

DESIGN PATTERNS LIBRARY

PROGRAMMING GUIDE

Rev. 0.50

April 9, 2010

© Samsung Electronics Co., Confidential

2 Design patterns library

Design patterns library

Programming guide

Copyright (c) 2010 Samsung Electronics, Inc.

All rights reserved

Author: Przemyslaw Dobrowolski

Contact: p.dobrowolsk@samsung.com

mailto:p.dobrowolsk@samsung.com

April 9, 2010

© Samsung Electronics Co., Confidential

3 Design patterns library

TABLE OF CONTENTS

Installation .. 6

Basic concepts ... 6

Application .. 6

MVC ... 8

Event ... 8

Event support ... 8

Generic events .. 9

Models .. 10

Controllers .. 11

Context inheritance .. 12

Advanced topics .. 12

Manual switch of thread inherited by event support .. 12

Generic Event Call .. 13

Internal representation of event .. 13

Thread support .. 13

Thread ... 13

Advanced topics .. 14

Waitable handle watch support ... 14

Waitable input output execution context support .. 14

Abstract IO .. 14

Waitable event ... 14

Abstract input/output ... 15

Abstract waitable input/output .. 16

Abstract socket ... 17

Address ... 18

Generic socket .. 18

Unix/TCP socket .. 19

Synchronization ... 21

April 9, 2010

© Samsung Electronics Co., Confidential

4 Design patterns library

Mutex.. 21

Recursive mutex ... 21

Spin lock .. 22

Read Write Mutex... 22

Remote Procedure Calls .. 23

Abstract RPC connection .. 23

RPC Call ... 23

Generic socket RPC connection .. 24

UNIX/TCP socket RPC connection ... 24

Abstract RPC connector .. 24

Generic socket RPC client/server .. 25

UNIX/TCP socket RPC client/server .. 25

Logging system .. 31

DLOG provider .. 32

Old style provider ... 33

Exception system .. 34

Cryptography... 35

Hash functions .. 35

Algorithms .. 35

Utilities .. 36

Atomic ... 36

SQL Connection... 36

Executing simple commands .. 37

Executing command with result ... 37

Singleton ... 38

Noncopyable ... 39

RAII .. 39

Scoped Pointer ... 39

Scoped Array .. 40

April 9, 2010

© Samsung Electronics Co., Confidential

5 Design patterns library

Shared Pointer .. 40

Shared Array ... 41

Scoped Free .. 41

Scoped Close .. 41

Single Instance .. 42

Task / TaskList ... 42

Binary Queue .. 42

Asynchronous Semaphore .. 44

Sample applications .. 45

RPC Metronome application... 45

Synchronous event calls ... 51

April 9, 2010

© Samsung Electronics Co., Confidential

6 Design patterns library

INSTALLATION

DPL library is provided on top of two basic frameworks: EFL(ECORE) and GTK(GLIB). These two are

compiled separately into distinct libraries. Along with two libraries there are two separate include directories

and two pkgconfig files. Following table summarizes debian packages available through apt:

Mode Binary package Developer package pkgconfig file Debug package

EFL(ECORE) dpl-efl dpl-efl-dev dpl-efl.pc dpl-dbg

GTK(GLIB) dpl-gtk dpl-gtk-dev dpl-gtk.pc dpl-dbg

For example: to develop with EFL only packages, we need to install only dpl-efl and dpl-efl-dev packages. To

develop application that can be compile-time configured to use EFL or GTK, we must install both DPL packages

for EFL and GTK.

DPL support both i386 and ARM platforms.

Basically, there is no difference between GTK and EFL version. By using different pkgconfig files, include

directories and link libraries are automatically switched to use proper subsystem.

All DPL include files reside under directory <dpl/*>. Examples are:

Example:

#include <dpl/application.h>

#include <dpl/geneneric_event.h>

Notice that, although application component implementation differs between EFL and GTK version, we use the

same include file.

BASIC CONCEPTS

DPL is written using general programming technique. In practice it means that each component uses

only concept objects that have certain features. This kind of approach gives great flexibility.

Internal components of DPL are heavily using templates, but it is usually not needed to completely understand

internal structure to use all features available in DPL. Library developers need to get know about some

advanced programming techniques and guidelines.

All DPL components are placed in namespace DPL.

APPLICATION

As usual we will start with an example “hello world” application. Provided example will run full screen

black window.

April 9, 2010

© Samsung Electronics Co., Confidential

7 Design patterns library

Example:

#include <dpl/application.h>

int main(int argc, char *argv[])

{

 DPL::Application app(argc, argv, “hello_world”);

 return app.Exec();

}

Application class provides several virtual methods that can be overloaded:

Method declaration Purpose

virtual void OnCreate() Called when first view of application is created and

initialized

virtual void OnStart() Called at application startup, used to speed up

application launch and to display loading banner or

message

virtual void OnStop() Application is being sent to background in multi

application environment

virtual void OnResume() Application is being sent to front in multi application

environment

virtual void OnRelaunch() Application receives ‘launch service’ with arguments

through AUL

virtual void OnTerminate() Application is requested to free all resources before

application exit

virtual void OnLowMemory() System memory is low and application should free all

unused memory

virtual void OnLowBattery() Application is requested to free all unused memory

and prepare to quit

virtual void OnLanguageChanged() System language has changed and application may

reload all language dependant resources

By default all these method do nothing. Any number of them can be overloaded and handled.

To quit an application, call Quit() in any of event handlers. A special quit message will be sent and an

application and it will quit in next event loop iteration.

April 9, 2010

© Samsung Electronics Co., Confidential

8 Design patterns library

By default, an application will create default full-screen black windows. To override this setting, use non-default

parameters in Application constructor.

MVC

Model-View-Controller support provided by DPL is an architecture that enables easy implementation

of modern applications. To get idea of whole architecture, few basic concepts have to be introduced.

Fundamental idea of MVC is to distinguish and divide application parts such as: logic, data

representation (model) and event processing (controllers). These can be defined in various ways, but common

idea is similar. Apart from listed components in MVC applications there are many other such as DAO, TO and

other. Some of them will be discussed in this paragraph, but to get all of descriptions, reader is encouraged to

read some book about MVC paradigm GUI programming.

Most important concept is an event. An event is an abstract message that is sent between various

contexts. Events can be generated as a response to other events; they can be spontaneous or sent from

framework or environment. All asynchronous communication is done with events. On top of a basic event,

there are defined model properties, controllers, asynchronous IO and more.

Second most important concept is execution context inheritance. This basically means that some

objects can be gratified a thread that they are allowed to execute their code on. These are mainly controllers

and upper-level IO objects (sockets).

EVENT

An event can be a type that supports copying and empty construction. Examples are: int, float, struct,

class, and DECLARE_GENERIC_EVENT. Most convenient and suggested way of defining new event is by using

macro DECLARE_GENERIC_EVENT.

Remember:

Events are always copied by value. This implies that during copy each field is copied by value. Defining an event

with pointer fields is possible, but to access the memory pointed by event developer must ensure that memory

is available for whole the time that event is being processed (from posting it to receiving). The moment of

receiving an event is not known at the moment of posting it.

For heavy events that should not be copied, one can use some smart pointer mechanism. For example DPL’s

SharedPtr implementation is sufficient.

EVENT SUPPORT

Fundamental concept of DPL’s support for MVC is Event Support. An object that inherits EventSupport

template is given a capability of sending and receiving specific type of events.

Consider following trivial example. We would like to have an object representing an integer value.

Basically it is an int type. We would like to give it an ability to generate events about its changes. What we have

to do is to wrap-up simple integer type into a class, and derive proper event support.

At this moment we have to decide what type of event should generate such class. The most obvious selection is

an event consisting of its new value. Optionally, we can send delta value or event a pair of old and new values.

