
IoTivity Programmer’s Guide
– Resource Encapsulation

1 CONTENTS
2 Revision History .. 4

3 Terminology .. 5

4 Introduction to Resource Encapsulation .. 6

4.1 Overall Architecture ... 6

4.2 Iotivity Service Components ... 7

4.3 components of Resource Encapsulation Layer .. 8

4.3.1 Resource Broker .. 8

4.3.2 Resource Cache ... 8

4.3.3 Resource Client ... 9

4.3.4 Resource Container ... 9

4.3.5 Server Builder .. 12

5 Build Instructions .. 12

5.1 Cloning Iotivity code ... 12

5.1.1 Tools and Libraries .. 12

5.1.2 Checking out the Source code ... 13

5.2 Build Iotivity code for Linux Platform ... 15

5.2.1 Build Procedure ... 15

6 Resource Encapsulation APIs .. 15

6.1 Client side APIs .. 15

6.2 Server side APIs .. 15

6.3 Common APIs ... 15

7 Resource Bundle APIs and Project Templates .. 16

7.1 C++ Bundle APIs and Project Template .. 16

7.1.1 Project template .. 16

7.1.2 Build instructions... 17

7.2 Java Bundle APIs and Project Template ... 17

7.2.1 Project Template ... 18

7.2.2 Build instructions... 18

8 Sample application : Resource client & Server Builder ... 18

8.1 Working Flow .. 18

8.1.1 Server with Auto Control of Request .. 19

8.1.2 Server with application’s Control on Request ... 24

2 REVISION HISTORY
Revision Author(s) Comments

2015061901 Arya Kumar Initial Release

2015070601 Jay Sharma Updated as per Review Comments

2015070901 Markus Jung Resource Container documentation update
Resource Bundle APIs and Project templates

2015071001 Jay Sharma Updated as per Review comments and added sample application
section

2015071401 Jay Sharma Updated as per Review comments

2015072001 Jay Sharma Added missed APIS, Added more description to the APIs.

2015072201 Jay Sharma Changed name from Resource Manipulation to Resource
Encapsulation ,
Updated as per review comments.

2015072202 Minji Park Resource Container documentation update

2015072301 Minji Park Updated as per Review Comments

2015072401 Jay Sharma Added RCSAddress class for Discover method & added prefix to
Resource client classes.

 Jay Sharma Added RCS prefix to classes

2015073101 JungHo Kim Remove all API references (Duplication of reference doc.)

3 TERMINOLOGY
Resource Encapsulation

It is an abstract layer which consists of common resource function modules.

Resource Broker

It is function module of Resource Encapsulation layer which monitors the presence status of the
Resource of Interest.

Resource Cache

It is the function module of Resource Encapsulation layer which manages the caching of Resource data.

Resource Client

It is the common API layer for the Resource Cache and Resource Broker module.

Server Builder

It is module which provides easy creation of resource with flexibility of handling the request either
internally by module itself or at application level.

Resource Container

It provides the APIs for integration of non-OIC resources into OIC ecosystem.

Resource Bundle

It contains the resource information of non-OIC devices, which is used to create OIC resources.

4 INTRODUCTION TO RESOURCE ENCAPSULATION
Resource Encapsulation is an abstract layer which consists of common resource function modules. It
provides functionalities for both the client and server side to ease the work of developers.
For Client side it provides Cache and Resource Broker functionalities (monitoring the presence of
resource in the network). For server side it provides the simple and direct way to create the resource
and to set the properties and attributes. For handling the request from client it provides flexibility to
developer either auto control of request by the layer itself or developer control the request in the
application. Resource Container module of Resource Encapsulation layer provides integration of non-
OIC devices into OIC devices.

Resource Encapsulation provides the common function modules to make developer’s life easy.

4.1 OVERALL ARCHITECTURE
This is an abstract view of the IoTivity architecture including the Resource Encapsulation layer of the
IoTivity service.

 Figure 1 : IoTivity architecture depicting IoTivity services layer

4.2 IOTIVITY SERVICE COMPONENTS

The IoTivity service layer consists of two sub layers:

• Service:
This layer contains service modules which in-turn uses the functional modules of RE layer.

