Merge "Fix the normalization factor calculation for blendshapes" into devel/master
[platform/core/uifw/dali-toolkit.git] / dali-scene3d / public-api / loader / mesh-definition.cpp
index 6c4c104..6cc3d6a 100644 (file)
@@ -15,8 +15,8 @@
  *
  */
 
-// INTERNAL INCLUDES
-#include "dali-scene3d/public-api/loader/mesh-definition.h"
+// CLASS HEADER
+#include <dali-scene3d/public-api/loader/mesh-definition.h>
 
 // EXTERNAL INCLUDES
 #include <dali/devel-api/adaptor-framework/file-stream.h>
 #include <fstream>
 #include <type_traits>
 
-namespace Dali
-{
-namespace Scene3D
-{
-namespace Loader
+namespace Dali::Scene3D::Loader
 {
 namespace
 {
+template<bool use32BitIndices>
 class IndexProvider
 {
 public:
+  using IndexType = typename std::conditional_t<use32BitIndices, uint32_t, uint16_t>;
   IndexProvider(const uint16_t* indices)
   : mData(reinterpret_cast<uintptr_t>(indices)),
     mFunc(indices ? IncrementPointer : Increment)
   {
   }
 
-  uint16_t operator()()
+  IndexType operator()()
   {
     return mFunc(mData);
   }
 
 private:
-  static uint16_t Increment(uintptr_t& data)
+  static IndexType Increment(uintptr_t& data)
   {
-    return static_cast<uint16_t>(data++);
+    // mData was 'zero' at construct time. Just simply return counter start with 0.
+    return static_cast<IndexType>(data++);
   }
 
-  static uint16_t IncrementPointer(uintptr_t& data)
+  static IndexType IncrementPointer(uintptr_t& data)
   {
-    auto iPtr   = reinterpret_cast<const uint16_t*>(data);
+    auto iPtr   = reinterpret_cast<const IndexType*>(data);
     auto result = *iPtr;
     data        = reinterpret_cast<uintptr_t>(++iPtr);
     return result;
   }
 
   uintptr_t mData;
-  uint16_t (*mFunc)(uintptr_t&);
+  IndexType (*mFunc)(uintptr_t&);
 };
 
-const std::string QUAD("quad");
+const char* QUAD("quad");
 
 ///@brief Reads a blob from the given stream @a source into @a target, which must have
 /// at least @a descriptor.length bytes.
@@ -91,11 +90,11 @@ bool ReadBlob(const MeshDefinition::Blob& descriptor, std::istream& source, uint
       uint32_t       readSize  = 0;
       uint32_t       totalSize = (descriptor.mLength / descriptor.mElementSizeHint) * descriptor.mStride;
       while(readSize < totalSize &&
-            source.read(reinterpret_cast<char*>(target), descriptor.mElementSizeHint) &&
-            source.seekg(diff, std::istream::cur))
+            source.read(reinterpret_cast<char*>(target), descriptor.mElementSizeHint))
       {
         readSize += descriptor.mStride;
         target += descriptor.mElementSizeHint;
+        source.seekg(diff, std::istream::cur);
       }
       return readSize == totalSize;
     }
@@ -114,7 +113,7 @@ void ReadValues(const std::vector<uint8_t>& valuesBuffer, const std::vector<uint
   }
 }
 
-bool ReadAccessor(const MeshDefinition::Accessor& accessor, std::istream& source, uint8_t* target)
+bool ReadAccessor(const MeshDefinition::Accessor& accessor, std::istream& source, uint8_t* target, std::vector<uint32_t>* sparseIndices)
 {
   bool success = false;
 
@@ -153,31 +152,63 @@ bool ReadAccessor(const MeshDefinition::Accessor& accessor, std::istream& source
       return false;
     }
 