We will select first option. Example code is as follows:

April 9, 2010

© Samsung Electronics Co., Confidential

9 Design patterns library

Example:

#include <dpl/event_support.h>

class Integer : public EventSupport<int>

{

 int m_value;

public:

 Integer()

 : m_value(0)

 {

 }

 int Get() const

 {

 return m_value;

 }

 void Set(int value)

 {

 m_value = value;

 PostEvent(m_value);

 }

};

An integer value is wrapped by class Integer. To access value, there are two methds: Ge()t and Set(). Get()

method is trivial. More interesting is second methods. To set a value, first its value is saved and secondly an

event with current value is sent. If there is no synchronization of access to Integer, the order of operations is

crucial. In extreme situation an event can be delivered faster than value is set, and potentially other thread can

access old value with Get while value should already be new one. In situation where some synchronization

mechanism is used such scenario is not applicable. See a chapter about synchronization mechanisms in DPL.

GENERIC EVENTS

To easily declare an event, there are provided several useful macros. Developer is not obliged to use

them. Instead of using them, custom structures can be used, but usually they are mechanical and impractical

(although they may have custom argument names).

Example:

#include <dpl/generic_event.h>

DECLARE_GENERIC_EVENT_0(EmptyEvent)

DECLARE_GENERIC_EVENT_0(OtherEmptyEvent)

DECLARE_GENERIC_EVENT_1(IntegerEvent, int)

DECLARE_GENERIC_EVENT_5(BigEvent,

 std::string, int,

 MyStruct, const char *, double)

In example, we declare four different events. There are two different empty events, one event which contains

one integer and a “big” event which contains several different fields.

April 9, 2010

© Samsung Electronics Co., Confidential

10 Design patterns library

To declare an event with k fields we use macro DECLARE_GENERIC_EVENT_k. By default DPL support events

with at most 8 parameters. In practice it is sufficient, because a large amount of parameter would be messy. In

practice, if we have more than three or four parameters, usually, there is already a structure that contains

them all, and this structure is used as a field in event.

Notice:

#include <dpl/generic_event.h>

DECLARE_GENERIC_EVENT_0(EventOne) != DECLARE_GENERIC_EVENT_0(EventTwo)

That means, even if declarations are the same, the events are different types and can be used simultaneously.

Notice:

To avoid extra compilation warnings, do not put semicolon after generic event declaration:

#include <dpl/generic_event.h>

DECLARE_GENERIC_EVENT_0(SampleEvent);

DECLARE_GENERIC_EVENT_0(SampleEvent)

To access event fields, there are provided methods:

GetArg0(), GetArg1(), GetArg2(), … GetArg{K-1}, K is a number of fields that are defined in generic event.

It is possible to set event field value with SetArgN methods, but they are rarely used.

MODELS

With basic event support template with are able to construct one of the most important concepts in

MVC – a model. One of many possible interpretations is that a model is that a model is a data container that

supports listening for its contents changes. Of course, with DPL’s basic templates it is possible to build other

interpretations of MVC model.

Example:

#include <dpl/generic_event.h>

#include <dpl/event_support.h>

#include <string>

DECLARE_GENERIC_EVENT(NameChangedEvent, std::string)

class User : public DPL::EventSupport<NameChangedEvent>

{

private:

 std::string m_name;

public:

 void GetName() const

 {

April 9, 2010

© Samsung Electronics Co., Confidential

11 Design patterns library

 return m_name;

 }

 void SetName(const std::string &name)

 {

 if (m_name == name)

 return;

 m_name = name;

 DPL::EventSupport<NameChangedEvent>::

 EmitEvent(NameChangedEvent(m_name, this));

 }

};

A model from example represents a User. It contains only one field – a name. With event support one can

listen for user’s name changes. After user name change an event is emitted: NameChangedEvent.

Models are usually used in threaded environment. To see how to synchronize reading and writing data to a

model, go to chapter about DPL’s support for synchronization. ReadWriteMutex is a recommended method.

CONTROLLERS

On top of basic event support, DPL provides support for controllers. In DPL controller is an object that

is capable of receiving events from any thread and executing them in selected thread. Target thread can be

selected at runtime and it can be both custom thread and main (EFL or GTK) thread.

Basic example use of controller will be discussed on an example.

Example:

#include <dpl/generic_event.h>

#include <dpl/controller.h>

#include <dpl/application.h>

DECLARE_GENERIC_EVENT_0(FirstEvent)

DECLARE_GENERIC_EVENT_0(SecondEvent)

class ControllerInThread : public DPL::Controller2<FirstEvent, SecondEvent>

{

protected:

 virtual void OnEventReceived(const FirstEvent &event) { }

 virtual void OnEventReceived(const SecondEvent &event) { }

};

DECLARE_GENERIC_EVENT_0(QuitEvent)

class MyApplication

 : public DPL::Application,

 private DPL::Controller1<QuitEvent>

{

 DPL::Thread m_thread;

 ControllerInThread m_controllerInThread;

 virtual void OnEventReceived(const QuitEvent &event)

 {

April 9, 2010

© Samsung Electronics Co., Confidential

12 Design patterns library

 Quit();

 }

public:

 MyApplication(int argc, char **argv) : Application(argc, argv)

 {

 Touch();

 m_controllerInThread.Touch();

 m_thread.Run();

 m_controllerInThread.SwitchToThread(&m_thread);

 m_controllerInThread.DPL::ControllerEventHandler<SecondEvent>::

 PostTimedEvent(SecondEvent());

 m_controllerInThread.DPL::ControllerEventHandler<FirstEvent>::

 PostEvent(FirstEvent());

 DPL::ControllerEventHandler<QuitEvent>::PostEvent(QuitEvent());

 }

 virtual ~MyApplication()

 {

 m_controllerInThread.SwitchToThread(NULL);

 m_thread.Quit();

 }

};

int main(int argc, char *argv[])

{

 MyApplication app(argc, argv);

 return app.Exec();

}

Creating and using DPL object which are subject of context inheritance will always be given context from

controller. See chapter about context inheritance for additional information.

CONTEXT INHERITANCE

Some of DPL objects are subject of context inheritance (all sockets, semaphores, named pipes and

other). For proper execution they need a working context (thread) to register for events or other low-level

signals. Upon receiving such event they start processing of it in selected thread. If an object inherits calling

context it means that is saves current thread identifier and uses it in later execution as an environment to

process asynchronous calls.

Note:

Carefully select which worker threads and which objects should be held together as a result of context

inheritance. Also remember if such object cannot be created in target thread, single listeners can be manually

switched to target thread (see advanced topics).

ADVANCED TOPICS

Advanced topics cover mainly implementation details. Standard library usages normally do not need

developer to get into advanced topics.

MANUAL SWITCH OF THREAD INHERITED BY EVENT SUPPORT

April 9, 2010

© Samsung Electronics Co., Confidential

13 Design patterns library

In some scenarios it is difficult to create an object with context inheritance or to add listener directly

in target thread. It is possible then to create object or add listener in any thread and then switch inherited

context to selected one. It can be easily done with:

Example:

#include <dpl/thread.h>

#include <dpl/event_support.h>

DPL::Thread otherThread;

someClass->DPL::EventSupport<SomeEvent>::AddListener(this);

someClass->DPL::EventSupport<SomeEvent>::

 SwitchAllListenersToThread(&otherThread);

If any events are already waiting to be delivered, they will be reposted to target thread (so called ping-pong

scenario).

GENERIC EVENT CALL

Generic event call is a template that creates functor that calls listener ‘receive’ method, passing

represented event. Do not use generic event calls directly, as they are internal and always subject to change.

INTERNAL REPRESENTATION OF EVENT

Internally, an event is represented as an abstract call. Its implementations are derived via template-

based genetic event call.

THREAD SUPPORT

DPL gives a wide support for event based threads.

THREAD

To provide multithreaded MVC environment, thread with event loop is needed. In DPL there is an

implementation of thread with event support. DPL Thread object is a wrapper for POSIX thread, but also gives a

possibility to send events and process them in thread.

A standard usage of DPL thread normally ends up with granting controllers a dedicated thread

environment.

Example:

#include <dpl/thread.h>

DPL::Thread *g_threadDedicated = NULL;

void GrantControllers()

{

 g_threadDedicated = new DPL::Thread();

 g_threadDedicated->Run();

April 9, 2010

© Samsung Electronics Co., Confidential

14 Design patterns library

 SomeControllerSingleton::Instance().SwitchToThread(g_threadDedicated);

}

void UnGrantCOntrollers()

{

 SomeControllerSingleton::Instance().SwitchToThread(NULL);

 g_threadDedicated->Quit();

 delete g_threadDedicated;

 g_threadDedicated = NULL;

}

Remember that there should be no controllers with attached thread when Thread object is destroyed. Always

detach threads from controllers upon exit.