• Resource Encapsulation (RE):
This layer consists of common functional modules as shown in Figure 2.

The difference between both these layers is that the service layer has resource(s) to represent their
features whereas RE layer do not have any resources.

Figure 2: Iotivity service architecture depicting service modules and function modules

Here the Resource Broker and Resource Cache are functional modules which provide the client side
functionalities for the IoTivity services. The Resource client is an API layer on these functional modules
to provide these functionalities to the developer in an abstract way.

Server Builder is the functional module which provides server side APIs for easy creation of Resource
and handling of requests.

Resource Container provides the easy integration of non-OIC resource to OIC resource.

Common provides the common APIs from both client and server side.

4.3 COMPONENTS OF RESOURCE ENCAPSULATION LAYER

4.3.1 Resource Broker

This is a function module in the resource encapsulation layer. It monitors the presence status of the
resource of interest. It guarantees the presence status of the remote server (resource) selected & asked
by application.

 Figure 3: Resource Broker usage

4.3.2 Resource Cache

This is another function module in the resource client side. It caches the attribute data of the resource
of interest. It guarantees the delivery of the resource data selected & asked by application. It has
different methods of caching the resource data as per developer’s requirements. These methods are
specified in API section.

 Figure 4: Resource Cache usage

4.3.3 Resource Client
Resource Client is a common API layer for the developer to use Resource Cache and Resource Broker
functionalities. It provides the APIs of “Resource Broker” and “Resource Cache” to the developers.

4.3.4 Resource Container

The main purpose of this functional module is to:
• Manages the life-cycle of the resources.
• Provides APIs for integration of non-OIC resources into OIC ecosystem.
• Dynamic loading of resources bundles. One resource bundle can contain multiple resources.

Bundle is activated by the container and bundle registers its resources at the resource container
re-using the features of the other RE layer components.

• Provides common resource templates and configuration mechanism for resource bundles. It
deals with OIC specific communication features, and provides common functionalities in a
generic way.

It provides APIs to activate and deactivate resource instance(s) dynamically on demand.

Figure 5: Resource Container Architecture

Figure 5 illustrates the architecture of the resource container. It offers a container API that can be used
to start the container. A common XML configuration file is used for all resource bundles. The
configuration contains parameters specific to the bundle but also to every resource instance. A resource
bundle contains an activator and bundle resources. A bundle resource can be the definition of a soft
sensor resource that contains an algorithm to derive new knowledge and offer it as a resource and
protocol bridge resources which map other technologies to OIC resources. The bundles only contain the
mapping logic, whereas the actual creation of OIC resource servers happens in the resource container.
The bundle provider is agnostic of the base and resource encapsulation layer APIs of IoTivity and only
needs to adhere to the bundle API.

The resource container is a component used by many different stakeholders. The main stakeholders are
device manufacturers that provide a device bridge to other technologies, a bundle provider providing
bundles that map other technologies to IoTivity or offer software-defined resources (e.g. algorithms,
sensor fusioning), system integrator or end-user which configure the resource container and its bundles
for a concrete environment. For an application developer the resource container is transparent and the
developer has only to adhere to the OIC specified interfaces. A stakeholder overview is given in Figure 6
and the interaction flow for the activation of a bundle is shown in Figure 7.

Figure 6: Resource container stakeholder overview

 Figure 7: Resource container interaction flow

•Responsibility: Create bridge software (executable using the
ResourceContainer)

•Beneftis: ResourceContainer provides a modular environment.
Software can be shipped with the bridge and does not need to be
modified by the manufacturer if a new technology needs to be
supported. Configuration is kept separate and depends on
environment (network config, used devices)

Device
Manufacturer

(Bridge)

•Responsibility: Integrates non-OIC technologies into the OIC
ecosystem, by providing a mapping to OIC resources. A bundle
contains the resource mappings for all devices/services of a
technology

•Benefits: One bundle for a compete technology can be provided (

Bundle Provider

•Responsibility: Create a solution for a concrete
customer/environment. Install resource bundles. In the best case,
the bridge and the bundles automatically configure themselves (e.g.
for private customers) but in complex cases (e.g. commercial
buildings) manual setup and configuration is required

•Benefits: Only the configuration needs to be changed, no software
needs to be built. Bundles can be just copied

System
Integrator/System
administrator/End

user

•Responsibility: Create services based on the definition of OIC
resources.

