on the bands in depth-first post-order. A band can be tiled using the following function. #include int isl_band_tile(__isl_keep isl_band *band, __isl_take isl_vec *sizes); int isl_options_set_tile_scale_tile_loops(isl_ctx *ctx, int val); int isl_options_get_tile_scale_tile_loops(isl_ctx *ctx); int isl_options_set_tile_shift_point_loops(isl_ctx *ctx, int val); int isl_options_get_tile_shift_point_loops(isl_ctx *ctx); The C function tiles the band using the given tile sizes inside its schedule. A new child band is created to represent the point loops and it is inserted between the modified band and its children. The C option specifies whether the tile loops iterators should be scaled by the tile sizes. If the C option is set, then the point loops are shifted to start at zero. A band can be split into two nested bands using the following function. int isl_band_split(__isl_keep isl_band *band, int pos); The resulting outer band contains the first C dimensions of C while the inner band contains the remaining dimensions. A representation of the band can be printed using #include __isl_give isl_printer *isl_printer_print_band( __isl_take isl_printer *p, __isl_keep isl_band *band); =head3 Options #include int isl_options_set_schedule_max_coefficient( isl_ctx *ctx, int val); int isl_options_get_schedule_max_coefficient( isl_ctx *ctx); int isl_options_set_schedule_max_constant_term( isl_ctx *ctx, int val); int isl_options_get_schedule_max_constant_term( isl_ctx *ctx); int isl_options_set_schedule_fuse(isl_ctx *ctx, int val); int isl_options_get_schedule_fuse(isl_ctx *ctx); int isl_options_set_schedule_maximize_band_depth( isl_ctx *ctx, int val); int isl_options_get_schedule_maximize_band_depth( isl_ctx *ctx); int isl_options_set_schedule_outer_zero_distance( isl_ctx *ctx, int val); int isl_options_get_schedule_outer_zero_distance( isl_ctx *ctx); int isl_options_set_schedule_split_scaled( isl_ctx *ctx, int val); int isl_options_get_schedule_split_scaled( isl_ctx *ctx); int isl_options_set_schedule_algorithm( isl_ctx *ctx, int val); int isl_options_get_schedule_algorithm( isl_ctx *ctx); int isl_options_set_schedule_separate_components( isl_ctx *ctx, int val); int isl_options_get_schedule_separate_components( isl_ctx *ctx); =over =item * schedule_max_coefficient This option enforces that the coefficients for variable and parameter dimensions in the calculated schedule are not larger than the specified value. This option can significantly increase the speed of the scheduling calculation and may also prevent fusing of unrelated dimensions. A value of -1 means that this option does not introduce bounds on the variable or parameter coefficients. =item * schedule_max_constant_term This option enforces that the constant coefficients in the calculated schedule are not larger than the maximal constant term. This option can significantly increase the speed of the scheduling calculation and may also prevent fusing of unrelated dimensions. A value of -1 means that this option does not introduce bounds on the constant coefficients. =item * schedule_fuse This option controls the level of fusion. If this option is set to C, then loops in the resulting schedule will be distributed as much as possible. If this option is set to C, then C will try to fuse loops in the resulting schedule. =item * schedule_maximize_band_depth If this option is set, we do not split bands at the point where we detect splitting is necessary. Instead, we backtrack and split bands as early as possible. This reduces the number of splits and maximizes the width of the bands. Wider bands give more possibilities for tiling. Note that if the C option is set to C, then bands will be split as early as possible, even if there is no need. The C option therefore has no effect in this case. =item * schedule_outer_zero_distance If this option is set, then we try to construct schedules where the outermost scheduling dimension in each band results in a zero dependence distance over the proximity dependences. =item * schedule_split_scaled If this option is set, then we try to construct schedules in which the constant term is split off from the linear part if the linear parts of the scheduling rows for all nodes in the graphs have a common non-trivial divisor. The constant term is then placed in a separate band and the linear part is reduced. =item * schedule_algorithm Selects the scheduling algorithm to be used. Available scheduling algorithms are C and C. =item * schedule_separate_components If at any point the dependence graph contains any (weakly connected) components, then these components are scheduled separately. If this option is not set, then some iterations of the domains in these components may be scheduled together. If this option is set, then the components are given consecutive schedules. =back =head2 AST Generation This section describes the C functionality for generating ASTs that visit all the elements in a domain in an order specified by a schedule. In particular, given a C, an AST is generated that visits all the elements in the domain of the C according to the lexicographic order of the corresponding image element(s). If the range of the C consists of elements in more than one space, then each of these spaces is handled separately in an arbitrary order. It should be noted that the image elements only specify the I in which the corresponding domain elements should be visited. No direct relation between the image elements and the loop iterators in the generated AST should be assumed. Each AST is generated within a build. The initial build simply specifies the constraints on the parameters (if any) and can be created, inspected, copied and freed using the following functions. #include __isl_give isl_ast_build *isl_ast_build_from_context( __isl_take isl_set *set); isl_ctx *isl_ast_build_get_ctx( __isl_keep isl_ast_build *build); __isl_give isl_ast_build *isl_ast_build_copy( __isl_keep isl_ast_build *build); void *isl_ast_build_free( __isl_take isl_ast_build *build); The C argument is usually a parameter set with zero or more parameters. More C functions are described in L and L. Finally, the AST itself can be constructed using the following function. #include __isl_give isl_ast_node *isl_ast_build_ast_from_schedule( __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule); =head3 Inspecting the AST The basic properties of an AST node can be obtained as follows. #include isl_ctx *isl_ast_node_get_ctx( __isl_keep isl_ast_node *node); enum isl_ast_node_type isl_ast_node_get_type( __isl_keep isl_ast_node *node); The type of an AST node is one of C, C, C or C. An C represents a for node. An C represents an if node. An C represents a compound node. An C represents an expression statement. An expression statement typically corresponds to a domain element, i.e., one of the elements that is visited by the AST. Each type of node has its own additional properties. #include __isl_give isl_ast_expr *isl_ast_node_for_get_iterator( __isl_keep isl_ast_node *node); __isl_give isl_ast_expr *isl_ast_node_for_get_init( __isl_keep isl_ast_node *node); __isl_give isl_ast_expr *isl_ast_node_for_get_cond( __isl_keep isl_ast_node *node); __isl_give isl_ast_expr *isl_ast_node_for_get_inc( __isl_keep isl_ast_node *node); __isl_give isl_ast_node *isl_ast_node_for_get_body( __isl_keep isl_ast_node *node); int isl_ast_node_for_is_degenerate( __isl_keep isl_ast_node *node); An C is considered degenerate if it is known to execute exactly once. #include __isl_give isl_ast_expr *isl_ast_node_if_get_cond( __isl_keep isl_ast_node *node); __isl_give isl_ast_node *isl_ast_node_if_get_then( __isl_keep isl_ast_node *node); int isl_ast_node_if_has_else( __isl_keep isl_ast_node *node); __isl_give isl_ast_node *isl_ast_node_if_get_else( __isl_keep isl_ast_node *node); __isl_give isl_ast_node_list * isl_ast_node_block_get_children( __isl_keep isl_ast_node *node); __isl_give isl_ast_expr *isl_ast_node_user_get_expr( __isl_keep isl_ast_node *node); Each of the returned Cs can in turn be inspected using the following functions. #include isl_ctx *isl_ast_expr_get_ctx( __isl_keep isl_ast_expr *expr); enum isl_ast_expr_type isl_ast_expr_get_type( __isl_keep isl_ast_expr *expr); The type of an AST expression is one of C, C or C. An C represents the result of an operation. An C represents an identifier. An C represents an integer value. Each type of expression has its own additional properties. #include enum isl_ast_op_type isl_ast_expr_get_op_type( __isl_keep isl_ast_expr *expr); int isl_ast_expr_get_op_n_arg(__isl_keep isl_ast_expr *expr); __isl_give isl_ast_expr *isl_ast_expr_get_op_arg( __isl_keep isl_ast_expr *expr, int pos); int isl_ast_node_foreach_ast_op_type( __isl_keep isl_ast_node *node, int (*fn)(enum isl_ast_op_type type, void *user), void *user); C returns the type of the operation performed. C returns the number of arguments. C returns the specified argument. C calls C for each distinct C that appears in C. The operation type is one of the following. =over =item C Logical I of two arguments. Both arguments can be evaluated. =item