ADVANCED TOPICS

WAITABLE HANDLE WATCH SUPPORT

Waitable handle watch support gives object an ability to provide mechanism to watch waitable

handles in selected execution context.

WAITABLE INPUT OUTPUT EXECUTION CONTEXT SUPPORT

Waitable input/output execution context support gives object an ability to automatically submit data

to abstract waitable output and automatically read data from abstract input.

ABSTRACT IO

DPL gives a great abstraction of IO layer. In practice it gives endless possibilities of inter-object

configurations and connections. Whole abstraction layer for IO is build on top of event based architecture and

supports context inheritance.

WAITABLE EVENT

Many of synchronization mechanisms are performed with use of WaitableEvent object. Basically,

waitable event object is a primitive, which has a property that it can be waited for it to be signaled. During

wait, current thread is blocked. It is similar to a semaphore, but more lightweight option.

Waitable event can be in one of two possible states: signaled and not signaled. After creation, by default it is

not signaled.

Inheritance diagram:

Waitable event usage:

April 9, 2010

© Samsung Electronics Co., Confidential

15 Design patterns library

Method or call Result

WaitableEvent::Reset Resets a signaled state of waitable event. All waiting

threads are blocked.

WaitableEvent::Signal Signals a waitable event. All waiting threads are

released

WaitForSingleHandle / WaitForMultipleHandles Blocking wait for single or multiple waitable

handles. Returns a list of signaled handle indexes.

Low level waitable handle is implementation dependant.

Typical usage, execution of asynchronous operation and waiting for a result is as follows:

Example:

DPL::WaitableEvent doneEvent;

ResultStruct result;

// Post event to some controller

CONTROLLER_POST_EVENT(SomeController,

 DoSomething(&doneEvent, &result));

DPL::WaitForSingleHandle(doneEvent.GetHandle());

To wait for multiple events at the same time, use WaitForMultipleHandles function.

Example:

DPL::WaitableEvent eventOne;

DPL::WaitableEvent eventTwo;

DPL::TcpSocket sock;

WaitableHandleList handles;

handles.push_back(eventOne.GetHandle());

handles.push_back(eventTwo.GetHandle());

handles.push_back(sock.GetReadHandle());

WaitableHandleIndexList indexes =

 DPL::WaitForSingleHandle(handles);

It is important to properly handle result of multiple handle waiting routine.

Remember:

More than one event may be signaled. Remember to handle all events that indexes were returned. If one fails

to do so, a starvation may occur.

To wait simultaneously for both read and write events from socket, a more advanced function must be used:

WaitFormMultipleHandles with list of type WaitableHandleListEx. For each element, an additional flag is given

whether we wait for readability of writability.

ABSTRACT INPUT/OUTPUT

April 9, 2010

© Samsung Electronics Co., Confidential

16 Design patterns library

On top of abstraction for IO, there is an abstract input/output object. It is a composition of abstract

input object and abstract output object. For dynamic data operation, in all buffer operations, BinaryQueue

object is used, which is a implementation of fast buffer operations.

Inheritance diagram:

Abstract input and output interfaces:

Interface Method Description

Abstract input BinaryQueueAutoPtr Read(

size_t size

)

Read a maximum size number of

bytes from abstract input.

Returns a BinaryQueue or NULL.

Empty queue is returned when

connection was gracefully closed

and NULL is returned when no

data is currently available.

Method, depending on

implementation, can additionally

throw ReadFailed exceptions and

other.

Abstract output size_t Write(

const BinaryQueue &buffer,

 size_t bufferSize

)

Write data from binary queue.

Write at most bufferSize bytes.

Return number of bytes actually

wrote or zero when connection is

blocked. Upon error, an exception

can be thrown depending on

implementation.

If abstract input returns null binary queue it means that there is no data waiting. There is no way to wait for

incoming data. Only simple timeout checks are possible. To make waiting possible, use abstract waitable input

interfaces. The same applies to abstract output and waiting for writability.

ABSTRACT WAITABLE INPUT/OUTPUT

Abstract waitable input output is an abstract interface that besides being an abstract input/output it

adds functionality of waiting for data to read or send.

Inheritance diagram:

April 9, 2010

© Samsung Electronics Co., Confidential

17 Design patterns library

Both interfaces additionally define waitable handle which can be used for waiting. To retrieve a waitable

handle call WaitableWriteHandle() / WaitableReadHandle().

ABSTRACT SOCKET

Abstract socket is an abstract socket for all socket based interfaces. Abstract socket support four base

events: connected event, accept event, read event and write event.

Inheritance diagram:

DPL sockets are asynchronous. They support a set of basic event:

Abstract socket event Meaning

AbstractSocketEvents::ConnectedEvent Socket connected to remote host

AbstractSocketEvents::AcceptEvent A remote connection is waiting to be accepted. In

accept handler one should call Accept() method to

accept connection. Unwanted connections may be

immediately closed by deleting new connection

object.

AbstractSocketEvents::ReadEvent An incoming data is waiting to be read. In read

handler one should call Read() method to read data.

AbstractSocketEvents::WriteEvent Socket is ready for writing more data. This event will

be emitted only once, after socket was blocked and

recovered from.

A basic set of methods are defined:

April 9, 2010

© Samsung Electronics Co., Confidential

18 Design patterns library

Abstract socket method Description

void Connect(const Address &address) Begin asynchronous connecting to remote host. After

connection is established a corresponding event is

emitted. Current context is inherited.

void Open() Open a socket for usage. Must be called first.

void Close() Close a socket and all connections that it represents.

void Bind(const Address &address) Bind an address to a socket

void Listen(int backlog) Begin listening on a socket. An address must be bound

before this method is called. Backlog is a suggested

size of waiting connection queue.

AbstractSocket *Accept() Accept a waiting socket. Usually called from accept

event handler. If no socket can be accepted it returns

NULL.

Address GetLocalAddress() Get an address of socket local endpoint

Address GetRemoteAddress() Get an address of socket remote endpoint

In all socket related mechanisms, an Address object is used to represent socket addresses.

ADDRESS

An address can represent a socket local or remote endpoint. It is a pair of string description and port

number. In UNIX sockets port number is ignores. In TCP sockets, address string is translated with a DNS

request.

Example:

#include <dpl/address.h>

DPL::Address address("www.somewhere.com", 8080);

unsigned short port = address.GetPort();

std::string name = address.GetAddress();

std::string fullName = address.ToString();

A convenience method ToString() returns an address in form address:port.

GENERIC SOCKET

April 9, 2010

© Samsung Electronics Co., Confidential

19 Design patterns library

All socket types are implemented via template based generic socket. To implement custom socket

type, it is convenient to use basic implementation provided by generic socket.

UNIX/TCP SOCKET

UNIX and TCP sockets are specific implementations for TCP and UNIX protocols. Both are derived from generic

socket implementation.

Following example is a simple HTTP client displaying default page to stdout.

