
LUKS2 On-Disk Format Specification

version 1.1.0, 2022-01-10

Milan Brož <gmazyland@gmail.com>

This work is licensed under a Creative Commons
“Attribution-ShareAlike 4.0 International” license.

1 Introduction

LUKS2 is the second version of the Linux Unified Key Setup for disk encryp-
tion management. It is the follow-up of the LUKS1 [1, 2] format that extends
capabilities of the on-disk format and removes some known problems and lim-
itations. Most of the basic concepts of LUKS1 remain in place as designed in
New Methods in Hard Disk Encryption [2] by Clemens Fruhwirth.

LUKS provides a generic key store on the dedicated area on a disk, with the
ability to use multiple passphrases1 to unlock a stored key. LUKS2 extends this
concept for more flexible ways of storing metadata, redundant information to
provide recovery in the case of corruption in a metadata area, and an interface
to store externally managed metadata for integration with other tools.

While the implementation of LUKS2 is intended to be used with Linux-based
dm-crypt [3] disk encryption, it is a generic format.

1.1 Design Goals

The LUKS header provides metadata for a disk encryption setup. LUKS1 ver-
sion [1] contains a binary header for storing necessary metadata (like encryption
algorithms parameters) and eight keyslots for independent passphrases to unlock
one volume key.
The LUKS2 format is designed to provide these features:

• Cover all possibilities of LUKS1.

• Support configurable memory-hard key-derivation algorithms.

• The new header can store additional metadata for external tools and ex-
pose an interface for regular updates.

• LUKS2 uses only a small binary header that can be easily used by auto-
matic detection tools like blkid in Linux. The binary header is partially
compatible with LUKS1, so legacy tools still recognize a partition as the
LUKS type and can see device UUID. All other metadata are stored in
the non-binary header.

• The header includes a checksum mechanism that detects data corruption
and unintentional header mangling.

• LUKS header can be detached from a LUKS device and can be stored on
a separate device or in a file. With the detached header, the encrypted
device contains no visible and detectable metadata.

1LUKS can use a passphrase or a key file, both are processed identically.

1

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

• Metadata area is stored in two copies to allow for a possible recovery.2 The
recovery is transparent for most of the operations (device should recover
automatically if at least one header is correct).

• Keyslot binary area is not duplicated (for security reasons), but the area
is now allocated in higher device offset where a random data corruption
should happen more rarely.

• A header can be upgraded in-place for most of existing LUKS1 devices.3

• Header store persistent flags that are used during activation.4

• The number of keyslots is limited only by the provided header area size.5

• Keyslots have priorities. Some keyslots can be marked for use only if
explicitly specified (for example as a recovery keyslot).

• Metadata are stored in the JSON format that allows for future extensions
without modifying binary structures. Such an extension is for example
support for authenticated encryption or support for online data reencryp-
tion.

• All metadata are algorithm-agnostic and can be upgraded to new algo-
rithms later without header structure changes.

• Volume key digest is no longer limited by 20 bytes (based on legacy SHA-1)
as in the LUKS1 header.

• Keyslot can contain an unbound key (key not assigned to any encrypted
data segment) that can be used for external applications. Size of an un-
bound key can be different from volume key size in other keyslots.

• The header contains a concept of tokens that are objects, assigned to
keyslots, which contain metadata describing where to get unlocking pass-
phrase. Tokens can be used for support of external key store mechanisms.

1.2 Security Goals

The primary goal for LUKS2 is to provide data confidentiality for user data
(user-friendly access to encrypted data).

The secondary goal is to provide availability of the stored metadata in the
case of partial and random metadata corruption (except for the encrypted key
material where LUKS anti-forensic function [1] is applied).

The format also allows an easy way for backup of the whole LUKS2 header
(including key material).6

Other goals or additional security measures can be achieved when specific
cryptographic primitives or optional extensions are used. Examples of such
extensions are data integrity protection (authenticated encryption) or online
reencryption (to limit encryption keys lifetime, see Section 4.9).

2A common issue with LUKS1 is metadata corruption caused by a partitioning tool that
does not recognize LUKS format.

3A configuration that does not use default on-disk alignment of user data offset could lack
needed space for new metadata area.

4Example of a persistent flag is support for the TRIM operation. These flags should replace
the need for flags in the external /etc/crypttab file.

5Reference implementation limits the number of keyslots to 32.
6See luksHeaderBackup and luksHeaderRestore commands in the reference implementation.

2

The LUKS2 on-disk format is designed to be used on a common off-the-shelf
storage device that does not contain any trusted element. Metadata checksum
and redundancy can prevent random metadata corruption only. It does not
cover intentional modification. An attacker with physical access to the storage
device can modify or corrupt part of the visible metadata or ciphertext data,
mangle offsets, encryption parameters, or even replace the whole header with
different metadata. Such an attack can lead to denying access or corruption in
decrypted data. Some metadata attributes are intended to be modified without
the physical access to user data (like removing keyslots or setting device labels).

The LUKS2 metadata can be stored in a detached form (separating user
data and LUKS2 metadata header).

The token can contain user-defined metadata that are not part of the basic
LUKS2 definition (in general, any JSON metadata can be stored as a token).
Because the metadata in the LUKS2 header are visible (can be trivially ex-
tracted), stored metadata should not contain any fields that significantly help
to attack the confidentiality of user data. Additional extensions should store
sensitive attributes in encrypted form.

LUKS2 should not be used when you need to provide any form of plausi-
ble deniability. For more information, see LUKS/cryptsetup Frequently Asked
Questions [4].