+    // If non-null sparse indices vector, prepare it for output
+    if(sparseIndices)
+    {
+      sparseIndices->resize(accessor.mSparse->mCount);
+    }
+
     switch(indices.mElementSizeHint)
     {
       case 1u:
       {
         ReadValues<uint8_t>(valuesBuffer, indicesBuffer, target, accessor.mSparse->mCount, values.mElementSizeHint);
+        if(sparseIndices)
+        {
+          // convert 8-bit indices into 32-bit
+          std::transform(indicesBuffer.begin(), indicesBuffer.end(), sparseIndices->begin(), [](const uint8_t& value) { return uint32_t(value); });
+        }
         break;
       }
       case 2u:
       {
         ReadValues<uint16_t>(valuesBuffer, indicesBuffer, target, accessor.mSparse->mCount, values.mElementSizeHint);
+        if(sparseIndices)
+        {
+          // convert 16-bit indices into 32-bit
+          std::transform(reinterpret_cast<uint16_t*>(indicesBuffer.data()),
+                         reinterpret_cast<uint16_t*>(indicesBuffer.data()) + accessor.mSparse->mCount,
+                         sparseIndices->begin(),
+                         [](const uint16_t& value) {
+                           return uint32_t(value);
+                         });
+        }
         break;
       }
       case 4u:
       {
         ReadValues<uint32_t>(valuesBuffer, indicesBuffer, target, accessor.mSparse->mCount, values.mElementSizeHint);
+        if(sparseIndices)
+        {
+          std::copy(indicesBuffer.begin(), indicesBuffer.end(), reinterpret_cast<uint8_t*>(sparseIndices->data()));
+        }
         break;
       }
       default:
+      {
         DALI_ASSERT_DEBUG(!"Unsupported type for an index");
+      }
     }
   }
 
   return success;
 }
 
+bool ReadAccessor(const MeshDefinition::Accessor& accessor, std::istream& source, uint8_t* target)
+{
+  return ReadAccessor(accessor, source, target, nullptr);
+}
+
 template<typename T>
 void ReadJointAccessor(MeshDefinition::RawData& raw, const MeshDefinition::Accessor& accessor, std::istream& source, const std::string& meshPath)
 {
@@ -212,13 +243,58 @@ void ReadJointAccessor(MeshDefinition::RawData& raw, const MeshDefinition::Acces
   raw.mAttribs.push_back({"aJoints", Property::VECTOR4, static_cast<uint32_t>(outBufferSize / sizeof(Vector4)), std::move(buffer)});
 }
 
-void GenerateNormals(MeshDefinition::RawData& raw)
+template<typename T>
+void ReadWeightAccessor(MeshDefinition::RawData& raw, const MeshDefinition::Accessor& accessor, std::istream& source, const std::string& meshPath)
 {
+  constexpr auto sizeofBlobUnit = sizeof(T) * 4;
+
+  DALI_ASSERT_ALWAYS(((accessor.mBlob.mLength % sizeofBlobUnit == 0) ||
+                      accessor.mBlob.mStride >= sizeofBlobUnit) &&
+                     "weights buffer length not a multiple of element size");
+  const auto inBufferSize  = accessor.mBlob.GetBufferSize();
+  const auto outBufferSize = (sizeof(Vector4) / sizeofBlobUnit) * inBufferSize;
+
+  std::vector<uint8_t> buffer(outBufferSize);
+  auto                 inBuffer = buffer.data() + outBufferSize - inBufferSize;
+  if(!ReadAccessor(accessor, source, inBuffer))
+  {
+    ExceptionFlinger(ASSERT_LOCATION) << "Failed to read weights from '" << meshPath << "'.";
+  }
+
+  if constexpr(sizeofBlobUnit != sizeof(Vector4))
+  {
+    auto       floats = reinterpret_cast<float*>(buffer.data());
+    const auto end    = inBuffer + inBufferSize;
+    while(inBuffer != end)
+    {
+      const auto value = *reinterpret_cast<T*>(inBuffer);
+      // Normalize weight value. value /= 255 for uint8_t weight, and value /= 65535 for uint16_t weight.
+      *floats = static_cast<float>(value) / static_cast<float>((1 << (sizeof(T) * 8)) - 1);
+
+      inBuffer += sizeof(T);
+      ++floats;
+    }
+  }
+  raw.mAttribs.push_back({"aWeights", Property::VECTOR4, static_cast<uint32_t>(outBufferSize / sizeof(Vector4)), std::move(buffer)});
+}
+
+template<bool use32BitsIndices, typename IndexProviderType = IndexProvider<use32BitsIndices>>
+bool GenerateNormals(MeshDefinition::RawData& raw)
+{
+  using IndexType = typename IndexProviderType::IndexType;
+
+  // mIndicies size must be even if we use 32bit indices.
+  if(DALI_UNLIKELY(use32BitsIndices && !raw.mIndices.empty() && !(raw.mIndices.size() % (sizeof(IndexType) / sizeof(uint16_t)) == 0)))
+  {
+    return false;
+  }
+
   auto& attribs = raw.mAttribs;
   DALI_ASSERT_DEBUG(attribs.size() > 0); // positions
-  IndexProvider getIndex(raw.mIndices.data());
 