•Benefits: Resource bundles are transparent to the application
developer. A common interface (OIC resources) is provided for all
technologies.

Application
developer

4.3.5 Server Builder

It is a functional module which handles the simplified creation of resources. In this module the
developer does not need to deal with the details of CoAP communication, request and response
handling. It provides APIs to ease the definition of resource types. The resources are defines based on
the properties and developer has to provide the getter/setter methods. The developer does not have to
worry about the request handling as it is taken care of internally in this module.

 Figure 8: Server builder usage

5 BUILD INSTRUCTIONS
This section covers Cloning of Iotivity code and build instructions for Iotivity code.

5.1 CLONING IOTIVITY CODE

5.1.1 Tools and Libraries
The following tools and libraries are necessary to build IoTivity code in Linux machine for Linux platform.
The commands and instructions provided in this section are specifically for Ubuntu LTS 12.04. Open the
terminal window use the following instructions to install all the necessary tools and libraries to build an
IoTivity project.

Ubuntu LTS 12.04

Ubuntu LTS version 12.04 is the supported OS for building the IoTivity stack. The instructions may be
different for other versions of Ubuntu and Linux.

Git

Git is source code management software. Git is necessary to gain access to the IoTivitiy source code. Use
the following command to download and install git:

$ sudo apt-get install git-core

ssh

Secure Shell is required to connect to the git repository to check out the IoTivity source code. Secure
Shell is typically part of the base operating system and should be included. If for any reason it is not
available, it can be installed by running the following command in your terminal window:

SCons

SCons is build tool used for compiling IoTivity source code. Please refer to the following link to install
SCons.

http://www.scons.org/doc/production/HTML/scons-user.html#chap-build-install

Doxygen

Doxygen is a documentation generation tool used to generate API documentation for the IoTivity
project. Download and install doxygen by running following command in your terminal window.

5.1.2 Checking out the Source code
Gerrit is a web-based code review tool built on top of the git version control system. Gerrit’s main
features are side-by-side difference viewing and inline commenting, streamlining code review. Gerrit
allows authorized contributors to submit changes to the git repository after reviews are done.
Contributors can have code reviewed with little effort, and get their changes quickly through the system.

The following five steps describe how to check out the source code on the development machine.

Note: skip Step 1 to use existing ssh keys.

Step 1: Create ssh Key

On the terminal, type the following (replace “your name <your_email_address>” with your name and
email address):

For example: Jay Sharma with an email address jay.sharma@samsung.com would type:

After pressing the Enter key at several prompts, an ssh key-pair will be created at ~/.ssh/id_rsa.pub.

$ sudo apt-get install ssh

$ sudo apt-get install doxygen

$ ssh-keygen –t rsa –C “your name<your_email_address_here>”

$ ssh-keygen –t rsa –C “Jay Sharma jay.sharma@samsung.com”

http://www.scons.org/doc/production/HTML/scons-user.html#chap-build-install
mailto:jay.sharma@samsung.com
mailto:jay.sharma@samsung.com

Step 2: Upload and register an ssh public key

a. Log in to OIC Gerrit.
b. Click on Settings on the top right side as shown here:

c. Click on SSH Public Keys and add key.
d. Open ~/.ssh/id_rsa.pub, copy the content, and paste the content in the “Add SSH Public Key”

window.
e. Click Add.

 Step 3: Setting up ssh

a. Open ~/.ssh/config in a text editor.
b. Add the following lines:

Host iotivity gerrit.iotivity.org
Hostname gerrit.iotivity.org
IdentityFile ~/.ssh/id_rsa
User [Insert_your_username_here]
Port 29418

c. To connect behind the proxy, add the following line after IdentityFile ~/.ssh/id_rsa with the
appropriate proxy address and port:

 ProxyCommand nc –X5 –x <proxy-address>:<port> %h %p

Step 4: Verify your ssh connection

Execute the following command in the terminal window:

Upon successful connection, the following message should appear indicating proper ssh and
configuration connection.