1.3 Reference Implementation

The LUKS2 format is currently implemented and fully supported in libcrypt-
setup [5] on Linux systems, together with the LUKS1 format. The implemen-
tation automatically detects version according to the binary header.

New LUKS2 devices can be created with --type luks2 option. For example,
cryptsetup format --type luks2 <device>.

2 LUKS2 On-Disk Format

The LUKS2 header is located at the beginning (sector 0) of the block device (for
a detached header on a dedicated block device or in a file). The basic on-disk
structure is illustrated in Figure 1.

primary
binary header

secondary
binary header

alignment
padding

1st JSON area 2nd JSON area Keyslots area

Figure 1: LUKS2 header on-disk structure.

The LUKS2 header contains three logical areas:
• binary structured header (one 4096-byte sector, only 512-bytes are used),
• area for metadata stored in the JSON format and
• keyslot area (keyslots binary data).
The binary and JSON areas are stored twice on the device (primary and

secondary header) and under normal circumstances contain same functional
metadata. The binary header size ensures that the binary header is always
written to only one sector (atomic write). Binary data in the keyslots area is
allocated on-demand. There is no redundancy in the binary keyslots area.

3

2.1 Binary Header

The binary header is intended for a quick scanning by blkid and contains a
signature to detect LUKS device, basic information (labels), header size and
metadata checksum. Binary header in the C structure is described in Figure 2.

All integer values are stored in the big-endian format. All strings are in the
C format, and a valid header must have all strings terminated by the zero byte.

The primary binary header must be stored in sector 0 of the device. The
secondary header starts immediately after the primary header JSON area (see
hdr size in primary header). To allow for an easy recovery, the secondary header
must start at a fixed offset listed in Table 1.

Offset (hexa)
[bytes]

JSON area
[kB]

16384 (0x004000) 12

32768 (0x008000) 28

65536 (0x010000) 60

131072 (0x020000) 124

262144 (0x040000) 252

524288 (0x080000) 508

1048576 (0x100000) 1020

2097152 (0x200000) 2044

4194304 (0x400000) 4092

Table 1: Possible LUKS2 secondary header offsets and JSON area size.

The LUKS1 compatible fields (magic, UUID) are placed intentionally on the
same offsets. The binary header contains these fields:

• magic contains the unique string (see C defines MAGIC 1ST for the primary
header and MAGIC 2ND for the secondary header in Figure 2).

• version must be set to 2 for LUKS2.
• hdr size contains the size of the header with the JSON data area. The
offset and size of the secondary header must match this size. It is a
prevention to rewrite of a header with a different JSON area size.

• seqid is a counter (sequential number) that is always increased when a
new update of the header is written. The header with a higher seqid is
more recent and is used for recovery (if there are primary and secondary
headers with different seqid, the more recent one is automatically used).

• label is an optional label (similar to a filesystem label).
• csum alg is a checksum algorithm. Metadata checksum covers both the
binary data and the following JSON area and is calculated with the check-
sum field zeroed. By default, plain SHA-256 function is used as the check-
sum algorithm.

• salt is generated by an RNG and is different for every header (it differs on
the primary and secondary header), even the backup header must contain
a different salt. The salt is not used after the binary header is read,
the main intention is to avoid deduplication of the header sector. The salt
must be regenerated on every header repair (but not on a regular update).

4

1 #define MAGIC_1ST "LUKS\xba\xbe"

2 #define MAGIC_2ND "SKUL\xba\xbe"

3 #define MAGIC_L 6

4 #define UUID_L 40

5 #define LABEL_L 48

6 #define SALT_L 64

7 #define CSUM_ALG_L 32

8 #define CSUM_L 64

9

10 // All integers are stored as big -endian.

11 // Header structure must be exactly 4096 bytes.

12

13 struct luks2_hdr_disk {

14 char magic[MAGIC_L]; // MAGIC_1ST or MAGIC_2ND

15 uint16_t version; // Version 2

16 uint64_t hdr_size; // size including JSON area [bytes]

17 uint64_t seqid; // sequence ID , increased on update

18 char label[LABEL_L]; // ASCII label or empty

19 char csum_alg[CSUM_ALG_L]; // checksum algorithm , "sha256"

20 uint8_t salt[SALT_L]; // salt , unique for every header

21 char uuid[UUID_L]; // UUID of device

22 char subsystem[LABEL_L]; // owner subsystem label or empty

23 uint64_t hdr_offset; // offset from device start [bytes]

24 char _padding [184]; // must be zeroed

25 uint8_t csum[CSUM_L]; // header checksum

26 char _padding4096 [7*512]; // Padding , must be zeroed

27 } __attribute__ ((packed));

Figure 2: LUKS2 binary header on-disk structure.

• uuid is device UUID with the same format as in LUKS1.
• subsystem is an optional secondary label.
• hdr offset must match the physical header offset on the device (in bytes).
If it does not match, the header is misplaced and must not be used. It is a
prevention to partition resize or manipulation with the device start offset.

• csum contains a checksum calculated with the csum alg algorithm. If the
checksum algorithm tag is shorter than the csum field length, the rest of
this field must be zeroed.

The rest of the binary header (including padding fields) must be zeroed. The
version, UUID, label and subsystem fields are intended to be used in the udev
database and udev triggered actions. For example, a system can manage all
LUKS2 devices with a specific subsystem field automatically by some external
tool. The label and UUID can be used the same way as a filesystem label.

2.2 JSON Area

The JSON area starts immediately after the binary header (end of JSON area
must be aligned to 4096-byte sector offset). Size of JSON area is determined
from binary header hdr size field: JSON area size = hdr size− 4096.