Example:

#include <dpl/tcp_socket.h>

#include <dpl/abstract_socket.h>

#include <dpl/application.h>

#include <dpl/generic_event.h>

#include <dpl/binary_queue.h>

#include <dpl/scoped_array.h>

#include <dpl/log.h>

#include <string>

#include <cassert>

class MyApplication

 : public DPL::Application,

 private DPL::EventListener<

 DPL::AbstractSocketEvents::ConnectedEvent>,

 private DPL::EventListener<

 DPL::AbstractSocketEvents::ReadEvent>

{

private:

 DPL::TcpSocket m_socket;

 virtual void OnEventReceived(

 const DPL::AbstractSocketEvents::ConnectedEvent &event)

 {

 (void)event;

 LogInfo("Connected!");

 // Send request

 DPL::BinaryQueue data;

 const char *query =

 "GET /wiki/Main_Page HTTP/1.1\nHost: en.wikipedia.org\n\n";

 data.AppendCopy(query, strlen(query) + 1);

 m_socket.Write(data, data.Size());

 }

 virtual void OnEventReceived(

 const DPL::AbstractSocketEvents::ReadEvent &event)

 {

 (void)event;

 LogInfo("Read!");

 DPL::BinaryQueueAutoPtr data = m_socket.Read(100);

April 9, 2010

© Samsung Electronics Co., Confidential

20 Design patterns library

 assert(data.get() != NULL);

 if (data->Empty())

 {

 LogInfo("Connection closed!");

 m_socket.Close();

 // Done

 Quit();

 return;

 }

 // Show data

 DPL::ScopedArray<char> text(new char[data->Size()]);

 data->Flatten(text.Get(), data->Size());

 LogPedantic("READ: \n" <<

 std::string(text.Get(), text.Get() + data->Size()) <<

 "\n");

 }

public:

 MyApplication(int argc, char **argv)

 : Application(argc, argv, "tcpsock")

 {

 LogInfo("CTOR!");

 // Add listeners

 m_socket.DPL::EventSupport<

 DPL::AbstractSocketEvents::ConnectedEvent>::AddListener(this);

 m_socket.DPL::EventSupport<

 DPL::AbstractSocketEvents::ReadEvent>::AddListener(this);

 // Connect

 m_socket.Open();

 LogInfo("Connecting...");

 m_socket.Connect(DPL::Address("en.wikipedia.org", 80));

 }

 virtual ~MyApplication()

 {

 LogInfo("DTOR!");

 // Remove listeners

 m_socket.DPL::EventSupport<

 DPL::AbstractSocketEvents::ConnectedEvent>::

 RemoveListener(this);

 m_socket.DPL::EventSupport<

 DPL::AbstractSocketEvents::ReadEvent>::

 RemoveListener(this);

 }

};

April 9, 2010

© Samsung Electronics Co., Confidential

21 Design patterns library

int main(int argc, char *argv[])

{

 MyApplication app(argc, argv);

 return app.Exec();

}

To download a page, first a socket is opened with Open(). After that, connection phase is initialized with

Connect() method. If connected event handler was added, it is possible to check when connection is

established. After connection has been established, a buffer with http request is immediately sent to socket.

This can be easily done with constructing proper BinaryQueue object and passing it to socket Write method.

After page request, all incoming data is received through read event handler. Note that, if we ignore once read

data event, even if data is available, and no more data arrives, a read event will not be emitted again. In other

words, read event is only generated once for each portion of incoming bytes. If we receive empty binary queue

(not null) it means that connection was gracefully closed. Example application exits then.

SYNCHRONIZATION

Several synchronization mechanisms are provided in DPL to get all benefits from threaded

environment. The simplest is mutex, more specialized are recursive mutex and spinlock.

MUTEX

Basically DPL Mutex is a wrapper for pthread mutex, but it is managed. Most important feature is

scoped locking mechanism. It means that it is only possible to lock a mutex for selected scope, by using scoped

lock object. It is impossible to call Lock/Unlock routines directly. This is an example of RAII object.

Example:

#include <dpl/mutex.h>

DPL::Mutex g_mutex;

void Foo()

{

 DPL::Mutex::ScopedLock lock(&g_mutex);

 Bar();

}

In example above, function Bar is synchronized with g_mutex. A mutex is held during all function body.

RECURSIVE MUTEX

Recursive mutex concept is similar to standard mutex. It has one more feature – it can be locked multiple times

in the same thread and this will not cause deadlock. Internally recursive mutex holds a number of recursive

locks. As standard mutex has scoped lock object, similar scoped lock object is in recursive mutex.

Example:

#include <dpl/recursive_mutex.h>

DPL::RecursiveMutex g_mutex;

April 9, 2010

© Samsung Electronics Co., Confidential

22 Design patterns library

void Nested()

{

 DPL::RecursiveMutex::ScopedLock lock(&g_mutex);

 Bar();

}

void Foo()

{

 DPL::RecursiveMutex::ScopedLock lock(&g_mutex);

 Nested();

}

Note, that recursive mutex is more powerful than simple mutex. Recursive mutex has more complicated

implementation, and thus it should be used only where applicable.

SPIN LOCK

Spin lock is a very light synchronization mechanism. Locking/Unlocking is done with single assembler

instructions. The main disadvantage is that if scoped lock cannot be taken it is blocking current thread actively.

In practice it means that whole process is using maximum CPU resources. It is useful in situations, where

probability of collision is very low and scoped routine under lock is very short. Interface of spin lock is exactly

the same as simple Mutex.

Example:

#include <dpl/spin_lock.h>

DPL::SpinLock g_mutex;

void Foo()

{

 DPL::SpinLock::ScopedLock lock(&g_mutex);

 value = currentValue + deltaValue;

}

READ WRITE MUTEX

It is inefficient to lock whole model by simple mutex to read some data from it. After deeper analysis

of locking mechanism one can be deduce that only exclusive write lock is needed while many simultaneous

read can occur at the same time. To make profit from such observation, special locking mechanism is provided

– ReadWriteMutex. It is a mutex that have two different scoped locks. One is for exclusive write, and one for

simultaneous reads.

Example:

#include <dpl/read_write_mutex.h>

class SimpleModel

{

 mutable DPL::ReadWriteMutex m_mutex;

April 9, 2010

© Samsung Electronics Co., Confidential

23 Design patterns library

 std::string m_value;

public:

 std::string GetValue() const

 {

 DPL::ReadWriteMutex::ScopedReadLock lock(&m_mutex);

 return m_value;

 }

 void SetValue(const std::string &value)

 {

 DPL::ReadWriteMutex::ScopedWriteLock lock(&m_mutex);

 m_value = value;

 }

};

REMOTE PROCEDURE CALLS

DPL has a wide support for RPC calls. Similarly to abstract IO, RPC subsystem has got a wide

abstraction. It is built on top of abstract IO, and therefore can use various transports, such as: generic sockets

(TCP, UNIX) or pipes.

ABSTRACT RPC CONNECTION

Abstract RPC connection represents a connected pair of clients which can communicate with RPC calls.

Abstract RPC connection is delivered through connected event from RPC connector.

RPC connection allows invoking RPC calls. These are intended to behave similarly to normal C++

functions.

RPC CALL

All data posted through RPC connection is encoded as a RPC call. When posting an event, RPCFunction object is

created and arguments are pushed with template based AppendArg method.

Example:

#include <dpl/rpc_function.h>

enum SampleEnum { SampleEnum_Value };

DPL::RPCFunction func;

func.AppendArg(SampleEnum_Value);

func.AppendArg(12345);

func.AppendArg(std::string(“This is a test string”));

connection->AsyncCall(func);

April 9, 2010

© Samsung Electronics Co., Confidential

24 Design patterns library

To receive RPC asynchronous call, RPC function must be parsed. This can be easily done with ConsumeArg

which opposite to AppendArg method. Consecutive calls to ConsumeArg will return saved parameters

beginning from first one pushed (FILO).

Example:

#include <dpl/rpc_function.h>

enum SampleEnum { SampleEnum_Value };

DPL::RPCFunction func;

SampleEnum status;

func.ConsumeArg(status);

int value;

func.ConsumeArg(value);

std::string name;

func.ConsumeArg(name);

There is no way to check at runtime what types of arguments are placed in RPC call. Nevertheless pushed

arguments sizes are also saved and simple sizeof checks are always performed at runtime.

Remember:

Carefully add any pointers to buffer because of template nature of this AppendArg method. All arguments are

always copied by value, thus no deep copy on pointers is performed.

GENERIC SOCKET RPC CONNECTION

Generic socket RPC connection implements RPC connection with use of abstract socket.

UNIX/TCP SOCKET RPC CONNECTION

UNIX and TCP socket implementations for RPC connection are template derived implementations for

specific abstract sockets. When using corresponding RPC client/server implementation for Unix or Tcp sockets,

one can cast abstract RPC connection up to Unit or TCP connection. In practice it is usually not needed, because

level of abstraction is decreased.

ABSTRACT RPC CONNECTOR

To establish a RPC connection one must use a connector. A connector can be a server, client or some

special type. Connector inherits execution context to establish connection. Abstract RPC connector support one

event: ConnectionEstablisedEvent. The event must be handled. It contains Abstract RPC connection ID, which is

an ID given at the moment of executing opening phase for connector.