C Logical I of two arguments. The second argument can only be evaluated if the first evaluates to true. =item C Logical I of two arguments. Both arguments can be evaluated. =item C Logical I of two arguments. The second argument can only be evaluated if the first evaluates to false. =item C Maximum of two or more arguments. =item C Minimum of two or more arguments. =item C Change sign. =item C Sum of two arguments. =item C Difference of two arguments. =item C Product of two arguments. =item C Exact division. That is, the result is known to be an integer. =item C Result of integer division, rounded towards negative infinity. =item C Result of integer division, where dividend is known to be non-negative. =item C Remainder of integer division, where dividend is known to be non-negative. =item C Conditional operator defined on three arguments. If the first argument evaluates to true, then the result is equal to the second argument. Otherwise, the result is equal to the third argument. The second and third argument may only be evaluated if the first argument evaluates to true and false, respectively. Corresponds to C in C. =item C Conditional operator defined on three arguments. If the first argument evaluates to true, then the result is equal to the second argument. Otherwise, the result is equal to the third argument. The second and third argument may be evaluated independently of the value of the first argument. Corresponds to C in C. =item C Equality relation. =item C Less than or equal relation. =item C Less than relation. =item C Greater than or equal relation. =item C Greater than relation. =item C A function call. The number of arguments of the C is one more than the number of arguments in the function call, the first argument representing the function being called. =back #include __isl_give isl_id *isl_ast_expr_get_id( __isl_keep isl_ast_expr *expr); Return the identifier represented by the AST expression. #include int isl_ast_expr_get_int(__isl_keep isl_ast_expr *expr, isl_int *v); Return the integer represented by the AST expression. Note that the integer is returned through the C argument. The return value of the function itself indicates whether the operation was performed successfully. =head3 Manipulating and printing the AST AST nodes can be copied and freed using the following functions. #include __isl_give isl_ast_node *isl_ast_node_copy( __isl_keep isl_ast_node *node); void *isl_ast_node_free(__isl_take isl_ast_node *node); AST expressions can be copied and freed using the following functions. #include __isl_give isl_ast_expr *isl_ast_expr_copy( __isl_keep isl_ast_expr *expr); void *isl_ast_expr_free(__isl_take isl_ast_expr *expr); New AST expressions can be created either directly or within the context of an C. #include __isl_give isl_ast_expr *isl_ast_expr_from_id( __isl_take isl_id *id); __isl_give isl_ast_expr *isl_ast_expr_neg( __isl_take isl_ast_expr *expr); __isl_give isl_ast_expr *isl_ast_expr_add( __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_sub( __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_mul( __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_div( __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_and( __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) __isl_give isl_ast_expr *isl_ast_expr_or( __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) #include __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff( __isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa); __isl_give isl_ast_expr * isl_ast_build_call_from_pw_multi_aff( __isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma); The domains of C and C should correspond to the schedule space of C. The tuple id of C is used as the function being called. User specified data can be attached to an C and obtained from the same C using the following functions. #include __isl_give isl_ast_node *isl_ast_node_set_annotation( __isl_take isl_ast_node *node, __isl_take isl_id *annotation); __isl_give isl_id *isl_ast_node_get_annotation( __isl_keep isl_ast_node *node); Basic printing can be performed using the following functions. #include __isl_give isl_printer *isl_printer_print_ast_expr( __isl_take isl_printer *p, __isl_keep isl_ast_expr *expr); __isl_give isl_printer *isl_printer_print_ast_node( __isl_take isl_printer *p, __isl_keep isl_ast_node *node); More advanced printing can be performed using the following functions. #include __isl_give isl_printer *isl_ast_op_type_print_macro( enum isl_ast_op_type type, __isl_take isl_printer *p); __isl_give