The area contains metadata in JSON format [6]. The JSON metadata are
stored in the area as a C string that must be terminated by the zero character.
The unused remainder of the area must be empty and filled with zeroes. The
header cannot store larger metadata than this fixed JSON area.

5

2.3 Keyslots Area

Keyslots area is a reserved space on the disk that can be allocated for a binary
data from keyslots. There are stored encrypted keys referenced from keyslots
metadata. The structure of stored keyslot binary data depends on the keyslot
type. The luks2 keyslots type uses the same LUKS1 binary structure. The
reencrypt type (optional online reencryption extension, see section 4.9) uses
keyslot allocated area to provide redundancy for data recovery in the case of
unexpected reencryption interruption (crash on power fail or a similar situation).

The allocated area is defined in a keyslot by an area object that contains
offset (from the device beginning) and size fields. Both fields must be validated
to point to the keyslot area. Invalid values must be rejected.

3 LUKS2 JSON Metadata Format

The LUKS2 metadata allows defining objects that, according to the type field,
defines a specific functionality. Objects that are not recognized byt the im-
plementation are ignored, but metadata are still maintained inside the JSON
metadata. Implementation must validate the JSON structure before updating
the on-disk header.

The LUKS2 structure has 5 mandatory top-level objects (see Figure 3) as fol-
lows:

• config contains persistent header configuration attributes.
• keyslots are objects describing encrypted keys storage areas.
• digests are used to verify that keys decrypted from keyslots are correct.
• segments describe areas on disk that contain user encrypted data.
• tokens can optionally include additional metadata, bindings to other sys-
tems – how to get a passphrase for the keyslot.

Digest Keyslot

Passphrase

Token

External Keystore

Config Segment

validates can open

is used for

Figure 3: LUKS2 objects schema.

Except top-level objects listed above, all JSON objects must have their
names formatted as a string that represents a number in the decimal nota-
tion (unsigned integer) – for example ”0”, ”1” and must contain attribute type.
According to the type, the implementation decides how to handle (or ignore)
such an object. This notation allows mapping to LUKS1 API functions that
use an integer as a reference to keyslots objects.

Binary data inside JSON (for example salt) are stored in the Base64 [7]
encoding. JSON cannot store 64-bit integers directly, a value for an object that
represents unsigned 64-bit integer (offset or size) is stored as a string in the

6

decimal notation and later converted to the 64-bit unsigned integer. Such an
integer is referenced as string-uint64 later.

3.1 LUKS2 JSON Example

The following example contains full JSON metadata from the reference im-
plementation for a LUKS2 device that is encrypted with the AES-XTS cipher,
contains two keyslots and one token. The token type is keyring (can be unlocked
by a passphrase in the keyring) and it is bound to the second keyslot.

1 {
2 "keyslots":{
3 "0":{
4 "type":"luks2",

5 "key_size":32,

6 "af":{
7 "type":"luks1",

8 "stripes":4000,

9 "hash":"sha256"

10 },
11 "area":{
12 "type":"raw",

13 "encryption":"aes -xts -plain64",

14 "key_size":32,

15 "offset":"32768",

16 "size":"131072"

17 },
18 "kdf":{
19 "type":"argon2i",

20 "time":4,

21 "memory":235980,

22 "cpus":2,

23 "salt":"z6vz4xK7cjan92rDA5JF8O6Jk2HouV0O8DMB6GlztVk ="

24 }
25 },
26 "1":{
27 "type":"luks2",

28 "key_size":32,

29 "af":{
30 "type":"luks1",

31 "stripes":4000,

32 "hash":"sha256"

33 },
34 "area":{
35 "type":"raw",

36 "encryption":"aes -xts -plain64",

37 "key_size":32,

38 "offset":"163840",

39 "size":"131072"

40 },
41 "kdf":{
42 "type":"pbkdf2",

43 "hash":"sha256",

44 "iterations":1774240,

45 "salt":"vWcwY3rx2fKpXW2Q6oSCNf8j5bvdJyEzB6BNXECGDsI ="

46 }
47 }
48 },
49 "tokens":{
50 "0":{
51 "type":"luks2 -keyring",

7

52 "keyslots":[

53 "1"

54],

55 "key_description":"MyKeyringKeyID"

56 }
57 },
58 "segments":{
59 "0":{
60 "type":"crypt",

61 "offset":"4194304",

62 "iv_tweak":"0",

63 "size":"dynamic",

64 "encryption":"aes -xts -plain64",

65 "sector_size":512

66 }
67 },
68 "digests":{
69 "0":{
70 "type":"pbkdf2",

71 "keyslots":[

72 "0",

73 "1"

74],

75 "segments":[

76 "0"

77],

78 "hash":"sha256",

79 "iterations":110890,

80 "salt":"G8gqtKhS96IbogHyJLO+t9kmjLkx+DM3HHJqQtgc2Dk =",

81 "digest":"C9JWko5m+oYmjg6R0t /98 cGGzLr /4 UaG3hImSJMivfc ="

82 }
83 },
84 "config":{
85 "json_size":"12288",

86 "keyslots_size":"4161536",

87 "flags":[

88 "allow -discards"

89]

90 }
91 }

3.2 Keyslots Object

Keyslots object contains information about stored keys – areas, where binary
keyslot data are located, encryption and anti-forensic function used, password-
based key derivation function (PBKDF) and related parameters.

Every keyslot object must contain:
• type [string] the keyslot type.
• key size [integer] the key size (in bytes) stored in keyslot.
• area [object] the allocated area in the binary keyslots area.
• priority [integer,optional] the keyslot priority. Here 0 means ignore (the
slot should be used only if explicitly stated), 1 means normal priority and
2 means high priority (tried before normal priority).