Note:

All connectors support simultaneous opening of many connections. All simultaneous connections are given

different ID, by which they can be distinguished in connection established event handler.

April 9, 2010

© Samsung Electronics Co., Confidential

25 Design patterns library

Along with connection ID, if connection succeeds, abstract RPC connection is also passed in event

handler. The pointer with connection must be managed and deleted later. It is usually convenient to use some

smart pointer, such as ScopedPtr or SharedPtr. After receiving new connection, it is usually desirable to

immediately connect all abstract connection event handlers.

Example:

#include <dpl/abstract_rpc_connection.h>

DPL::ScopedPtr<DPL::AbstractRPCConnection> m_rpcConnection;

void Test::OnEventReceived(const DPL::AbstractRPCConnectorEvents::

 ConnectionEstablishedEvent &event)

{

 // Save connection pointer

 m_rpcConnection.Reset(event.GetArg1());

 // Attach listener to new connection

 m_rpcConnection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::AsyncCallEvent>::

 AddListener(this);

 m_rpcConnection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::ConnectionClosedEvent>::

 AddListener(this);

 m_rpcConnection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::ConnectionBrokenEvent>::

 AddListener(this);

}

GENERIC SOCKET RPC CLIENT/SERVER

UNIX/TCP SOCKET RPC CLIENT/SERVER

RPC PING-PONG EXAMPLE

A simple ping-pong RPC example is provided for better understanding of RPC usage. RPC is based on

UNIX sockets, but can be easily adopted into TCP with just a few changes.

Example:

#include <dpl/unix_socket_rpc_client.h>

#include <dpl/unix_socket_rpc_server.h>

#include <dpl/unix_socket_rpc_connection.h>

#include <dpl/scoped_ptr.h>

#include <dpl/application.h>

#include <dpl/controller.h>

#include <dpl/thread.h>

April 9, 2010

© Samsung Electronics Co., Confidential

26 Design patterns library

#include <dpl/log.h>

#include <string>

static const char *RPC_NAME = "/tmp/unix_socket_rpc";

class MyThread

 : public DPL::Thread,

 private DPL::EventListener<

 DPL::AbstractRPCConnectionEvents::AsyncCallEvent>,

 private DPL::EventListener<

 DPL::AbstractRPCConnectionEvents::ConnectionClosedEvent>,

 private DPL::EventListener<

 DPL::AbstractRPCConnectionEvents::ConnectionBrokenEvent>,

 private DPL::EventListener<

 DPL::AbstractRPCConnectorEvents::ConnectionEstablishedEvent>

{

private:

 DPL::UnixSocketRPCClient m_rpcClient;

 DPL::ScopedPtr<DPL::AbstractRPCConnection> m_rpcConnection;

 virtual void OnEventReceived(

 const DPL::AbstractRPCConnectionEvents::AsyncCallEvent &event)

 {

 (void)event;

 LogInfo("CLIENT: AsyncCallEvent received");

 int value;

 event.GetArg0().ConsumeArg(value);

 LogInfo("CLIENT: Result from server: " << value);

 }

 virtual void OnEventReceived(

 const DPL::AbstractRPCConnectionEvents::ConnectionClosedEvent &event)

 {

 (void)event;

 LogInfo("CLIENT: ConnectionClosedEvent received");

 }

 virtual void OnEventReceived(

 const DPL::AbstractRPCConnectionEvents::ConnectionBrokenEvent &event)

 {

 (void)event;

 LogInfo("CLIENT: ConnectionBrokenEvent received");

 }

 virtual void OnEventReceived(

 const DPL::AbstractRPCConnectorEvents::

 ConnectionEstablishedEvent &event)

 {

 // Save connection pointer

 LogInfo("CLIENT: Acquiring new connection");

 m_rpcConnection.Reset(event.GetArg1());

April 9, 2010

© Samsung Electronics Co., Confidential

27 Design patterns library

 // Attach listener to new connection

 LogInfo("CLIENT: Attaching connection event listeners");

 m_rpcConnection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::AsyncCallEvent>::

 AddListener(this);

 m_rpcConnection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::ConnectionClosedEvent>::

 AddListener(this);

 m_rpcConnection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::ConnectionBrokenEvent>::

 AddListener(this);

 LogInfo("CLIENT: Connection established");

 // Emit RPC function call

 DPL::RPCFunction proc;

 proc.AppendArg((int)1111);

 LogInfo("CLIENT: Calling RPC function");

 m_rpcConnection->AsyncCall(proc);

 }

public:

 virtual ~MyThread()

 {

 // Always quit thread

 Quit();

 }

 virtual int ThreadEntry()

 {

 // Attach RPC listeners

 LogInfo("CLIENT: Attaching connection established event");

 m_rpcClient.DPL::EventSupport<

 DPL::AbstractRPCConnectorEvents::ConnectionEstablishedEvent>::

 AddListener(this);

 // Open connection to server

 LogInfo("CLIENT: Opening connection to RPC");

 m_rpcClient.Open(RPC_NAME);

 // Start message loop

 LogInfo("CLIENT: Starting thread event loop");

 int ret = Exec();

 // Detach RPC listeners

 if (m_rpcConnection.Get())

 {

 LogInfo("CLIENT: Detaching RPC connection events");

 m_rpcConnection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::AsyncCallEvent>::

 RemoveListener(this);

 m_rpcConnection->DPL::EventSupport<

April 9, 2010

© Samsung Electronics Co., Confidential

28 Design patterns library

 DPL::AbstractRPCConnectionEvents::ConnectionClosedEvent>::

 RemoveListener(this);

 m_rpcConnection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::ConnectionBrokenEvent>::

 RemoveListener(this);

 LogInfo("CLIENT: Resetting connection");

 m_rpcConnection.Reset();

 }

 // Detach RPC client listener

 LogInfo("CLIENT: Detaching connection established event");

 m_rpcClient.DPL::EventSupport<

 DPL::AbstractRPCConnectorEvents::ConnectionEstablishedEvent>::

 RemoveListener(this);

 // Close RPC

 LogInfo("CLIENT: Closing RPC client");

 m_rpcClient.CloseAll();

 // Done

 return ret;

 }

};

DECLARE_GENERIC_EVENT_0(QuitEvent)

DECLARE_GENERIC_EVENT_0(CloseThreadEvent)

class MyApplication

 : public DPL::Application,

 private DPL::Controller2<QuitEvent,

 CloseThreadEvent>,

 private DPL::EventListener<

 DPL::AbstractRPCConnectionEvents::AsyncCallEvent>,

 private DPL::EventListener<

 DPL::AbstractRPCConnectionEvents::ConnectionClosedEvent>,

 private DPL::EventListener<

 DPL::AbstractRPCConnectionEvents::ConnectionBrokenEvent>,

 private DPL::EventListener<

 DPL::AbstractRPCConnectorEvents::ConnectionEstablishedEvent>

{

private:

 DPL::UnixSocketRPCServer m_rpcServer;

 DPL::ScopedPtr<DPL::AbstractRPCConnection> m_rpcConnection;

 MyThread m_thread;

 // Quit application event occurred

 virtual void OnEventReceived(const QuitEvent &event)

 {

 (void)event;

 Quit();

 }

April 9, 2010

© Samsung Electronics Co., Confidential

29 Design patterns library

 virtual void OnEventReceived(const CloseThreadEvent &event)

 {

 (void)event;

 m_thread.Quit();

 }

 virtual void OnEventReceived(

 const DPL::AbstractRPCConnectionEvents::AsyncCallEvent &event)

 {

 (void)event;

 LogInfo("SERVER: AsyncCallEvent received");

 int value;

 event.GetArg0().ConsumeArg(value);

 LogInfo("SERVER: Result from client: " << value);

 }

 virtual void OnEventReceived(

 const DPL::AbstractRPCConnectionEvents::ConnectionClosedEvent &event)

 {

 (void)event;

 LogInfo("SERVER: ConnectionClosedEvent received");

 // Close RPC now

 LogInfo("SERVER: Closing RPC connection on event...");

 // Detach RPC connection listeners

 if (m_rpcConnection.Get())