-  const uint32_t numIndices = raw.mIndices.empty() ? attribs[0].mNumElements : static_cast<uint32_t>(raw.mIndices.size());
+  IndexProviderType getIndex(raw.mIndices.data());
+
+  const uint32_t numIndices = raw.mIndices.empty() ? attribs[0].mNumElements : static_cast<uint32_t>(raw.mIndices.size() / (sizeof(IndexType) / sizeof(uint16_t)));
 
   auto* positions = reinterpret_cast<const Vector3*>(attribs[0].mData.data());
 
@@ -227,8 +303,8 @@ void GenerateNormals(MeshDefinition::RawData& raw)
 
   for(uint32_t i = 0; i < numIndices; i += 3)
   {
-    uint16_t indices[]{getIndex(), getIndex(), getIndex()};
-    Vector3  pos[]{positions[indices[0]], positions[indices[1]], positions[indices[2]]};
+    IndexType indices[]{getIndex(), getIndex(), getIndex()};
+    Vector3   pos[]{positions[indices[0]], positions[indices[1]], positions[indices[2]]};
 
     Vector3 a = pos[1] - pos[0];
     Vector3 b = pos[2] - pos[0];
@@ -247,14 +323,24 @@ void GenerateNormals(MeshDefinition::RawData& raw)
   }
 
   attribs.push_back({"aNormal", Property::VECTOR3, attribs[0].mNumElements, std::move(buffer)});
+
+  return true;
 }
 
-template<bool useVec3, bool hasUvs, typename T = std::conditional_t<useVec3, Vector3, Vector4>, typename = std::enable_if_t<(std::is_same<T, Vector3>::value || std::is_same<T, Vector4>::value)>>
+template<bool use32BitsIndices, bool useVec3, bool hasUvs, typename T = std::conditional_t<useVec3, Vector3, Vector4>, typename = std::enable_if_t<(std::is_same<T, Vector3>::value || std::is_same<T, Vector4>::value)>, typename IndexProviderType = IndexProvider<use32BitsIndices>>
 bool GenerateTangents(MeshDefinition::RawData& raw)
 {
+  using IndexType = typename IndexProviderType::IndexType;
+
+  // mIndicies size must be even if we use 32bit indices.
+  if(DALI_UNLIKELY(use32BitsIndices && !raw.mIndices.empty() && !(raw.mIndices.size() % (sizeof(IndexType) / sizeof(uint16_t)) == 0)))
+  {
+    return false;
+  }
+
   auto& attribs = raw.mAttribs;
   // Required positions, normals, uvs (if we have). If not, skip generation
-  if(attribs.size() < (2 + static_cast<size_t>(hasUvs)))
+  if(DALI_UNLIKELY(attribs.size() < (2 + static_cast<size_t>(hasUvs))))
   {
     return false;
   }
@@ -264,17 +350,18 @@ bool GenerateTangents(MeshDefinition::RawData& raw)
 
   if constexpr(hasUvs)
   {
-    IndexProvider  getIndex(raw.mIndices.data());
-    const uint32_t numIndices = raw.mIndices.empty() ? attribs[0].mNumElements : static_cast<uint32_t>(raw.mIndices.size());
+    IndexProviderType getIndex(raw.mIndices.data());
+
+    const uint32_t numIndices = raw.mIndices.empty() ? attribs[0].mNumElements : static_cast<uint32_t>(raw.mIndices.size() / (sizeof(IndexType) / sizeof(uint16_t)));
 
     auto* positions = reinterpret_cast<const Vector3*>(attribs[0].mData.data());
     auto* uvs       = reinterpret_cast<const Vector2*>(attribs[2].mData.data());
 
     for(uint32_t i = 0; i < numIndices; i += 3)
     {
-      uint16_t indices[]{getIndex(), getIndex(), getIndex()};
-      Vector3  pos[]{positions[indices[0]], positions[indices[1]], positions[indices[2]]};
-      Vector2  uv[]{uvs[indices[0]], uvs[indices[1]], uvs[indices[2]]};
+      IndexType indices[]{getIndex(), getIndex(), getIndex()};
+      Vector3   pos[]{positions[indices[0]], positions[indices[1]], positions[indices[2]]};
+      Vector2   uv[]{uvs[indices[0]], uvs[indices[1]], uvs[indices[2]]};
 