8

3.2.1 Keyslot Type luks2

The luks2 keyslot type uses the same logic as LUKS1 keyslot, but allows for
per-keyslot algorithms (for example different PBKDF).

Only raw type is supported for the area field.

The luks2 object must contain these additional fields:
• kdf [object] the PBKDF type and parameters used.
• af [object] the anti-forensic splitter [1] (only the luks1 type is currently
used).

3.2.2 Keyslot Type reencrypt (Optional Extension)

The reencrypt keyslot type is present when there is an online reencryption oper-
ation in progress (see section 4.9). Allocated binary area is used for redundancy
recovery data (it does not contain a key).

The key size field must be set to 1. The area type must be none, checksum,
journal or datashift.

The reencrypt object must contain these additional fields:
• mode [string] the reencryption mode. Only reencrypt, encrypt and de-
crypt values are supported.

• direction [string] the reencryption direction. Only forward or backward
values are supported.

3.2.3 Area Object

The area object describes the allocated space in the binary keyslots area and
related metadata.

The area object contains these mandatory fields:
• type [string] the area type.
• offset [string-uint64] the offset from the device start to the beginning of
the binary area (in bytes).

• size [string-uint64] the area size (in bytes).

Area type raw contains these additional fields:
• encryption [string] the area encryption algorithm, in dm-crypt notation
(for example aes-xts-plain64).

• key size [integer] the area encryption key size.

Area type none and journal (used only for reencryption optional extension)
contain only mandatory fields.

Area type checksum (used only for reencryption optional extension) contains
these additional fields:

• hash [string] The hash algorithm for the checksum resilience mode.
• sector size [integer] The data unit size for digest checksum calculated
with the hash algorithm.

Area type datashift (used only for reencryption optional extension) contains this
additional field:

• shift size [string-uint64] The data shift (in bytes) performed during reen-
cryption (shift direction is according to direction field).

9

3.2.4 Anti-Forensic Object

The LUKS1 AF splitter is no longer much effective on modern storage devices.
The functionality is here mainly for compatibility reasons. In future, it will be
probably replaced.

The af (anti-forensic splitter) object contains this madatory field:
• type [string] the anti-forensic function type.

AF type luks1 (compatible with LUKS1 [1]) contains these additional fields:
• stripes [integer] the number of stripes, for historical reasons only the 4000
value is supported.

• hash [string] the hash algorithm used.

3.2.5 Key Derivation Object

The object describes PBKDF attributes used for the keyslot.

The kdf object mandatory fields are:
• type [string] the PBKDF type.
• salt [base64] the salt for PBKDF (binary data).

The pbkdf2 7 type (compatible with LUKS1) contains these additional fields:
• hash [string] the hash algorithm for the PBKDF2 (SHA-256).
• iterations [integer] the PBKDF2 iterations count.

The argon2i and argon2id8 type contains these additional fields:
• time [integer] the time cost (in fact the iterations count for Argon2).
• memory [integer] the memory cost, in kilobytes. If not available, the
keyslot cannot be unlocked.

• cpus [integer] the required number of threads (CPU cores number cost).
If not available, unlocking will be slower.

3.3 Segments Object

Segments object contains a definition of areas on the disk containing user data
(in LUKS1 mentioned as the user data payload). For a normal LUKS device,
there is only one data segment present.

During the data reencryption, the data area is internally divided according
to the new and the old key, but only one abstracted area should be presented
to the user. Multiple segments (sorted by id) must cover the whole data area
without any gaps and must not overlap.

The segment object contains these mandatory fields:
• type [string] the segment type.
• offset [string-uint64] the offset from the device start to the beginning of
the segment (in bytes).

• size [string or string-uint64] the segment size (in bytes) or dynamic if the
size of the underlying device should be used (dynamic resize).

7PBKDF2 contains the time cost (iterations) that describes how many times PBKDF2
must iterate to derive the candidate key.

8Argon2 algorithms, here used as PBKDF, are memory-hard [8] and have three costs: time,
memory required and number of threads (CPUs).

10

• flags [array,optional] the array of string objects marking segment with
additional information.

Unknown flags are ignored. For the optional reencryption extension, the flags
array can contain in-reencryption (reencryption in progress for this segment),
backup-final (expected state after reencryption), backup-previous (state before
reencryption started) and backup-moved-segment (moved segment if data shift
is specified). Segment marked with backup flags must be the last (if sorted by
the object name).

3.3.1 Segment Type linear

This object represents metadata about plaintext (unencrypted) data segment.
It is used only during the online reencryption process.

The linear object contains only mandatory fields defined above.

3.3.2 Segment Type crypt

This object represents metadata about encrypted data segment.

The crypt object must contain these additional fields:
• iv tweak [string-uint64] the starting offset for the Initialization Vector
(IV tweak).

• encryption [string] the segment encryption algorithm, in the dm-crypt
notation (for example aes-xts-plain64).

• sector size [integer] the sector size for segment (512, 1024, 2048 or 4096
bytes).

• integrity [object,optional] the LUKS2 user data integrity protection type.

User data integrity protection is an experimental feature [9]) and requires dm-
integrity and dm-crypt drivers with integrity support.

The integrity object contains these fields:
• type [string] the integrity type (in the dm-crypt notation, for example
aead or hmac(sha256)).

• journal encryption [string] the encryption type for the dm-integrity
journal (not implemented yet, use none).

• journal integrity [string] the integrity protection type for the dm-integrity
journal (not implemented yet, use none).