 {

 LogInfo("SERVER: Detaching connection events");

 m_rpcConnection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::AsyncCallEvent>::

 RemoveListener(this);

 m_rpcConnection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::ConnectionClosedEvent>::

 RemoveListener(this);

 m_rpcConnection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::ConnectionBrokenEvent>::

 RemoveListener(this);

 m_rpcConnection.Reset();

 }

 LogInfo("SERVER: RPC connection closed");

 LogInfo("SERVER: Closing RPC on event...");

 m_rpcServer.CloseAll();

 LogInfo("SERVER: RPC closed");

 }

 virtual void OnEventReceived(

 const DPL::AbstractRPCConnectionEvents::ConnectionBrokenEvent &event)

April 9, 2010

© Samsung Electronics Co., Confidential

30 Design patterns library

 {

 (void)event;

 LogInfo("SERVER: ConnectionBrokenEvent received");

 }

 virtual void OnEventReceived(

 const DPL::AbstractRPCConnectorEvents::

 ConnectionEstablishedEvent &event)

 {

 // Save connection pointer

 LogInfo("SERVER: Acquiring RPC connection");

 m_rpcConnection.Reset(event.GetArg1());

 // Attach event listeners

 LogInfo("SERVER: Attaching connection listeners");

 m_rpcConnection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::AsyncCallEvent>::

 AddListener(this);

 m_rpcConnection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::ConnectionClosedEvent>::

 AddListener(this);

 m_rpcConnection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::ConnectionBrokenEvent>::

 AddListener(this);

 LogInfo("SERVER: Connection established");

 // Emit RPC function call

 DPL::RPCFunction proc;

 proc.AppendArg((int)2222);

 LogInfo("SERVER: Calling RPC function");

 m_rpcConnection->AsyncCall(proc);

 }

public:

 MyApplication(int argc, char **argv)

 : Application(argc, argv, "rpc")

 {

 // Attach RPC server listeners

 LogInfo("SERVER: Attaching connection established event");

 m_rpcServer.DPL::EventSupport<

 DPL::AbstractRPCConnectorEvents::ConnectionEstablishedEvent>::

 AddListener(this);

 // Self touch

 LogInfo("SERVER: Touching controller");

 Touch();

 // Open RPC server

 LogInfo("SERVER: Opening server RPC");

 m_rpcServer.Open(RPC_NAME);

 // Run RPC client in thread

April 9, 2010

© Samsung Electronics Co., Confidential

31 Design patterns library

 LogInfo("SERVER: Starting RPC client thread");

 m_thread.Run();

 // Quit application automatically in few seconds

 LogInfo("SERVER: Sending control timed events");

 DPL::ControllerEventHandler<CloseThreadEvent>::

 PostTimedEvent(CloseThreadEvent(), 2);

 DPL::ControllerEventHandler<QuitEvent>::

 PostTimedEvent(QuitEvent(), 3);

 }

 virtual ~MyApplication()

 {

 // Quit thread

 LogInfo("SERVER: Quitting thread");

 m_thread.Quit();

 // Close RPC server

 LogInfo("SERVER: Closing RPC server");

 m_rpcServer.CloseAll();

 // Detach RPC server listener

 m_rpcServer.DPL::EventSupport<

 DPL::AbstractRPCConnectorEvents::ConnectionEstablishedEvent>::

 RemoveListener(this);

 }

};

int main(int argc, char *argv[])

{

 LogInfo("Starting");

 MyApplication app(argc, argv);

 return app.Exec();

}

In example code comments are provided to each source fragment. Reader is encouraged to go through code

for better understanding of RPC mechanism.

LOGGING SYSTEM

DPL unifies various logging systems. By default DLOG subsystem is used. This can be changed by

attaching custom log provider. Logging system uses stream based message construction, thus making logging

very easy and convenient.

Example:

#include <dpl/log.h>

int number;

std::string msg1;

const char *msg2;

LogInfo(“Testing: “ << msg1 << “ and “ << number << “ other “ << msg2);

April 9, 2010

© Samsung Electronics Co., Confidential

32 Design patterns library

LogWarning(“Computations may be inaccurate”);

LogDebug(“Current height is: “ << height);

LogError(“Division by zero occurred!”);

In DPL there are implemented default log providers. The first one – DLOG log provider uses DLOG subsystem to

log messages, and second one – old style that uses plain printf based logging system.

There are four log categories:

 Info – used to inform about general routines that are taking place

 Debug – detailed information about parameters of routines taking place and other optional

information

 Warning – messages that inform about a recoverable problems

 Error – messages about failures

To attach new log provider AbstractLogProvider must be implemented and attached with AddProvider() from

LogSystem. See example above.

Example:

#include <dpl/log.h>

class MyLogProvider

{

public:

 virtual void Debug(const char *message, const char *fileName,

 int line, const char *function)

 {

 std::cout << “Got debug message: “ << message << std::endl;

 }

 virtual void Info(const char *message, const char *fileName,

 int line, const char *function) {}

 virtual void Warning(const char *message, const char *fileName,

 int line, const char *function) {}

 virtual void Error(const char *message, const char *fileName,

 int line, const char *function) {}

 virtual void Pedantic(const char *message, const char *fileName,

 int line, const char *function) {}

};

LogSystemSingleton::Instance().AddProvider(new MyLogProvider());

Note that upon adding new log provider responsibility for its deletion is transferred to LogSystem singleton.

Pedantic log category is used internally by DPL and is not intended to use outside DPL. Pedantic logs are

extremely verbose and are used for debugging DPL or hard debugging application using DPL. To see pedantic

log output provide custom log provider with implementation of Pedantic method or use old style log provider

and set proper environment variables.

DLOG PROVIDER

DLOG log provider directly passes all log messages to DLOG library. Note that DLOG library log

categories slightly differ from DPL log categories. They are translated according to DLOG translation guide.

April 9, 2010

© Samsung Electronics Co., Confidential

33 Design patterns library

Generally, DLOG log provider performance is lower than old style log provider. The reason of that is that DLOG

log provider uses DLOG and which uses interprocess communication via unix sockets. So every message must

first be transferred through unix socket before returning from logging routine. When process is overloaded this

can decrease logging performance.

OLD STYLE PROVIDER

Old style log provider is fast printf based log provider. By default it is disabled. Following environment

macros can be defined to enable old style log provider and along with that disable default DLOG log provider.

Environment variable Action Settings

DPL_USE_OLD_STYLE_LOGS Enable old style log provider

instead of DLOG log provider. This

does not enable pedantic logs.

Default: undefined

Enable: set to 1

DPL_USE_OLD_STYLE_PEDANTIC_LOGS Enable pedantic logs display. Note

that DPL_USE_OLD_STYLE_LOGS

must be also enabled to see logs.

Default: undefined

Enable: set to 1

DPL_USE_OLD_STYLE_LOGS_MASK Set visible log categories. Does not

include pedantic logs.

Default: undefined

Enable: set to ABCD where

A, B, C, D are 0 or 1 and

they correspond to Info,

Debug, Warning, Error

categories. Example: 1010

is: Info=on, Debug=off,

Warning=on, Error = off

To disable a previously set feature undefined its environment variable or set it to zero.

Note that it is also possible to have both DLOG and old style log provider enabled at the same time. By default

DLOG log provider is added. You should not define any old style control variables, but attach in application

code new old style log provider as follows:

Example:

#include <dpl/log.h>

#include <dpl/old_style_log_provider.h>

int main(int argc, char *argv[])

{

 DPL::LogSystemSingleton::Instance().AddProvider(

 new DPL::OldStyleLogProvider());

 […]

}

There can be attached any number of log providers to log system. No particular order should be assumed

according to calls to them during logging a message.

April 9, 2010

© Samsung Electronics Co., Confidential

34 Design patterns library

EXCEPTION SYSTEM

In DPL we can use rich exception system that is an extension to standard C++ exception system. Not

only exception type is known after exception catch, but also origin of exception and full exception stack. This is

very useful after accidental exception in application. DPL also provider unhandled exception handlers to ensure

that exceptions are not leaking out of application causing abnormal exits.