       float x0 = pos[1].x - pos[0].x;
       float y0 = pos[1].y - pos[0].y;
@@ -362,7 +449,7 @@ void CalculateTextureSize(uint32_t totalTextureSize, uint32_t& textureWidth, uin
 void CalculateGltf2BlendShapes(uint8_t* geometryBuffer, const std::vector<MeshDefinition::BlendShape>& blendShapes, uint32_t numberOfVertices, float& blendShapeUnnormalizeFactor, BufferDefinition::Vector& buffers)
 {
   uint32_t geometryBufferIndex = 0u;
-  float    maxDistance         = 0.f;
+  float    maxDistanceSquared  = 0.f;
   Vector3* geometryBufferV3    = reinterpret_cast<Vector3*>(geometryBuffer);
   for(const auto& blendShape : blendShapes)
   {
@@ -372,21 +459,41 @@ void CalculateGltf2BlendShapes(uint8_t* geometryBuffer, const std::vector<MeshDe
                           blendShape.deltas.mBlob.mStride >= sizeof(Vector3)) &&
                          "Blend Shape position buffer length not a multiple of element size");
 
-      const auto           bufferSize = blendShape.deltas.mBlob.GetBufferSize();
-      std::vector<uint8_t> buffer(bufferSize);
-      if(ReadAccessor(blendShape.deltas, buffers[blendShape.deltas.mBufferIdx].GetBufferStream(), buffer.data()))
+      const auto            bufferSize = blendShape.deltas.mBlob.GetBufferSize();
+      std::vector<uint8_t>  buffer(bufferSize);
+      std::vector<uint32_t> sparseIndices{};
+
+      if(ReadAccessor(blendShape.deltas, buffers[blendShape.deltas.mBufferIdx].GetBufferStream(), buffer.data(), &sparseIndices))
       {
-        blendShape.deltas.mBlob.ApplyMinMax(static_cast<uint32_t>(bufferSize / sizeof(Vector3)), reinterpret_cast<float*>(buffer.data()));
+        blendShape.deltas.mBlob.ApplyMinMax(static_cast<uint32_t>(bufferSize / sizeof(Vector3)), reinterpret_cast<float*>(buffer.data()), &sparseIndices);
+
         // Calculate the difference with the original mesh.
         // Find the max distance to normalize the deltas.
-        const Vector3* const deltasBuffer = reinterpret_cast<const Vector3* const>(buffer.data());
+        const auto* const deltasBuffer = reinterpret_cast<const Vector3* const>(buffer.data());
 
-        for(uint32_t index = 0u; index < numberOfVertices; ++index)
-        {
-          Vector3& delta = geometryBufferV3[geometryBufferIndex++];
-          delta          = deltasBuffer[index];
+        auto ProcessVertex = [&geometryBufferV3, &deltasBuffer, &maxDistanceSquared](uint32_t geometryBufferIndex, uint32_t deltaIndex) {
+          Vector3& delta = geometryBufferV3[geometryBufferIndex] = deltasBuffer[deltaIndex];
+          delta                                                  = deltasBuffer[deltaIndex];
+          return std::max(maxDistanceSquared, delta.LengthSquared());
+        };
 
-          maxDistance = std::max(maxDistance, delta.LengthSquared());
+        if(sparseIndices.empty())
+        {
+          for(uint32_t index = 0u; index < numberOfVertices; ++index)
+          {
+            maxDistanceSquared = ProcessVertex(geometryBufferIndex++, index);
+          }
+        }
+        else
+        {
+          // initialize blendshape texture
+          // TODO: there may be a case when sparse accessor uses a base buffer view for initial values.
+          std::fill(geometryBufferV3 + geometryBufferIndex, geometryBufferV3 + geometryBufferIndex + numberOfVertices, Vector3::ZERO);
+          for(auto index : sparseIndices)
+          {
+            maxDistanceSquared = ProcessVertex(geometryBufferIndex + index, index);
+          }
+          geometryBufferIndex += numberOfVertices;
         }
       }
     }
@@ -397,20 +504,18 @@ void CalculateGltf2BlendShapes(uint8_t* geometryBuffer, const std::vector<MeshDe
                           blendShape.normals.mBlob.mStride >= sizeof(Vector3)) &&
                          "Blend Shape normals buffer length not a multiple of element size");
 