3.4 Digests Object

The digests object is used to verify that a key decrypted from a keyslot is correct.
Digests are assigned to keyslots and segments. If it is not assigned to a segment,
then it is a digest for an unbound key. Every keyslot must have one assigned
digest object.

The digest object contains these fields:
• type [string] the digest type (only the pbkdf2 type compatible with LUKS1
is used).

• keyslots [array] the array of keyslot objects names that are assigned to
the digest.

• segments [array] the array of segment objects names that are assigned
to the digest.

11

• salt [base64] the binary salt for the digest.
• digest [base64] the binary digest data.

The pbkdf2 digest (similar to a kdf object in keyslot) contains these fields:
• hash [string] the hash algorithm for PBKDF2 (SHA-256).
• iterations [integer] the PBKDF2 iterations count.

3.5 Config Object

The config object contains attributes that are global for the LUKS device.

It contains these fields:
• json size [string-uint64] the JSON area size (in bytes). Must match the
binary header.

• keyslots size [string-uint64] the binary keyslot area size (in bytes). Must
be aligned to 4096 bytes.

• flags [array, optional] the array of string objects with persistent flags for
the device.

• requirements [array, optional] the array of string objects with additional
required features for the LUKS device.

The flags array can contain device activation flags (various performance and
compatibility settings). Unknown flags are ignored.

The reference implementation uses these flags:
• allow-discards allows TRIM (discards) on the active device.
• same-cpu-crypt compatibility performance flag for dm-crypt [3] to per-
form encryption using the same CPU that originated the request.

• submit-from-crypt-cpus compatibility performance flag for dm-crypt [3]
to disable offloading write requests to a separate thread after encryption.

• no-journal disable data journalling for dm-integrity [10].
• no-read-workqueue compatibility performance flag for dm-crypt [3] to
bypass dm-crypt read workqueue and process read requests synchronously.

• no-write-workqueue compatibility performance flag for dm-crypt [3] to
bypass dm-crypt write workqueue and process write requests synchronously.

The requirements array can contain an array of additional features that are
mandatory when manipulating with a LUKS device and metadata or that are
required for proper device activation. If an implementation detects a string that
it does not recognize, it must treat the whole metadata as read-only and must
avoid device activation. These requirement flags are used for future extensions
to mark the header to be not backward compatible.

For the reference implementation [5], the offline-reencrypt flag is used that
marks a device during offline reencryption to prevent an activation until the
offline reencryption is finished.

For online reencryption in progress, the online-reencrypt-v2 flag is used (fu-
ture extensions can increase the version due to compatibility reasons).

3.6 Tokens Object

A token is an object that can describe how to get a passphrase to unlock a
particular keyslot. It can also contain additional user-defined JSON metadata.

The mandatory fields for every token are:

12

• type [string] the token type (tokens with luks2- prefix are reserved for the
implementation internal use).

• keyslots [array] the array of keyslot objects names that are assigned to
the token.

The rest of the JSON content is the particular token implementation and can
contain arbitrary JSON structured data (implementation should provide an in-
terface to the JSON metadata directly).

For example, the reference implementation of luks2-keyring token allows
automatic activation of the device if the passphrase is preloaded into a keyring
with the specified ID.

The luks2-keyring token type contains these fields:
• type [string] is set to the luks2-keyring.
• keyslots [array] is assigned to the specific keyslot(s).
• key description [string] contains the ID of the keyring entry with a pass-
phrase.

4 LUKS2 Operations

Basic operations of a LUKS2 device are the same as specified in LUKS1 [1].
Header update operations must be synchronized due to the redundancy of meta-
data and operations must be serialized to prevent concurrent processes from
updating the metadata at the same time. The metadata update must be im-
plemented in such a way that at least of one header (primary or secondary) is
always valid to allow for a proper recovery in the case of a failure. These steps
require an implementation of some high-level locking of metadata access.

4.1 Device Formatting

Initialization (formatting) of a LUKS2 device starts with generating basic meta-
data parameters, like UUID and writing both binary headers and basic metadata
structures. The JSON area must always contain valid LUKS2 top-level objects.
The config object must be initialized to include proper area size parameters that
match the binary header. If the LUKS2 header references a user data segment,
that segment must be initialized with all mandatory parameters. The keyslots,
digests and tokens can be empty in this step.

4.2 Keyslot Initialization

The next step is allocation of new keyslot and metadata and assignment to the
key digests and segments. The key stored in the keyslot and salt for the keyslot
should be generated using a cryptographically secure RNG.

The PBKDF cost parameters (iterations, memory, CPU cores) that are used
to derive the keyslot unlocking key from a user passphrase must be either spec-
ified by the user, or it can be benchmarked according to user needs. See the
reference cryptsetup implementation [5] as an example of this approach.

Once the key is generated, a new key digest is created, and a new keyslot
object is allocated and assigned to the digest (and segment). The new keyslot
contains the binary keyslot area allocated according to the stored key size.

13

The size of the binary allocated area is determined according to the key size
and the anti-forensic (AF) splitter output (see section 2.4 in LUKS1 [1]).

LUKS2 keyslots can store different keys with different key sizes. The alloca-
tion of binary keyslot data depends on the order of creation. Keyslot positions
are no longer fixed as in LUKS1.

The last step of keyslot initialization writes the encrypted key to the allo-
cated binary keyslot area. A user passphrase and a salt are processed by the
configured PBKDF. The PBKDF output key is used for the keyslot binary area
encryption algorithm. The key is split using AF splitter and encrypted by the
keyslot encryption algorithm.