DPL has its own exception hierarchy. It is parallel to object hierarchy. By convention, all object

exceptions are defined as class elements of namespace Exception in object. See example below.

Example:

namespace DPL

{

class SqlConnection

{

public:

 class Exception

 {

 public:

 DECLARE_EXCEPTION_TYPE(DPL::Exception, Base)

 DECLARE_EXCEPTION_TYPE(Base, SyntaxError)

 DECLARE_EXCEPTION_TYPE(Base, ConnectionBroken)

 DECLARE_EXCEPTION_TYPE(Base, InternalError)

 DECLARE_EXCEPTION_TYPE(Base, InvalidColumn)

 };

};

} // namespace DPL

All exceptions generated by a DPL object are derived from Base exception. Thus we can catch all specific object

exceptions only.

To throw or catch DPL exceptions there are provided special macros:

Macro Rule Example

Try Begin try block. Exact the same as

standard try keyword.

Try

{

}

Catch Catch an exception. It can be handled,

ignored or rethrown in exception stack.

{

}

Catch(DPL::SqlConnection::Exception)

{

}

Throw Throw an exception and break exception

stack. Do not use in catch block (use

ReThrow instead).

{

 Throw(MyException);

}

April 9, 2010

© Samsung Electronics Co., Confidential

35 Design patterns library

ThrowMsg Throw an exception with message and

break exception stack. Do not use in catch

block (use ReThrow instead)

{

 ThrowMsg(MyException,”sample_error”);

}

ReThrow Throw an exception in catch block. Cannot

be used outside catch block.

Catch(Something)

{

 ReThrow(EnclosingError);

}

ReThrowMsg Throw an exception with message in catch

block. Cannot be used outside catch block.

Catch(Something)

{

 ReThrowMsg(EnclosingError,“bad”);

}

CRYPTOGRAPHY

Cryptography module provided by DPL is a wrapper for OpenSSL routines giving easy access to hashing

functions and cryptography algorithms.

HASH FUNCTIONS

A very easy wrapper for hashing functions is provided in DPL. There are more than 10 different

hashing functions implemented in DPL (MD2, MD4, MD5, SHA, SHA1, DSS, DSS1, ECDSA, SHA224, SHA256,

SHA384 and SHA512).

Example:

#include <dpl/crypto_hash.h>

DPL::Crypto::Hash::MD5 crypto;

crypto.Append(“sample string”);

crypto.Finish();

std::string hash = crypto.ToString();

Using hash algorithm is a simple as declaring a hashing function, appending some data with Append() and

finally calling Finish() to calculate hash. Resulting string or raw data buffer can be obtained with ToString()

method or GetHash().

ALGORITHMS

In DPL there is provided a wrapper for blowfish encrypt/decrypt routine. Current interface works on

ISource and ITarget interface. It will be deprecated and replaced by AbstratInput/AbstractOutput in future

versions of DPL. One of possible usages of DPL cryptography algorithms is encrypting a file.

Example:

April 9, 2010

© Samsung Electronics Co., Confidential

36 Design patterns library

#include <dpl/crypto_hash.h>

DPL::Crypto::Algorithm::FileSource source(“input.txt”);

DPL::Crypto::Algorithm::FileTarget target(“output.dat”);

DPL::Crypto::Hash key;

DPL::Crypto::Hash iv;

key.Append(“password”);

key.Finish();

iv.Append(“secret”);

iv.Finish();

DPL::Crypto::Algorithm::Blowfish algorithm(key.GetHash(), iv.GetHash());

Algorithm.Perform(&source, &target);

UTILITIES

DPL contains a lot of useful utilities that help developing robust and well designed MVC applications.

To get familiar with each of them, the simplest way is start to use them.

ATOMIC

Atomic object is a low level primitive to do atomic reference counting. If guarantees that increment

and decrement operations will be atomic. Increment operator returns no value. A boolean value indicating

being still positive is returned after calling decrement operator. Internal value representation can be obtained

with type definition ValueType from DPL::Atomic.

Atomic counters are used by shared pointer and shared array in DPL.

Example:

#include <dpl/singleton.h>

void Detach()

{

 […]

 if (!--m_sharedNode->ref)

 {

 delete m_sharedNode->ptr;

 delete m_sharedNode;

 }

 […]

}

SQL CONNECTION

April 9, 2010

© Samsung Electronics Co., Confidential

37 Design patterns library

SQL Connection is a convenient wrapper for SQL connection. It is fully designed to cooperate with DPL

internals. DPL adds support for Lucene indexer provided by platform. To enable it, select proper flag in

constructor.

Note:

DPL SQL connection object does not implement any synchronization mechanism. All concurrent accesses to

SQL will be directly passed to underlying SQL low-level objects. If any problems are to arise, they will be

translated as a proper exception. Carefully use SQL connection object across different threads or provide some

synchronization mechanism.

There are two types of command that are executed. One that returns no data and second that return

DataCommand object which can be used to iterate through returned table. SQL parent object should not be

deleted before all child DataCommand object are deleted. This will be checked by simple internal counting

mechanism.

EXECUTING SIMPLE COMMANDS

To execute a simple SQL command without getting resulting table call:

Example:

#include <dpl/sql_connection.h>

DPL::SqlConnection connection;

void DeleteTables()

{

 connection.ExecCommand(“DROP TABLE cars”);

 connection.ExecCommand(“DROP TABLE shops”);

}

If any errors during execution of ExecCommand may arise, proper SqlConnection::Exception will be thrown.

EXECUTING COMMAND WITH RESULT

To execute full SQL command and retrieve result one must call PrepareDataCommand. Method

returns an auto pointer, which can be saved and treated as a precompiled data command (prepared

statement). Be aware to delete all precompiled data command before deleting SqlConnection object. Note that

auto pointer has move policy, and DataCommand itself is noncopyable.

Example:

#include <dpl/sql_connection.h>

#include <string>

#include <list>

DPL::SqlConnection connection;

DPL::SqlConnection::DataCommandAutoPtr command;

std::list<std:string> GetUserNameListForID(int id)

{

 std::list<std::string> result;

 if (!command.get())

April 9, 2010

© Samsung Electronics Co., Confidential

38 Design patterns library

 command = connection.PrepareDataCommand(

 "SELECT name FROM users WHERE id=?");

 else

 command->Reset();

 command->BindInteger(1, id);

 while (command->Step())

 result.push_back(command->GetColumnString(0));

 return result;

}

If any errors during execution of PrepareDataCommand may arise, proper SqlConnection::Exception will be

thrown.

Once precompiled command has been executed it must be Reset() before next usage. Step() method reads

consecutive table row from result. If Step() returns false it indicates that no more rows are available.

There are several binding methods for statement. These are at least: BindInteger(). BindString().

To retrieve column values from current row use methods: GetColumnString(), GetColumnInteger(),

GetColumnDouble().

SINGLETON

Singleton is one of most standard design pattern. We should use singleton where we have to ensure

that only one instance of class exists. Examples include sound manager, core logic, IO controller, etc.

DPL’s singleton implementation is a lazy singleton. It means that instance itself will not be allocated until first

usage of it.

Example:

#include <dpl/singleton.h>

classGlobalClass

{

public:

 GlobalClass()

 {

 }

};

typedef Singleton<GlobalClass> GlobalClassSingleton;

To get instance of singleton, we call static method Instance. Instance method return reference to allocated

instance:

Example:

GlobalClassSingleton::Instance().Foo();

To achieve best results, additionally we can make GlobalClass constructor private and give friend to the

singleton class of GlobalClass.

April 9, 2010

© Samsung Electronics Co., Confidential

39 Design patterns library

NONCOPYABLE

Noncopyable property is used to ensure that structure/class will never be copied. To make class or

structure noncopyable privately derive from Noncopyable class.

Example:

#include <dpl/noncopyable.h>

class Collection : private Noncopyable

{

 std::list<int> integers;

 std::list<int>::const_iterator current;

public:

 Collection()

 : current(integers.begin())

 {

 }

};

RAII

RAII (Resource Acquisition Is Initialization) is a helper container that automatically manages resources

and deletes it upon scope exit. There are several types of resources that can be automatically managed:
memory allocated with new, memory allocated with new [], memory allocated with malloc or calloc and file
descriptor.