-      const auto           bufferSize = blendShape.normals.mBlob.GetBufferSize();
-      std::vector<uint8_t> buffer(bufferSize);
-      if(ReadAccessor(blendShape.normals, buffers[blendShape.normals.mBufferIdx].GetBufferStream(), buffer.data()))
+      const auto            bufferSize = blendShape.normals.mBlob.GetBufferSize();
+      std::vector<uint8_t>  buffer(bufferSize);
+      std::vector<uint32_t> sparseIndices;
+
+      if(ReadAccessor(blendShape.normals, buffers[blendShape.normals.mBufferIdx].GetBufferStream(), buffer.data(), &sparseIndices))
       {
-        blendShape.normals.mBlob.ApplyMinMax(static_cast<uint32_t>(bufferSize / sizeof(Vector3)), reinterpret_cast<float*>(buffer.data()));
+        blendShape.normals.mBlob.ApplyMinMax(static_cast<uint32_t>(bufferSize / sizeof(Vector3)), reinterpret_cast<float*>(buffer.data()), &sparseIndices);
 
         // Calculate the difference with the original mesh, and translate to make all values positive.
-        const Vector3* const deltasBuffer = reinterpret_cast<const Vector3* const>(buffer.data());
-
-        for(uint32_t index = 0u; index < numberOfVertices; ++index)
-        {
-          Vector3& delta = geometryBufferV3[geometryBufferIndex++];
-          delta          = deltasBuffer[index];
-
+        const Vector3* const deltasBuffer  = reinterpret_cast<const Vector3* const>(buffer.data());
+        auto                 ProcessVertex = [&geometryBufferV3, &deltasBuffer, &maxDistanceSquared](uint32_t geometryBufferIndex, uint32_t deltaIndex) {
+          Vector3& delta = geometryBufferV3[geometryBufferIndex] = deltasBuffer[deltaIndex];
           delta.x *= 0.5f;
           delta.y *= 0.5f;
           delta.z *= 0.5f;
@@ -418,6 +523,23 @@ void CalculateGltf2BlendShapes(uint8_t* geometryBuffer, const std::vector<MeshDe
           delta.x += 0.5f;
           delta.y += 0.5f;
           delta.z += 0.5f;
+        };
+
+        if(sparseIndices.empty())
+        {
+          for(uint32_t index = 0u; index < numberOfVertices; ++index)
+          {
+            ProcessVertex(geometryBufferIndex++, index);
+          }
+        }
+        else
+        {
+          std::fill(geometryBufferV3 + geometryBufferIndex, geometryBufferV3 + geometryBufferIndex + numberOfVertices, Vector3(0.5, 0.5, 0.5));
+          for(auto index : sparseIndices)
+          {
+            ProcessVertex(geometryBufferIndex + index, index);
+          }
+          geometryBufferIndex += numberOfVertices;
         }
       }
     }
@@ -428,20 +550,18 @@ void CalculateGltf2BlendShapes(uint8_t* geometryBuffer, const std::vector<MeshDe
                           blendShape.tangents.mBlob.mStride >= sizeof(Vector3)) &&
                          "Blend Shape tangents buffer length not a multiple of element size");
 
-      const auto           bufferSize = blendShape.tangents.mBlob.GetBufferSize();
-      std::vector<uint8_t> buffer(bufferSize);
-      if(ReadAccessor(blendShape.tangents, buffers[blendShape.tangents.mBufferIdx].GetBufferStream(), buffer.data()))
+      const auto            bufferSize = blendShape.tangents.mBlob.GetBufferSize();
+      std::vector<uint8_t>  buffer(bufferSize);
+      std::vector<uint32_t> sparseIndices;
+
+      if(ReadAccessor(blendShape.tangents, buffers[blendShape.tangents.mBufferIdx].GetBufferStream(), buffer.data(), &sparseIndices))
       {
-        blendShape.tangents.mBlob.ApplyMinMax(static_cast<uint32_t>(bufferSize / sizeof(Vector3)), reinterpret_cast<float*>(buffer.data()));
+        blendShape.tangents.mBlob.ApplyMinMax(static_cast<uint32_t>(bufferSize / sizeof(Vector3)), reinterpret_cast<float*>(buffer.data()), &sparseIndices);
 