isl_printer *isl_ast_node_print_macros( __isl_keep isl_ast_node *node, __isl_take isl_printer *p); __isl_give isl_printer *isl_ast_node_print( __isl_keep isl_ast_node *node, __isl_take isl_printer *p, __isl_take isl_ast_print_options *options); __isl_give isl_printer *isl_ast_node_for_print( __isl_keep isl_ast_node *node, __isl_take isl_printer *p, __isl_take isl_ast_print_options *options); __isl_give isl_printer *isl_ast_node_if_print( __isl_keep isl_ast_node *node, __isl_take isl_printer *p, __isl_take isl_ast_print_options *options); While printing an C in C, C may print out an AST that makes use of macros such as C, C and C. C prints out the macro corresponding to a specific C. C scans the C for expressions where these macros would be used and prints out the required macro definitions. Essentially, C calls C with C as function argument. C, C and C print an C in C, but allow for some extra control through an C object. This object can be created using the following functions. #include __isl_give isl_ast_print_options * isl_ast_print_options_alloc(isl_ctx *ctx); __isl_give isl_ast_print_options * isl_ast_print_options_copy( __isl_keep isl_ast_print_options *options); void *isl_ast_print_options_free( __isl_take isl_ast_print_options *options); __isl_give isl_ast_print_options * isl_ast_print_options_set_print_user( __isl_take isl_ast_print_options *options, __isl_give isl_printer *(*print_user)( __isl_take isl_printer *p, __isl_take isl_ast_print_options *options, __isl_keep isl_ast_node *node, void *user), void *user); __isl_give isl_ast_print_options * isl_ast_print_options_set_print_for( __isl_take isl_ast_print_options *options, __isl_give isl_printer *(*print_for)( __isl_take isl_printer *p, __isl_take isl_ast_print_options *options, __isl_keep isl_ast_node *node, void *user), void *user); The callback set by C is called whenever a node of type C needs to be printed. The callback set by C is called whenever a node of type C needs to be printed. Note that C will I call the callback set by C on the node on which C is called, but only on nested nodes of type C. It is therefore safe to call C from within the callback set by C. The following option determines the type to be used for iterators while printing the AST. int isl_options_set_ast_iterator_type( isl_ctx *ctx, const char *val); const char *isl_options_get_ast_iterator_type( isl_ctx *ctx); =head3 Options #include int isl_options_set_ast_build_atomic_upper_bound( isl_ctx *ctx, int val); int isl_options_get_ast_build_atomic_upper_bound( isl_ctx *ctx); int isl_options_set_ast_build_prefer_pdiv(isl_ctx *ctx, int val); int isl_options_get_ast_build_prefer_pdiv(isl_ctx *ctx); int isl_options_set_ast_build_exploit_nested_bounds( isl_ctx *ctx, int val); int isl_options_get_ast_build_exploit_nested_bounds( isl_ctx *ctx); int isl_options_set_ast_build_group_coscheduled( isl_ctx *ctx, int val); int isl_options_get_ast_build_group_coscheduled( isl_ctx *ctx); int isl_options_set_ast_build_scale_strides( isl_ctx *ctx, int val); int isl_options_get_ast_build_scale_strides( isl_ctx *ctx); int isl_options_set_ast_build_allow_else(isl_ctx *ctx, int val); int isl_options_get_ast_build_allow_else(isl_ctx *ctx); int isl_options_set_ast_build_allow_or(isl_ctx *ctx, int val); int isl_options_get_ast_build_allow_or(isl_ctx *ctx); =over =item * ast_build_atomic_upper_bound Generate loop upper bounds that consist of the current loop iterator, an operator and an expression not involving the iterator. If this option is not set, then the current loop iterator may appear several times in the upper bound. For example, when this option is turned off, AST generation for the schedule [n] -> { A[i] -> [i] : 0 <= i <= 100, n } produces for (int c0 = 0; c0 <= 100 && n >= c0; c0 += 1) A(c0); When the option is turned on, the following AST is generated for (int c0 = 0; c0 <= min(100, n); c0 += 1) A(c0); =item * ast_build_prefer_pdiv If this option is turned off, then the AST generation will produce ASTs that may only contain C operators, but no C or C operators. If this options is turned on, then C will try to convert some of the C operators to (expressions containing) C or C operators. =item * ast_build_exploit_nested_bounds Simplify conditions based on bounds of nested for loops. In particular, remove conditions that are implied by the fact that one or more nested loops have at least one iteration, meaning that the upper bound is at least as large as the lower bound. For example, when this option is turned off, AST generation for the schedule [N,M] -> { A[i,j] -> [i,j] : 0 <= i <= N and 0 <= j <= M } produces if (M >= 0) for (int c0 = 0; c0 <= N; c0 += 1) for (int c1 = 0; c1 <= M; c1 += 1) A(c0, c1); When the option is turned on, the following AST is generated for (int c0 = 0; c0 <= N; c0 += 1) for (int c1 = 0; c1 <= M; c1 += 1) A(c0, c1); =item * ast_build_group_coscheduled If two domain elements are assigned the same schedule point, then they may be executed in any order and they may even appear in different loops. If this options is set, then the AST generator will make sure that coscheduled domain elements do not appear in separate parts of the AST. This is useful in case of nested AST generation if the outer AST generation is given only part of a schedule and the inner AST generation should handle the domains that are coscheduled by this initial part of the schedule together. For example if an AST is generated for a schedule { A[i] -> [0]; B[i] -> [0] } then the C callback described below may get called twice, once for each domain. Setting this option ensures that the callback is only called once on both domains together. =item * ast_build_separation_bounds This option specifies which bounds to use during separation. If this option is set to C then all (possibly implicit) bounds on the current dimension will be used during separation. If this option is set to C then only those bounds that are explicitly available will be used during separation. =item * ast_build_scale_strides This option specifies whether the AST generator is allowed to scale down iterators of strided loops. =item * ast_build_allow_else This option specifies whether the AST generator is allowed to construct if statements with else branches. =item * ast_build_allow_or This option specifies whether the AST generator is allowed to construct if conditions with disjunctions. =back =head3 Fine-grained Control over AST Generation Besides specifying the constraints on the parameters, an C object can be used to control various aspects of the AST generation process. The most prominent way of control is through ``options'', which can be set using the following function. #include __isl_give isl_ast_build * isl_ast_build_set_options( __isl_take isl_ast_build *control, __isl_take isl_union_map *options); The options are encoded in an . The domain of this union relation refers to the schedule domain, i.e., the range of the schedule passed to C. In the case of nested AST generation (see L), the domain of C should refer to the extra piece of the schedule. That is, it should be equal to the range of the wrapped relation in the range of the schedule. The range of the options can consist of elements in one or more spaces, the names of which determine the effect of the option. The values of the range typically also refer to the schedule dimension to which the option applies. In case of nested AST generation (see L), these values refer to the position of the schedule dimension within the innermost AST generation. The constraints on the domain elements of the option should only refer to this dimension and earlier dimensions. We consider the following spaces. =over =item C This space is a wrapped relation between two one dimensional spaces. The input space represents the schedule dimension to which the option applies and the output space represents the separation class. While constructing a loop corresponding to the specified schedule dimension(s), the AST generator will try to generate separate loops for domain elements that are assigned different classes. If only some of the elements are assigned a class, then those elements that are not assigned any class will be treated as belonging to a class that is separate from the explicitly assigned classes. The typical use case for this option is to separate full tiles from partial tiles. The other options, described below, are applied after the separation into classes. As an example, consider the separation into full and partial tiles of a tiling of a triangular domain. Take, for example, the domain { A[i,j] : 0 <= i,j and i + j <= 100 } and a tiling into tiles of 10 by 10. The input to the AST generator is then the schedule { A[i,j] -> [([i/10]),[j/10],i,j] : 0 <= i,j and i + j <= 100 } Without any options, the following AST is generated for (int c0 = 0; c0 <= 10; c0 += 1) for (int c1 = 0; c1 <= -c0 + 10; c1 += 1) for (int c2 = 10 * c0; c2 <= min(-10 * c1 + 100, 10 * c0 + 9); c2 += 1) for (int c3 = 10 * c1; c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1) A(c2, c3); Separation into full and partial tiles can be obtained