4.3 Keyslot Content Retrieval

The user provided passphrase with the salt and parameters from the header
metadata are processed through the PBKDF. The derived key is used to decrypt
the binary keyslot area. The decrypted content is processed (merged) in the AF
splitter. The assigned key digest is calculated with the recovered candidate key.
If the calculated digest and the digest in metadata match, the recovered key is
valid. If the digest does not match, the provided passphrase must be rejected.

4.4 Keyslot Revocation

To discard a keyslot, the binary area for the keyslot must be physically overwrit-
ten (to discard the stored data). After this step, the keyslot metadata object
must be removed with all bindings to digests and segments.

Note that the key digest and its binding to the segment can remain in meta-
data (not assigned to any keyslots). If a user has the copy of the encryption
key, the validity of the key can still be verified with this digest and the device
can be later still activated.

4.5 Metadata Recovery

The replicated metadata allows for a full LUKS2 header recovery (except binary
keyslot areas) if some part of headers become corrupted. A part of the recovery
can be automated, but because this process can revert some intentional changes,
a user interaction is suggested.

The automatic recovery should always update both copies to the more recent
version (with higher seqid). The metadata handler should first try to load the
primary header, then the secondary header. If one of the headers is more recent,
the older header is updated. If the primary header is corrupted, a scan on several
known offsets for the secondary header can be performed.

4.6 Mandatory Requirements

While the LUKS2 format is algorithm-agnostic, some algorithm implementa-
tions are crucial for internal function.

The cryptographic backend for LUKS2 must support these algorithms:
• SHA-1 hash algorithm (for compatibility with old LUKS1 devices).
• SHA-256 hash algorithm, used as the default checksum for the binary
header and in the PBKDF2 digest.

14

• PBKDF2 password-based key derivation (for digest and backward com-
patibility with LUKS1).

• Argon2i and Argon2id memory-hard key derivation functions for new
LUKS2 keyslots.

• AES-XTS symmetric cipher for the default keyslot encryption and the
default user data encryption.

4.7 Conversion from LUKS1

If an existing LUKS1 device header contains enough space for the LUKS2 meta-
data, then it can be converted in-place to the LUKS2 format. Reference imple-
mentation provides the cryptsetup convert --type luks2 command.

LUKS1
[name]

128-bit key
[sectors]

256-bit key
[sectors]

512-bit key
[sectors]

Header 0 0 0

Keyslot 0 8 8 8

Keyslot 1 136 264 512

Keyslot 2 264 520 1016

Keyslot 3 392 776 1520

Keyslot 4 520 1032 2024

Keyslot 5 648 1288 2528

Keyslot 6 776 1544 3032

Keyslot 7 904 1800 3536

Padding 1032 2056 4040

Data offset 2048 4096 4096

Unused sectors 1016 2040 56

Table 2: Offsets (in 512-byte sectors) of common LUKS1 headers.

For reference, Table 2 contains offsets of LUKS1 keyslots that can be con-
verted to LUKS2 in-place. The resulting LUKS2 header has 12kB JSON area in
all these cases. Note that the binary keyslot area is directly copied to the proper
position, there is no recovery possible if the convert operation fails. Schema of
area locations during conversion is illustrated in Figure 4.

1st header 2nd header Keyslots area
}
LUKS2

Keyslots area
}
LUKS1

Figure 4: LUKS1/LUKS2 areas placement.

If a LUKS2 header uses compatible options with LUKS1 (PBKDF2, no in-
tegrity protection, no tokens, no unbound keys) then it can also be converted
back to the LUKS1 header in-place with the cryptsetup convert --type

luks1 command.

15

4.8 Algorithm Definition Examples

The LUKS2 specification supports all algorithms that are provided by the cryp-
tographic backend (in the Linux case by kernel dm-crypt and userspace cryp-
tographic library). Figures 3 and 4 list few examples of symmetric ciphers for
data encryption and PBKDF algorithms.

Algorithm
in LUKS2 notation

Description

pbkdf2 PBKDF2 with HMAC-SHA256 [11]

argon2i Argon2i as PBKDF (data independent) [8]

argon2id Argon2id as PBKDF (combined mode) [8]

Table 3: LUKS2 PBKDF algorithms.

Algorithm
in dm-crypt [3] notation

Description

aes-xts-plain64 AES in XTS mode with sequential IV [12, 13]

aes-cbc:essiv:sha256 AES in CBC mode with ESSIV IV [3, 12]

serpent-xts-plain64 Serpent cipher with sequential IV [14]

twofish-xts-plain64 Twofish cipher with sequential IV [15]

aegis128-random AEGIS (128-bit) with random IV, AEAD [16]

Table 4: LUKS2 encryption algorithms examples.

AEAD algorithms9 are experimental and require dm-integrity [10] support.

4.9 Online Reencryption (Optional Extension)

The online reencryption is a process of encryption key change while the data
device is available for use during the whole process. The reencryption process
is initiated by the user and runs in the background. During the reencryption
LUKS2 metadata are continuously updated to cover old and new encryption
keys and related data segments. Reencryption can run forward or backward.
Special cases are encryption of not-yet-encrypted devices (encrypting device
with plaintext) and decryption (removing the encryption layer). The LUKS2
online reencryption is an optional extension of the format; metadata before and
after reencryption are fully compatible with the basic LUKS2 format.

This section describes on-disk metadata as used in the reference implemen-
tation in cryptsetup [5] project. Implementation is based on the Linux kernel
device-mapper subsystem that allows mapping table reconfigurations during
normal operations [17]. If there is a reencryption in progress, JSON metadata
must contain proper requirement flag in config JSON object to prevent metadata
manipulations on systems where reencryption extension is not implemented.