         // Calculate the difference with the original mesh, and translate to make all values positive.
-        const Vector3* const deltasBuffer = reinterpret_cast<const Vector3* const>(buffer.data());
-
-        for(uint32_t index = 0u; index < numberOfVertices; ++index)
-        {
-          Vector3& delta = geometryBufferV3[geometryBufferIndex++];
-          delta          = deltasBuffer[index];
-
+        const Vector3* const deltasBuffer  = reinterpret_cast<const Vector3* const>(buffer.data());
+        auto                 ProcessVertex = [&geometryBufferV3, &deltasBuffer, &maxDistanceSquared](uint32_t geometryBufferIndex, uint32_t deltaIndex) {
+          Vector3& delta = geometryBufferV3[geometryBufferIndex] = deltasBuffer[deltaIndex];
           delta.x *= 0.5f;
           delta.y *= 0.5f;
           delta.z *= 0.5f;
@@ -449,12 +569,37 @@ void CalculateGltf2BlendShapes(uint8_t* geometryBuffer, const std::vector<MeshDe
           delta.x += 0.5f;
           delta.y += 0.5f;
           delta.z += 0.5f;
+        };
+
+        if(sparseIndices.empty())
+        {
+          for(uint32_t index = 0u; index < numberOfVertices; ++index)
+          {
+            ProcessVertex(geometryBufferIndex++, index);
+          }
+        }
+        else
+        {
+          std::fill(geometryBufferV3 + geometryBufferIndex, geometryBufferV3 + geometryBufferIndex + numberOfVertices, Vector3(0.5, 0.5, 0.5));
+          for(auto index : sparseIndices)
+          {
+            ProcessVertex(geometryBufferIndex + index, index);
+          }
+          geometryBufferIndex += numberOfVertices;
         }
       }
     }
   }
 
   geometryBufferIndex = 0u;
+
+  const float maxDistance = sqrtf(maxDistanceSquared);
+
+  const float normalizeFactor = (maxDistanceSquared < Math::MACHINE_EPSILON_100) ? 1.f : (0.5f / maxDistance);
+
+  // Calculate and store the unnormalize factor.
+  blendShapeUnnormalizeFactor = maxDistance * 2.0f;
+
   for(const auto& blendShape : blendShapes)
   {
     // Normalize all the deltas and translate to a possitive value.
@@ -462,8 +607,6 @@ void CalculateGltf2BlendShapes(uint8_t* geometryBuffer, const std::vector<MeshDe
     // whose values that are less than zero are clamped.
     if(blendShape.deltas.IsDefined())
     {
-      const float normalizeFactor = (fabsf(maxDistance) < Math::MACHINE_EPSILON_1000) ? 1.f : (0.5f / sqrtf(maxDistance));
-
       for(uint32_t index = 0u; index < numberOfVertices; ++index)
       {
         Vector3& delta = geometryBufferV3[geometryBufferIndex++];
@@ -471,9 +614,6 @@ void CalculateGltf2BlendShapes(uint8_t* geometryBuffer, const std::vector<MeshDe
         delta.y        = Clamp(((delta.y * normalizeFactor) + 0.5f), 0.f, 1.f);
         delta.z        = Clamp(((delta.z * normalizeFactor) + 0.5f), 0.f, 1.f);
       }
-
-      // Calculate and store the unnormalize factor.
-      blendShapeUnnormalizeFactor = 1.f / normalizeFactor;
     }
 
     if(blendShape.normals.IsDefined())
@@ -544,7 +684,7 @@ void MeshDefinition::Blob::ComputeMinMax(std::vector<float>& min, std::vector<fl
   }
 }
 
-void MeshDefinition::Blob::ApplyMinMax(const std::vector<float>& min, const std::vector<float>& max, uint32_t count, float* values)
+void MeshDefinition::Blob::ApplyMinMax(const std::vector<float>& min, const std::vector<float>& max, uint32_t count, float* values, std::vector<uint32_t>* sparseIndices)
 {
   DALI_ASSERT_DEBUG(max.size() == min.size() || max.size() * min.size() == 0);
   const auto numComponents = std::max(min.size(), max.size());
@@ -593,9 +733,9 @@ void MeshDefinition::Blob::ComputeMinMax(uint32_t numComponents, uint32_t count,
   ComputeMinMax(mMin, mMax, numComponents, count, values);
 }
 