by assigning a class, say C<0>, to the full tiles. The full tiles are represented by those values of the first and second schedule dimensions for which there are values of the third and fourth dimensions to cover an entire tile. That is, we need to specify the following option { [a,b,c,d] -> separation_class[[0]->[0]] : exists b': 0 <= 10a,10b' and 10a+9+10b'+9 <= 100; [a,b,c,d] -> separation_class[[1]->[0]] : 0 <= 10a,10b and 10a+9+10b+9 <= 100 } which simplifies to { [a, b, c, d] -> separation_class[[1] -> [0]] : a >= 0 and b >= 0 and b <= 8 - a; [a, b, c, d] -> separation_class[[0] -> [0]] : a >= 0 and a <= 8 } With this option, the generated AST is as follows { for (int c0 = 0; c0 <= 8; c0 += 1) { for (int c1 = 0; c1 <= -c0 + 8; c1 += 1) for (int c2 = 10 * c0; c2 <= 10 * c0 + 9; c2 += 1) for (int c3 = 10 * c1; c3 <= 10 * c1 + 9; c3 += 1) A(c2, c3); for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1) for (int c2 = 10 * c0; c2 <= min(-10 * c1 + 100, 10 * c0 + 9); c2 += 1) for (int c3 = 10 * c1; c3 <= min(-c2 + 100, 10 * c1 + 9); c3 += 1) A(c2, c3); } for (int c0 = 9; c0 <= 10; c0 += 1) for (int c1 = 0; c1 <= -c0 + 10; c1 += 1) for (int c2 = 10 * c0; c2 <= min(-10 * c1 + 100, 10 * c0 + 9); c2 += 1) for (int c3 = 10 * c1; c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1) A(c2, c3); } =item C This is a single-dimensional space representing the schedule dimension(s) to which ``separation'' should be applied. Separation tries to split a loop into several pieces if this can avoid the generation of guards inside the loop. See also the C option. =item C This is a single-dimensional space representing the schedule dimension(s) for which the domains should be considered ``atomic''. That is, the AST generator will make sure that any given domain space will only appear in a single loop at the specified level. Consider the following schedule { a[i] -> [i] : 0 <= i < 10; b[i] -> [i+1] : 0 <= i < 10 } If the following option is specified { [i] -> separate[x] } then the following AST will be generated { a(0); for (int c0 = 1; c0 <= 9; c0 += 1) { a(c0); b(c0 - 1); } b(9); } If, on the other hand, the following option is specified { [i] -> atomic[x] } then the following AST will be generated for (int c0 = 0; c0 <= 10; c0 += 1) { if (c0 <= 9) a(c0); if (c0 >= 1) b(c0 - 1); } If neither C nor C is specified, then the AST generator may produce either of these two results or some intermediate form. =item C This is a single-dimensional space representing the schedule dimension(s) that should be I unrolled. To obtain a partial unrolling, the user should apply an additional strip-mining to the schedule and fully unroll the inner loop. =back Additional control is available through the following functions. #include __isl_give isl_ast_build * isl_ast_build_set_iterators( __isl_take isl_ast_build *control, __isl_take isl_id_list *iterators); The function C allows the user to specify a list of iterator Cs to be used as iterators. If the input schedule is injective, then the number of elements in this list should be as large as the dimension of the schedule space, but no direct correspondence should be assumed between dimensions and elements. If the input schedule is not injective, then an additional number of Cs equal to the largest dimension of the input domains may be required. If the number of provided Cs is insufficient, then additional names are automatically generated. #include __isl_give isl_ast_build * isl_ast_build_set_create_leaf( __isl_take isl_ast_build *control, __isl_give isl_ast_node *(*fn)( __isl_take isl_ast_build *build, void *user), void *user); The C function allows for the specification of a callback that should be called whenever the AST generator arrives at an element of the schedule domain. The callback should return an AST node that should be inserted at the corresponding position of the AST. The default action (when the callback is not set) is to continue generating parts of the AST to scan all the domain elements associated to the schedule domain element and to insert user nodes, ``calling'' the domain element, for each of them. The C argument contains the current state of the C. To ease nested AST generation (see L), all control information that is specific to the current AST generation such as the options and the callbacks has been removed from this C. The callback would typically return the result of a nested AST generation or a user defined node created using the following function. #include __isl_give isl_ast_node *isl_ast_node_alloc_user( __isl_take