 **** Welcome to Gerrit Code Review ****

If the connection is not established, check for the proxy and use the proxy settings described in Step 3.

Step 5: Cloning the project source

To build the IoTivity resource stack:

$ ssh gerrit.iotivity.org

a. Using your terminal window, browse to the directory where code will be checked out.
b. Execute the following command in the terminal window to clone the iotivity repository:

The above command clones the repository in your current working directory.

5.2 BUILD IOTIVITY CODE FOR LINUX PLATFORM
To run the Linux Sample application of “Resource Encapsulation”, the Iotivity code should be built for
Linux platform.

5.2.1 Build Procedure
To build the whole project, including the core, C SDK, C++ SDK, Resource Encapsulation samples:

• Navigate to the root of the iotivity directory using the terminal.
• Execute the scons command from the iotivity directory in the terminal:

If the build is successful you will see an out/linux folder in Iotivity directory.

6 RESOURCE ENCAPSULATION APIS
We can classify the Resource Encapsulation APIs in three categories : Client side APIs, Serve Side APIs
and Common APIs.

6.1 CLIENT SIDE APIS
Resource Broker and Resource Cache provide the client side APIs. There is a common API layer
“Resource Client” which provides APIs of Resource Broker and Resource Cache modules to developers.
The Resource Client APIs are provided by two classes: RCSDiscoveryManager and
RCSRemoteResourceObject.

6.2 SERVER SIDE APIS
Server side APIs are provided by the “Server Builder” and “Resource Container” module of Resource
Encapsulation layer. It provides simple APIs to construct resources in a generic way and other utility APIs
to perform server related operation on the resource(i.e. construct a server, host a server).

6.3 COMMON APIS
RCSResourceAttributes class represents the attributes for a resource. It overloaded the various
operators, e.g., ==, [], =. It provides the APIs like begin, end and size from which std::Map provides. This
API also provides two kinds of iterator to iterate over the attributes.

The common APIs has the following netsted-classes:

Value : for values of the attribute.

$ git clone ssh://gerrit.iotivity.org/iotivity

 $ scons

Type : for data type of the attributes

7 RESOURCE BUNDLE APIS AND PROJECT TEMPLATES
The IoTivity resource container dynamically loads resource definitions from external libraries. The library
consists of multiple bundle resource classes which can represent either a software defined sensor or a
protocol bridge resource. A protocol bridge resources maps the interaction between OIC-based
communication and arbitrary protocols. Third-parties can use this mechanism to integrate their
technologies in the OIC eco-system. A so-called bundle combines multiple resource type definitions. A
bundle has to provide a bundle activator, which is responsible to create resource instances and to
register the resource instances at the resource container. The container offers an API to retrieve the
bundle and resource configuration and to register/unregister resources.

The resource container supports C++ and Java libraries. According APIs and project templates ease the
development of bundles.

7.1 C++ BUNDLE APIS AND PROJECT TEMPLATE
A C++ bundle is a shared object library (.so) which is dynamically loaded by the resource container. To
create a C++ bundle the header files located in the resourceContainer/bundle-api folder have to be
included by a bundle developer. A sample C++ template project is provided in
resourceContainer/examples/HueSampleBundle. To create a bundle the header files of the bundle API
need to be included. A bundle has then to provide a bundle activator and its resource definitions. A
protocol bridge bundle shall further provide a connector.

7.1.1 Project template
A project template to create a C++ resource bundle is given in
resourceContainer/examples/HueSampleBundle.

A resource bundle has to define an activater, a connector and resource classes. The following external
functions need to be defined, and trigger the creation and the execution of the activator.

7.1.2 Build instructions
To build the bundle API and a C++ resource bundle, include the header files of the bundle-api into a new
project and provide the resource container library.

Scons can be used to create a resource library. The Sconscript of the re sourceContainer shows how to
build a resource bundle.

