/* Copyright (c) 2012 Advanced Micro Devices, Inc. This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ //Originally written by Erwin Coumans #define NEW_PAIR_MARKER -1 typedef struct { union { float4 m_min; float m_minElems[4]; int m_minIndices[4]; }; union { float4 m_max; float m_maxElems[4]; int m_maxIndices[4]; }; } btAabbCL; /// conservative test for overlap between two aabbs bool TestAabbAgainstAabb2(const btAabbCL* aabb1, __local const btAabbCL* aabb2); bool TestAabbAgainstAabb2(const btAabbCL* aabb1, __local const btAabbCL* aabb2) { bool overlap = true; overlap = (aabb1->m_min.x > aabb2->m_max.x || aabb1->m_max.x < aabb2->m_min.x) ? false : overlap; overlap = (aabb1->m_min.z > aabb2->m_max.z || aabb1->m_max.z < aabb2->m_min.z) ? false : overlap; overlap = (aabb1->m_min.y > aabb2->m_max.y || aabb1->m_max.y < aabb2->m_min.y) ? false : overlap; return overlap; } bool TestAabbAgainstAabb2GlobalGlobal(__global const btAabbCL* aabb1, __global const btAabbCL* aabb2); bool TestAabbAgainstAabb2GlobalGlobal(__global const btAabbCL* aabb1, __global const btAabbCL* aabb2) { bool overlap = true; overlap = (aabb1->m_min.x > aabb2->m_max.x || aabb1->m_max.x < aabb2->m_min.x) ? false : overlap; overlap = (aabb1->m_min.z > aabb2->m_max.z || aabb1->m_max.z < aabb2->m_min.z) ? false : overlap; overlap = (aabb1->m_min.y > aabb2->m_max.y || aabb1->m_max.y < aabb2->m_min.y) ? false : overlap; return overlap; } bool TestAabbAgainstAabb2Global(const btAabbCL* aabb1, __global const btAabbCL* aabb2); bool TestAabbAgainstAabb2Global(const btAabbCL* aabb1, __global const btAabbCL* aabb2) { bool overlap = true; overlap = (aabb1->m_min.x > aabb2->m_max.x || aabb1->m_max.x < aabb2->m_min.x) ? false : overlap; overlap = (aabb1->m_min.z > aabb2->m_max.z || aabb1->m_max.z < aabb2->m_min.z) ? false : overlap; overlap = (aabb1->m_min.y > aabb2->m_max.y || aabb1->m_max.y < aabb2->m_min.y) ? false : overlap; return overlap; } __kernel void computePairsKernelTwoArrays( __global const btAabbCL* unsortedAabbs, __global const int* unsortedAabbMapping, __global const int* unsortedAabbMapping2, volatile __global int4* pairsOut,volatile __global int* pairCount, int numUnsortedAabbs, int numUnSortedAabbs2, int axis, int maxPairs) { int i = get_global_id(0); if (i>=numUnsortedAabbs) return; int j = get_global_id(1); if (j>=numUnSortedAabbs2) return; __global const btAabbCL* unsortedAabbPtr = &unsortedAabbs[unsortedAabbMapping[i]]; __global const btAabbCL* unsortedAabbPtr2 = &unsortedAabbs[unsortedAabbMapping2[j]]; if (TestAabbAgainstAabb2GlobalGlobal(unsortedAabbPtr,unsortedAabbPtr2)) { int4 myPair; int xIndex = unsortedAabbPtr[0].m_minIndices[3]; int yIndex = unsortedAabbPtr2[0].m_minIndices[3]; if (xIndex>yIndex) { int tmp = xIndex; xIndex=yIndex; yIndex=tmp; } myPair.x = xIndex; myPair.y = yIndex; myPair.z = NEW_PAIR_MARKER; myPair.w = NEW_PAIR_MARKER; int curPair = atomic_inc (pairCount); if (curPair=numObjects) return; for (int j=i+1;j=numObjects) return; for (int j=i+1;j=numObjects && !localBreak) { atomic_inc(breakRequest); localBreak = 1; } barrier(CLK_LOCAL_MEM_FENCE); if (!localBreak) { if (TestAabbAgainstAabb2GlobalGlobal(&aabbs[i],&aabbs[j])) { int4 myPair; myPair.x = aabbs[i].m_minIndices[3]; myPair.y = aabbs[j].m_minIndices[3]; myPair.z = NEW_PAIR_MARKER; myPair.w = NEW_PAIR_MARKER; int curPair = atomic_inc (pairCount); if (curPair=numObjects && !localBreak) { atomic_inc(breakRequest); localBreak = 1; } barrier(CLK_LOCAL_MEM_FENCE); if (!localBreak) { if (TestAabbAgainstAabb2(&myAabb,&localAabbs[localCount+localId+1])) { int4 myPair; myPair.x = myAabb.m_minIndices[3]; myPair.y = localAabbs[localCount+localId+1].m_minIndices[3]; myPair.z = NEW_PAIR_MARKER; myPair.w = NEW_PAIR_MARKER; int curPair = atomic_inc (pairCount); if (curPair> 31) | 0x80000000; return f ^ mask; } float IFloatFlip(unsigned int f); float IFloatFlip(unsigned int f) { unsigned int mask = ((f >> 31) - 1) | 0x80000000; unsigned int fl = f ^ mask; return *(float*)&fl; } __kernel void copyAabbsKernel( __global const btAabbCL* allAabbs, __global btAabbCL* destAabbs, int numObjects) { int i = get_global_id(0); if (i>=numObjects) return; int src = destAabbs[i].m_maxIndices[3]; destAabbs[i] = allAabbs[src]; destAabbs[i].m_maxIndices[3] = src; } __kernel void flipFloatKernel( __global const btAabbCL* allAabbs, __global const int* smallAabbMapping, __global int2* sortData, int numObjects, int axis) { int i = get_global_id(0); if (i>=numObjects) return; sortData[i].x = FloatFlip(allAabbs[smallAabbMapping[i]].m_minElems[axis]); sortData[i].y = i; } __kernel void scatterKernel( __global const btAabbCL* allAabbs, __global const int* smallAabbMapping, volatile __global const int2* sortData, __global btAabbCL* sortedAabbs, int numObjects) { int i = get_global_id(0); if (i>=numObjects) return; sortedAabbs[i] = allAabbs[smallAabbMapping[sortData[i].y]]; } __kernel void prepareSumVarianceKernel( __global const btAabbCL* allAabbs, __global const int* smallAabbMapping, __global float4* sum, __global float4* sum2,int numAabbs) { int i = get_global_id(0); if (i>=numAabbs) return; btAabbCL smallAabb = allAabbs[smallAabbMapping[i]]; float4 s; s = (smallAabb.m_max+smallAabb.m_min)*0.5f; sum[i]=s; sum2[i]=s*s; }