isl_ast_expr *expr); #include __isl_give isl_ast_build * isl_ast_build_set_at_each_domain( __isl_take isl_ast_build *build, __isl_give isl_ast_node *(*fn)( __isl_take isl_ast_node *node, __isl_keep isl_ast_build *build, void *user), void *user); __isl_give isl_ast_build * isl_ast_build_set_before_each_for( __isl_take isl_ast_build *build, __isl_give isl_id *(*fn)( __isl_keep isl_ast_build *build, void *user), void *user); __isl_give isl_ast_build * isl_ast_build_set_after_each_for( __isl_take isl_ast_build *build, __isl_give isl_ast_node *(*fn)( __isl_take isl_ast_node *node, __isl_keep isl_ast_build *build, void *user), void *user); The callback set by C will be called for each domain AST node. The callbacks set by C and C will be called for each for AST node. The first will be called in depth-first pre-order, while the second will be called in depth-first post-order. Since C is called before the for node is actually constructed, it is only passed an C. The returned C will be added as an annotation (using C) to the constructed for node. In particular, if the user has also specified an C callback, then the annotation can be retrieved from the node passed to that callback using C. All callbacks should C on failure. The given C can be used to create new C objects using C or C. =head3 Nested AST Generation C allows the user to create an AST within the context of another AST. These nested ASTs are created using the same C function that is used to create the outer AST. The C argument should be an C passed to a callback set by C. The space of the range of the C argument should refer to this build. In particular, the space should be a wrapped relation and the domain of this wrapped relation should be the same as that of the range of the schedule returned by C below. In practice, the new schedule is typically created by calling C on the old schedule and some extra piece of the schedule. The space of the schedule domain is also available from the C. #include __isl_give isl_union_map *isl_ast_build_get_schedule( __isl_keep isl_ast_build *build); __isl_give isl_space *isl_ast_build_get_schedule_space( __isl_keep isl_ast_build *build); __isl_give isl_ast_build *isl_ast_build_restrict( __isl_take isl_ast_build *build, __isl_take isl_set *set); The C function returns a (partial) schedule for the domains elements for which part of the AST still needs to be generated in the current build. In particular, the domain elements are mapped to those iterations of the loops enclosing the current point of the AST generation inside which the domain elements are executed. No direct correspondence between the input schedule and this schedule should be assumed. The space obtained from C can be used to create a set for C to intersect with the current build. In particular, the set passed to C can have additional parameters. The ids of the set dimensions in the space returned by C correspond to the iterators of the already generated loops. The user should not rely on the ids of the output dimensions of the relations in the union relation returned by C having any particular value. =head1 Applications Although C is mainly meant to be used as a library, it also contains some basic applications that use some of the functionality of C. The input may be specified in either the L or the L. =head2 C C takes a polyhedron as input and prints an integer element of the polyhedron, if there is any. The first column in the output is the denominator and is always equal to 1. If the polyhedron contains no integer points, then a vector of length zero is printed. =head2 C C takes the same input as the C program from the C distribution, i.e., a set of constraints on the parameters, a line containing only -1 and finally a set of constraints on a parametric polyhedron. The coefficients of the parameters appear in the last columns (but before the final constant column). The output is the lexicographic minimum of the parametric polyhedron. As C currently does not have its own output format, the output is just a dump of the internal state. =head2 C C computes the minimum of some linear or affine objective function over the integer points in a polyhedron. If an affine objective function is given, then the constant should appear in the last column. =head2 C Given a polytope, C prints all integer points in the polytope. =head2 C Given a schedule, a context set and an options relation, C prints out an AST that scans the domain elements of the schedule in the order of their image(s) taking into account the constraints in the context set.