9AEGIS with 256-bit key and MORUS algorithms are no longer supported; these algorithms
were removed from Linux kernel.

16

Because reencryption uses blocks (typically of megabytes in size) that can-
not be written atomically, reencryption provides a resilience mechanism that
triggers data recovery if reencryption is unexpectedly interrupted (power fail-
ure or a similar event). The data recovery requires additional storage for data.
This storage is temporarily allocated in the LUKS2 header binary keyslot area.
The resilience type then specifies how data recovery is performed. Schema of
reencryption areas is illustrated in Figure 5.

Resilience area type (data recovery type) for online reencryption can be:
• none No data recovery at all. Metadata are updated only when the
reencryption is finished or after a correct interruption (TERM signal).
In the case of a crash, no recovery is possible. The allocated resilience
area is not used and is only reserved.

• checksum The resilience area contains array of checksums of sector size
blocks on reencrypted area, calculated with specified hash algorithm. The
recovery code then compares checksums, and if the checksum is correct
(the block was not yet reencrypted), the block is reencrypted. The sec-
tor size must be an atomic unit for the underlying storage (it contains
either old or new data).

• journal The resilience area contains the old copy of the data for the whole
reencryption segment. In the case of a crash, these data are reencrypted
again to the original position.

• datashift A special mode when ciphertext is moved. Reencryption then
writes data to non-overlapping blocks, so no data resilience is needed.

keyslots binary area encrypted user data

1
s
t

h
d
r

2
n
d

h
d
r

keyslots
area

resilience
area

ciphertext (data)
new key

⇒ ciphertext (data)
old key

Figure 5: LUKS2 reencryption schema (in forward direction).

4.9.1 Reencryption Steps

The running reencryption can be described as a sequence of these repeated steps:

1. Prepare JSON metadata (segment in-reencryption flag is set).
2. Configure overlay device-mapper devices.
3. Store resilience data to the reserved resilience area.
4. Write new block to the final storage media location.
5. Update JSON metadata (segment in-reencryption flag is removed).
6. Move segment offset.
7. Repeat until the final block.
8. Remove reencryption JSON metadata and wipe the resilience (and

possible unused datashift) area.

4.9.2 Reencryption Keyslot Protection

Online reencryption is a very complex operation, and with metadata visible
on the device (see Section 1.2) and with the physical access to the device, it
creates a new attack vector. The whole reencryption operation should be taken

17

as a temporary state. A user should not start reencryption and keep partial
metadata in place without finishing reencryption. During reencryption, keyslot
manipulation operations are not available.

To protect intended operation (encrypt, decrypt or reencrypt), the reen-
crypt keyslot must be linked to the additional digest object. The digest is
calculated from available encryption keys and critical reencryption metadata
(reencrypt keyslot fields and backup segments). This digest must be validated
on encrypted device activation and before all manipulation with metadata (for
example, restarting reencryption after a crash).

The schema of metadata used for reencryption digest validation is detailed
in Figure 6. Version prefix is always two bytes (’v2’, ASCII bytes 0x76, 0x32).
All integers are presented as unsigned and converted to big-endian byte order.
String content is taken from JSON string objects defined in Section 3. Strings
are processed without trailing null characters.

version Klen Klen

v2 [keyold] [keynew] keyslotsmetadata segmentsmetadata

protected reencryption metadata structure

string string string u64 u64

mode direction type offset size

reencrypt keyslot with area type none or journal
string u32

mode direction type offset size hash sector size

reencrypt keyslot with area type checksum
u64

mode direction type offset size shift size

reencrypt keyslot with area type datashift

backup segment backup segment backup segment

previousmetadata finalmetadata [movedmetadata]

protected segments metadata structure

string u64 dynamic/u64

type offset size

linear segment
u64 string u32

type offset size iv tweak encryption sector size

crypt segment

Figure 6: Reencryption digest calculation (binary input metadata).

Note that for encryption and decryption mode, the whole device must be
treated as unencrypted – there are no quarantees of confidentiality as part of
the device contains plaintext.

18

Glossary

AEAD Authenticated Encryption with Additional Data.

AF Anti-Forensic splitter defined for LUKS1. [1, 18]

Base64 Binary to text encoding scheme. [7]

blkid Utility to locate and print block device attributes.

dm-crypt Linux device-mapper crypto target. [3]

dm-integrity Linux device-mapper integrity target [10].

IV Initialization Vector for an encryption mode that tweaks encryption.

JSON JavaScript Object Notation (data-interchange format). [6]

Keyslot Encrypted area on disk that contains a key.

Length-preserving encryption Symmetric encryption where plaintext and
ciphertext have the same size.

libcryptsetup Library implementing LUKS1 and LUKS2. [5]

Metadata locking A way how to serialize access to on-disk metadata updates.

PBKDF Password-Based Key Derivation Function.

RNG Cryptographically strong Random Number Generator.

Sector Atomic unit for block device (disk). Typical sector size is 4096 bytes.

TRIM Command that informs a block device that area of the disk is unused
and can be discarded.

udev Device manager for Linux kernel implemented in userspace.

UUID Universally Unique IDentifier (of a block device).

Volume Key The key used for data encryption on disk. Sometimes called as
Media Encryption Key (MEK).

19

References
[1] LUKS1 On-Disk Format Specification, Version 1.2.3, 2018. https://gitlab.com/

cryptsetup/cryptsetup/wikis/Specification.

[2] Clemens Fruhwirth. New methods in hard disk encryption. PhD thesis, Institute for
Computer Languages Theory and Logic Group, Vienna University of Technology, 2005.
http://clemens.endorphin.org/nmihde/nmihde-A4-os.pdf.