7.2 JAVA BUNDLE APIS AND PROJECT TEMPLATE
A Java bundle offers the capability to reuse existing Java-based communication libraries and integrate
your protocols. The Java bundle mechanism can also be used in an Android environment. A Java bundle
developer only needs to take care about the mapping between the OIC resource representation and the
integrated technology. The required interfaces to create a Java bundle can be found in the
resourceContainer/bundle-java-api directory. The API consists of a set of interfaces and abstract classes.
Most important is the BaseActivator class, which has to be extended by a bundle provider. It offers the
methods for retrieving configuration parameters and for resource registration. The second important
abstract class is the BundleResource. A developer has to extend this class for concrete resource types
and implement the mapping for reads and writes on the resource attributes.

extern "C" void externalActivateBundle(ResourceContainerBundleAPI *resourceContainer,

 std::string bundleId)

{

 bundle = new HueSampleBundleActivator();

 bundle->activateBundle(resourceContainer, bundleId);

}

extern "C" void externalDeactivateBundle()

{

 bundle->deactivateBundle();

 delete bundle;

}

extern "C" void externalCreateResource(resourceInfo resourceInfo)

{

 bundle->createResource(resourceInfo);

}

extern "C" void externalDestroyResource(BundleResource *pBundleResource)

{

 bundle->destroyResource(pBundleResource);

}

7.2.1 Project Template
A Java example project template is provided in the folder examples/HueJavaSampleBundle/hue.

To create a new Java bundle, copy this folder and modify the Maven pom.xml. Source files can be put in
an arbitrary

7.2.2 Build instructions
For building the Java Bundle APIs and the bundle projects the Maven1 build system is used.

Note (using Maven behind firewall or proxy):
If you are behind a firewall or proxy it might be required to ease the security settings. Provide the following parameters to your Maven commands if external
dependencies are downloaded.
-Dmaven.wagon.http.ssl.insecure=true
-Dmaven.wagon.http.ssl.allowall=true
-Dmaven.wagon.http.ssl.ignore.validity.dates=true

Bundle API

First step is to build the Java Bundle API.

This compiles the bundle api and installs it in the local maven repository. All bundle projects can use the
library then.

A project can include declare a dependency on the Java bundle API. An example pom.xml can be found
in the resourceContainer/examples/HueJavaSampleBundle folder.

Java resource bundle

To build a Java bundle all dependencies need to be included. In order to package all dependencies the
assembly plugin is used.

8 SAMPLE APPLICATION : RESOURCE CLIENT & SERVER BUILDER
This section describes about the sample applications using the Resource Client and Server Builder APIs.

8.1 WORKING FLOW
This section describes the working flow of the SampleResourceClient and SampleResourceServer Linux
Applications.

These sample applications show the functionalities provided by Resource Client (Common API layer over
Resource Broker and Resource Cache) and Serverbuilder to ease the life of developer.

We have two linux applications :

1maven.apache.org

resourceContainer/bundle-java-api> mvn compile

resourceContainer/bundle-java-api> mvn install

SampleResourceClient & SampleResourceServer (act as Temperature Sensor)

First run the SampleResourceServer:

Following logs will be shown:

Sample Application is providing two options for creation of resource.

If we select the first option, it will create the resource and handling of all requests from client will be
taken care internally by ResourceBuilder module.
If we select the second option, it will create the resource and handling of get and set request will be
done by the application.

8.1.1 Server with Auto Control of Request
In this section, We will create the resource using the first option i.e. request handling will be done
internally. Application will just create the resource, set the resource properties and Attributes.

Once we select 1st option, the following logs will be shown:

Now we will run the SampleResourceClient:

~/iotivity/service/resource-encapsulation/examples/linux $./SampleResourceServer

~/iotivity/service/resource-encapsulation/examples/linux $./SampleResourceClient

Following logs will be shown:

So, we have discovered the temperature sensor. we can test the ResourceClient APIs.

 If we select option 1 in the “SampleResourceClient” it will start to monitor the resource and notify
the application the presence status of the resource.

The following logs will be shown:

As the server is running we are getting the resourceState as “ALIVE”.

Now if we stop the server the following logs will be shown in ResourceClient Application.

If We stop monitoring by selecting the second option in the application it will stop to check the presence
of resource in the network. We can stop hosting by selecting the second option in the app. Now if
resource goes out of network or destroyed there will be no notification will be there as we stopped the
server.