-void MeshDefinition::Blob::ApplyMinMax(uint32_t count, float* values) const
+void MeshDefinition::Blob::ApplyMinMax(uint32_t count, float* values, std::vector<uint32_t>* sparseIndices) const
 {
-  ApplyMinMax(mMin, mMax, count, values);
+  ApplyMinMax(mMin, mMax, count, values, sparseIndices);
 }
 
 void MeshDefinition::RawData::Attrib::AttachBuffer(Geometry& g) const
@@ -670,18 +810,6 @@ MeshDefinition::LoadRaw(const std::string& modelsPath, BufferDefinition::Vector&
       {
         ExceptionFlinger(ASSERT_LOCATION) << "Failed to read indices from '" << path << "'.";
       }
-
-      auto u16s = raw.mIndices.data();
-      auto u32s = reinterpret_cast<uint32_t*>(raw.mIndices.data());
-      auto end  = u32s + indexCount;
-      while(u32s != end)
-      {
-        *u16s = static_cast<uint16_t>(*u32s);
-        ++u16s;
-        ++u32s;
-      }
-
-      raw.mIndices.resize(indexCount);
     }
     else if(MaskMatch(mFlags, U8_INDICES))
     {
@@ -689,7 +817,7 @@ MeshDefinition::LoadRaw(const std::string& modelsPath, BufferDefinition::Vector&
                           mIndices.mBlob.mStride >= sizeof(uint8_t)) &&
                          "Index buffer length not a multiple of element size");
       const auto indexCount = mIndices.mBlob.GetBufferSize() / sizeof(uint8_t);
-      raw.mIndices.resize(indexCount); // NOTE: we need space for uint32_ts initially.
+      raw.mIndices.resize(indexCount); // NOTE: we need space for uint16_ts initially.
 
       std::string path;
       auto        u8s    = reinterpret_cast<uint8_t*>(raw.mIndices.data()) + indexCount;
@@ -783,8 +911,20 @@ MeshDefinition::LoadRaw(const std::string& modelsPath, BufferDefinition::Vector&
   else if(mNormals.mBlob.mLength != 0 && isTriangles)
   {
     DALI_ASSERT_DEBUG(mNormals.mBlob.mLength == mPositions.mBlob.GetBufferSize());
-    GenerateNormals(raw);
-    hasNormals = true;
+    static const std::function<bool(RawData&)> GenerateNormalsFunction[2] =
+      {
+        GenerateNormals<false>,
+        GenerateNormals<true>,
+      };
+    const bool generateSuccessed = GenerateNormalsFunction[MaskMatch(mFlags, U32_INDICES)](raw);
+    if(!generateSuccessed)
+    {
+      DALI_LOG_ERROR("Failed to generate normal\n");
+    }
+    else
+    {
+      hasNormals = true;
+    }
   }
 
   const auto hasUvs = mTexCoords.IsDefined();
@@ -815,7 +955,7 @@ MeshDefinition::LoadRaw(const std::string& modelsPath, BufferDefinition::Vector&
       }
     }
 
-    mTexCoords.mBlob.ApplyMinMax(static_cast<uint32_t>(bufferSize / sizeof(Vector2)), reinterpret_cast<float*>(buffer.data()));
+    mTexCoords.mBlob.ApplyMinMax(static_cast<uint32_t>(uvCount), reinterpret_cast<float*>(buffer.data()));
 
     raw.mAttribs.push_back({"aTexCoord", Property::VECTOR2, static_cast<uint32_t>(uvCount), std::move(buffer)});
   }
@@ -842,18 +982,29 @@ MeshDefinition::LoadRaw(const std::string& modelsPath, BufferDefinition::Vector&
   else if(mTangents.mBlob.mLength != 0 && hasNormals && isTriangles)
   {
     DALI_ASSERT_DEBUG(mTangents.mBlob.mLength == mNormals.mBlob.GetBufferSize());
-    static const std::function<bool(RawData&)> GenerateTangentsFunction[2][2] =
+    static const std::function<bool(RawData&)> GenerateTangentsFunction[2][2][2] =
       {
         {
-          GenerateTangents<false, false>,
-          GenerateTangents<false, true>,
+          {
+            GenerateTangents<false, false, false>,
+            GenerateTangents<false, false, true>,
+          },
+          {
+            GenerateTangents<false, true, false>,
+            GenerateTangents<false, true, true>,
+          },
         },
         {
-          GenerateTangents<true, false>,
-          GenerateTangents<true, true>,
-        },
-      };
-    const bool generateSuccessed = GenerateTangentsFunction[mTangentType == Property::VECTOR3][hasUvs](raw);
+          {
+            GenerateTangents<true, false, false>,
+            GenerateTangents<true, false, true>,
+          },
+          {
+            GenerateTangents<true, true, false>,
+            GenerateTangents<true, true, true>,
+          },
+        }};
+    const bool generateSuccessed = GenerateTangentsFunction[MaskMatch(mFlags, U32_INDICES)][mTangentType == Property::VECTOR3][hasUvs](raw);
     if(!generateSuccessed)
     {
       DALI_LOG_ERROR("Failed to generate tangents\n");
@@ -883,6 +1034,18 @@ MeshDefinition::LoadRaw(const std::string& modelsPath, BufferDefinition::Vector&
       raw.mAttribs.push_back({"aVertexColor", propertyType, static_cast<uint32_t>(bufferSize / propertySize), std::move(buffer)});
     }
   }
+  else
+  {
+    std::vector<uint8_t> buffer(raw.mAttribs[0].mNumElements * sizeof(Vector4));
+    auto                 colors = reinterpret_cast<Vector4*>(buffer.data());
+
+    for(uint32_t i = 0; i < raw.mAttribs[0].mNumElements; i++)
+    {
+      colors[i] = Vector4::ONE;
+    }
+
+    raw.mAttribs.push_back({"aVertexColor", Property::VECTOR4, raw.mAttribs[0].mNumElements, std::move(buffer)});
+  }
 