[3] dm-crypt: Linux device-mapper crypto target, 2022. https://gitlab.com/cryptsetup/

cryptsetup/wikis/DMCrypt.

[4] Arno Wagner and Milan Brož. Frequently Asked Questions Cryptsetup/LUKS, 2022.
https://gitlab.com/cryptsetup/cryptsetup/wikis/FrequentlyAskedQuestions.

[5] Cryptsetup and LUKS, 2022. https://gitlab.com/cryptsetup/cryptsetup.

[6] The JSON Data Interchange Format. Technical Report Standard ECMA-404, 1st edition,
ECMA, 2013. http://www.ecma-international.org/publications/files/ECMA-ST/

ECMA-404.pdf.

[7] Simon Josefsson. The Base16, Base32, and Base64 Data Encodings. RFC 4648, 2006.
https://www.ietf.org/rfc/rfc4648.txt.

[8] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Argon2: the memory-hard func-
tion for password hashing and other applications, 2017. https://www.cryptolux.org/

index.php/Argon2.

[9] Milan Brož, Mikuláš Patočka, and Vashek Matyáš. Practical Cryptographic Data In-
tegrity Protection with Full Disk Encryption Extended Version, 2018. https://arxiv.

org/abs/1807.00309.

[10] dm-integrity: Linux device-mapper integrity target, 2022. https://gitlab.com/

cryptsetup/cryptsetup/wikis/DMIntegrity.

[11] Burt Kaliski. PKCS #5: Password-Based Cryptography Specification Version 2.0. RFC
2898 (Informational), 2000. https://www.ietf.org/rfc/rfc2898.txt.

[12] FIPS Publication 197, The Advanced Encryption Standard (AES), 2001. https:

//nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf.

[13] Morris J. Dworkin. SP 800-38E. Recommendation for Block Cipher Modes of Operation:
The XTS-AES Mode for Confidentiality on Storage Devices, 2010. NIST, https://

nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38e.pdf.

[14] Ross Anderson, Eli Biham, and Lars Knudsen. Serpent: A Proposal for the Advanced
Encryption Standard. https://www.cl.cam.ac.uk/~rja14/serpent.html.

[15] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and Niels Fergu-
son. The Twofish Encryption Algorithm: A 128-bit Block Cipher. John Wiley & Sons,
Inc., 1999. https://www.schneier.com/academic/twofish/.

[16] Hongjun Wu and Bart Preneel. AEGIS, A Fast Authenticated Encryption Algorithm
(v1.1). Technical report, 2016. https://competitions.cr.yp.to/round3/aegisv11.pdf.

[17] Ondřej Kozina. Online disk reencryption with LUKS2, 2019. https://okozina.

fedorapeople.org/online-disk-reencryption-with-luks2.pdf.

[18] Clemens Fruhwirth. TKS1, An anti-forensic, two level, and iterated key setup scheme,
2004. https://www.kernel.org/pub/linux/utils/cryptsetup/LUKS_docs/TKS1-draft.

pdf.

Document History

Version Date Author

1.0.0 2018-08-02 Milan Broz <gmazyland@gmail.com>
Initial revision for LUKS2. Not a final version, work in progress.
1.0.0 2018-10-23 Milan Broz <gmazyland@gmail.com>
Added segment flags.
1.1.0 2022-01-10 Milan Broz <gmazyland@gmail.com>
Added reencryption, policy. Updates.

20

https://gitlab.com/cryptsetup/cryptsetup/wikis/Specification
https://gitlab.com/cryptsetup/cryptsetup/wikis/Specification
http://clemens.endorphin.org/nmihde/nmihde-A4-os.pdf
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt
https://gitlab.com/cryptsetup/cryptsetup/wikis/FrequentlyAskedQuestions
https://gitlab.com/cryptsetup/cryptsetup
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.ietf.org/rfc/rfc4648.txt
https://www.cryptolux.org/index.php/Argon2
https://www.cryptolux.org/index.php/Argon2
https://arxiv.org/abs/1807.00309
https://arxiv.org/abs/1807.00309
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMIntegrity
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMIntegrity
https://www.ietf.org/rfc/rfc2898.txt
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38e.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38e.pdf
https://www.cl.cam.ac.uk/~rja14/serpent.html
https://www.schneier.com/academic/twofish/
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://okozina.fedorapeople.org/online-disk-reencryption-with-luks2.pdf
https://okozina.fedorapeople.org/online-disk-reencryption-with-luks2.pdf
https://www.kernel.org/pub/linux/utils/cryptsetup/LUKS_docs/TKS1-draft.pdf
https://www.kernel.org/pub/linux/utils/cryptsetup/LUKS_docs/TKS1-draft.pdf

	Introduction
	Design Goals
	Security Goals
	Reference Implementation

	LUKS2 On-Disk Format
	Binary Header
	JSON Area
	Keyslots Area

	LUKS2 JSON Metadata Format
	LUKS2 JSON Example
	Keyslots Object
	Keyslot Type luks2
	Keyslot Type reencrypt (Optional Extension)
	Area Object
	Anti-Forensic Object
	Key Derivation Object

	Segments Object
	Segment Type linear
	Segment Type crypt

	Digests Object
	Config Object
	Tokens Object

	LUKS2 Operations
	Device Formatting
	Keyslot Initialization
	Keyslot Content Retrieval
	Keyslot Revocation
	Metadata Recovery
	Mandatory Requirements
	Conversion from LUKS1
	Algorithm Definition Examples
	Online Reencryption (Optional Extension)
	Reencryption Steps
	Reencryption Keyslot Protection