Note: As we have stopped the server, we have to again start both the applications in order to test, rest
of the functionalities. Start the SampleResourceSever and SampleResourceclient in the same way as
we did earlier.

 We will select 3rd option to get the attributes from the server.

The following logs will be shown in the SampleResourceClient application:

 If we want to set the attributes we can set it by selecting the 4th option in the application. In this
example we are setting temperature value to 10. The following logs will be shown.

 If we want to startCaching we will select 5th option in the application. It will cache the updated data
from the server. And provide the cachedAttributes on demand.

 If select option 7 in the ResourceClient sample app it will show the following logs:

 We will change the temperature value on the server by selecting option 1 in the server. The
following logs will be shown:

If we select option 8 in the application we will get the updated cached Attributes.

If we select option 9 in the application we will get the particular cached attribute value. In this example
we are getting the cached attribute value corresponding to “Temperature”.

Following logs will be shown:

 If we want to stop the caching we can do it by selecting the 10th option in the Application. It will stop
data caching for the resource that we requested earlier using startCaching option.

The following logs will be shown:

 Now, if we update the Temperature value on the server cached attributes will not be updated.

So, first we will increase the temperature on the server by selecting option 1 in the ResourceServer app.
The following logs will be shown:

Now, we will select option 8 in the application to get the current CacheAttributes in the cache. The
following logs will be shown:

So, before increasing the temperature on the server we have stopped the caching that is why we are
getting cachedAttrbute value as 20 not 30.

 Now, we startCaching (update the application regarding the data change in the resource) by
pressing the 6th option in the SampleResourceClient. The following logs will be show

We have got the current cachedAttribute in the application

 Now, if we update the Temperature value on the server, application will get the updated
CachedAttributes.

So, first we will increase the temperature on the server by selecting option 1 in the Resource Server app.
The following logs will be shown:

Following logs will be shown on SampleResourceClient Application:

8.1.2 Server with application’s Control on Request
Now, we test the resource creation using the 2nd option in the SampleResourceServer linux Application.

So, first we will run the server:

Following logs will be shown:

We will select 2nd option i.e. It will create the resource and handling of get and set request will be
handled by application. The following logs will be shown:

Now we will run the SampleResourceClient:

The following logs will be shown in SampleResourceClient application:

Here, we will show that how get and set request is handled by the application (server). We will see it
using the get and set attributes request from our SampleResourceClient Application.

 To get the attributes from the server we will select 3rd option in SampleResourceClient application.

~/iotivity/service/resource-encapsulation/examples/linux $./SampleResourceServer

~/iotivity/service/resource-encapsulation/examples/linux $./SampleResourceClient

The following logs will be shown in the SampleResourceServer application:

The following logs will be shown in the SampleResourceClient application:

 We will select the 4th option in the ResourceClient Application to set the ResourceAttribute.
The following logs will be shown in the SampleResourceClient application:

The following logs will be shown in the SampleResourceServer application

So, we are handling the get and set request in the application. Server builder is providing flexibility for
controlling the request either internally or by application.

	2 Revision History
	3 Terminology
	4 Introduction to Resource Encapsulation
	4.1 Overall Architecture
	4.2 Iotivity Service Components
	4.3 components of Resource Encapsulation Layer
	4.3.1 Resource Broker
	4.3.2 Resource Cache
	4.3.3 Resource Client
	4.3.4 Resource Container
	4.3.5 Server Builder

	5 Build Instructions
	5.1 Cloning Iotivity code
	5.1.1 Tools and Libraries
	5.1.2 Checking out the Source code

	5.2 Build Iotivity code for Linux Platform
	5.2.1 Build Procedure

	6 Resource Encapsulation APIs
	6.1 Client side APIs
	6.2 Server side APIs
	6.3 Common APIs

	7 Resource Bundle APIs and Project Templates
	7.1 C++ Bundle APIs and Project Template
	7.1.1 Project template
	7.1.2 Build instructions

	7.2 Java Bundle APIs and Project Template
	7.2.1 Project Template
	7.2.2 Build instructions

	8 Sample application : Resource client & Server Builder
	8.1 Working Flow
	8.1.1 Server with Auto Control of Request
	8.1.2 Server with application’s Control on Request