   if(IsSkinned())
   {
@@ -901,20 +1064,20 @@ MeshDefinition::LoadRaw(const std::string& modelsPath, BufferDefinition::Vector&
       ReadJointAccessor<float>(raw, mJoints0, streamJoint, pathJoint);
     }
 
-    DALI_ASSERT_ALWAYS(((mWeights0.mBlob.mLength % sizeof(Vector4) == 0) ||
-                        mWeights0.mBlob.mStride >= sizeof(Vector4)) &&
-                       "Weights buffer length not a multiple of element size");
-    const auto           bufferSize = mWeights0.mBlob.GetBufferSize();
-    std::vector<uint8_t> buffer(bufferSize);
-
     std::string pathWeight;
     auto&       streamWeight = GetAvailableData(fileStream, meshPath, buffers[mWeights0.mBufferIdx], pathWeight);
-    if(!ReadAccessor(mWeights0, streamWeight, buffer.data()))
+    if(MaskMatch(mFlags, U16_WEIGHT))
     {
-      ExceptionFlinger(ASSERT_LOCATION) << "Failed to read weights from '" << pathWeight << "'.";
+      ReadWeightAccessor<uint16_t>(raw, mWeights0, streamWeight, pathWeight);
+    }
+    else if(MaskMatch(mFlags, U8_WEIGHT))
+    {
+      ReadWeightAccessor<uint8_t>(raw, mWeights0, streamWeight, pathWeight);
+    }
+    else
+    {
+      ReadWeightAccessor<float>(raw, mWeights0, streamWeight, pathWeight);
     }
-
-    raw.mAttribs.push_back({"aWeights", Property::VECTOR4, static_cast<uint32_t>(bufferSize / sizeof(Vector4)), std::move(buffer)});
   }
 
   // Calculate the Blob for the blend shapes.
@@ -1008,7 +1171,15 @@ MeshGeometry MeshDefinition::Load(RawData&& raw) const
   {
     if(!raw.mIndices.empty())
     {
-      meshGeometry.geometry.SetIndexBuffer(raw.mIndices.data(), raw.mIndices.size());
+      if(MaskMatch(mFlags, U32_INDICES))
+      {
+        // TODO : We can only store indeces as uint16_type. Send Dali::Geometry that we use it as uint32_t actual.
+        meshGeometry.geometry.SetIndexBuffer(reinterpret_cast<const uint32_t*>(raw.mIndices.data()), raw.mIndices.size() / 2);
+      }
+      else
+      {
+        meshGeometry.geometry.SetIndexBuffer(raw.mIndices.data(), raw.mIndices.size());
+      }
     }
 
     for(auto& a : raw.mAttribs)
@@ -1032,6 +1203,14 @@ MeshGeometry MeshDefinition::Load(RawData&& raw) const
   return meshGeometry;
 }
 
-} // namespace Loader
-} // namespace Scene3D
-} // namespace Dali
+void MeshDefinition::RetrieveBlendShapeComponents(bool& hasPositions, bool& hasNormals, bool& hasTangents) const
+{
+  for(const auto& blendShape : mBlendShapes)
+  {
+    hasPositions = hasPositions || blendShape.deltas.IsDefined();
+    hasNormals   = hasNormals || blendShape.normals.IsDefined();
+    hasTangents  = hasTangents || blendShape.tangents.IsDefined();
+  }
+}
+
+} // namespace Dali::Scene3D::Loader