Most popular is usage RAII objects in environment, where exceptions can occur. This is because, code

automatically deletes all resources. Code is therefore cleaner and shorter.

Example:

#include <dpl/scoped_array.h>

ScopedArray<char> buffer(new char[data_size]);

if(read_input_data(buffer.Get(), data_size) == -1)

 throw ErrorReadInputData();

ScopedArray<char> parsed(new char[data_size]);

if(parse_buffer(buffer.Get(), parsed.Get()) == -1)

 throw ErrorParse();

SCOPED POINTER

Scoped pointer is one of simplest and most lightweight RAII mechanism. Use scoped pointer in all

places, where fir some reason dynamic allocation of memory is needed and which needs to be deleted after

leaving scope.

Example:

http://pl.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

April 9, 2010

© Samsung Electronics Co., Confidential

40 Design patterns library

#include <dpl/scoped_ptr.h>

for (file = files.begin(); file != files.end(); ++file)

{

 // for some reason we cannot make it on stack

 ScopedPtr<FileCleaner> cleaner(new FileCleaner());

 cleaner->Execute();

}

Do not use scoped pointer object for arrays. For arrays use scoped array object. Scoped pointer object is

noncopyable.

SCOPED ARRAY

Scoped array is very similar mechanism to scoped pointer. The only difference is that it is intended to

be used with arrays. It uses delete [] operator instead of simple delete.

Example:

#include <dpl/scoped_ptr.h>

for (file = files.begin(); file != files.end(); ++file)

{

 // Assume that for some reason we cannot make it on stack

 ScopedArray<wchar_t> message(new wchar_t[file.size() + 1]);

 ConvertString(message.Get(), file.c_str());

 FooWide(message.Get());

}

Scoped array object is intended to be used with arrays only. Do not use for plain pointers. Scoped array object

is noncopyable.

SHARED POINTER

Shared pointer is more advanced smart pointer that scoped pointer (and thus heavier mechanism). It

uses atomic reference counting. It can be used in all places where object ownership is not clean or it is

dynamically transferred between threads. After initialization of shared pointer with an object, it has reference

count of one. Each copy of shared pointer, pointing the same object, increases atomically reference counter by

one. Removing each referencing pointer decreases reference counter by one. If it drops to zero, pointer object

is deleted.

Note:

Carefully design shared pointer dependencies. If circular dependencies are present, they can make deletion of

pointer objects impossible. Use plain pointers or manual Reset where circular dependencies are present to

break cycles.

Standard scenarios, where shared pointers are desired are event parameters. If event parameters are big

structures or array, it is ineffective to copy it contents many times. Instead one can use shared pointer. Second

scenario can be a return of newly created object from some factory. If someone forgets to save return value,

and no smart pointer is used, it will result in memory leak. When shared pointer is used it will be successfully

deleted, even if return value is not saved.

April 9, 2010

© Samsung Electronics Co., Confidential

41 Design patterns library

Example:

#include <dpl/generic_event.h>

#include <dpl/shared_ptr.h>

class SomeClass {};

typedef DPL::SharedPtr<SomeClass> SomeClassPtr;

DECLARE_GENERIC_EVENT_1(SomeEvent, SomeClassPtr)

[…]

CONTROLLER_POST_EVENT(SomeController,

 SomeEvent(SomeClassPtr(new SomeClass(“test”, 123))));

Example:

#include <dpl/shared_ptr.h>

class Door {};

typedef DPL::SharePtr<Door> DoorPtr;

class CarPartGenerator

{

public:

 DoorPtr CreateDoor(int height)

 {

 Return DoorPtr(new Door(height));

 }

};

Shared pointer is intended to be used only with plain pointers. Do not use this class with pointers to arrays. For

arrays use shared array object.

SHARED ARRAY

Shared array object is similar to share pointer object. The only difference is that it is intended to be

used with arrays. Operator delete [] is used. Do not use this object with plain pointers.

SCOPED FREE

Scoped free is similar to scoped pointer. The only difference is that it uses free instead of delete

operator.

SCOPED CLOSE

Scoped close is a convenience object to call system close after scoped block is being left. This is useful

when a file have to be opened and some operations done. During these operations an exception may be

thrown. Scoped close ensures that in exception scenario it is properly closed (and thus all memory buffers are

flushed to disk).

Example:

April 9, 2010

© Samsung Electronics Co., Confidential

42 Design patterns library

#include <dpl/scoped_close.h>

char ReadByteFromFile(const char *filename)

{

 DPL::ScopedClose fd(open(filename, O_RDONLY));

 char byte;

 if (read(fd.Get(), &byte, sizeof(byte) <= 0)

 Throw(ReadError);

 return byte;

}

Scoped close object can also be used with all those system objects that upon destroy need to call close system

call. They must also assume that -1 is an invalid descriptor that should be not closed.

SINGLE INSTANCE

Single instance is used to ensure that only one instance of application is running.

Example:

#include <dpl/single_instance.h>

SingleInstance g_singleInstance;

const char *SINGLE_INSTANCE_GUID =

 "327b0894-1234-6789-b15e-5c7d16514792";

if (g_singleInstance.TryLock(SINGLE_INSTANCE_GUID) == false)

{

 LogError("Already running!");

 return -1;

}

[…]

g_singleInstance.Release();

Single instance mechanism is a lightweight solution for application instance locking mechanism. Use this

mechanism for locking applications instead of asynchronous semaphores.

Global application instance identifier should be carefully selected to be unique. GUID or similar naming is

advised.

TASK / TASKLIST

Task and task list are patterns that make easy implementation of state machines. [***]

BINARY QUEUE

Binary queue is a very fast implementation of protocol accumulation buffer. It has two main purposes:

adding some binary data to the end of buffer and consuming (removing) some data from its beginning.

April 9, 2010

© Samsung Electronics Co., Confidential

43 Design patterns library

Implementation is based on linked list of data bucket. Each bucked can have different allocation scheme,

especially custom data buffer. Methods provided by BinaryQueue are discussed in following table.

Method Purpose Assumptions

AppendCopy(

const void *buffer,

size_t size

)

Appends a copy of memory from

given pointer and given size

Pointer is not null, size can be

zero

AppendUnmanaged(

const void *buffer,

 size_t bufferSize,

 BufferDeleter deleter =

&BinaryQueue::BufferDeleterFree,

void *userParam = NULL

)

Append an unmanaged portion of

memory as a new bucket.

Memory is deleted upon need

with given Deleter. By default

delete with free() is used. Do not

free or reallocate unmanaged

memory once appended to

binary queue. Binary queue takes

ownership of memory given.

Pointer is not null, size can be

zero, deleter should delete all

memory pointed by given

pointer

AppendCopyFrom(

const BinaryQueue &other

)

Append a copy of data contained

in another binary queue. A whole

binary buffer is copied and

appended to the end of target

buffer. Implementation is

efficient (moving pointers).

-

AppendMoveFrom(

BinaryQueue &other

)

Move all data from another

binary queue to target binary

queue. Implementation is

efficient (moving pointers).

-

AppendCopyTo(

BinaryQueue &other

)

This is a convenience method

similar to AppendCopyFrom, but

in another direction.

-

AppendMoveTo(

BinaryQueue &other

)

This is a convenience method

similar to AppenndMoveFrom,

but in another direction.

-

April 9, 2010

© Samsung Electronics Co., Confidential

44 Design patterns library

Size() Return a total size of all data in

bytes

-

Clear() Delete all stored data in binary

buffer

-

Empty() Checks if binary queue is empty -

Consume(size_t size) Remove bytes from the beginning

of binary queue (consuming data

stream)

Size must be less or equal to

binary queue size. A size of 0

bytes is a valid value.

Flatten(

void *buffer,

 size_t bufferSize

)

Copy bytes from binary queue to

a raw data buffer. This

automatically flattens bucket

structure on fly.

Flattened byte count must be

less or equal to binary queue

size. Buffer cannot be null. A

size of 0 bytes is a valid value.

FlattenConsume(

void *buffer,

 size_t bufferSize

)

This is a convenience method

which is a sequence of flattening

and consuming the same number

of bytes from binary queue

Flattened byte count must be

less or equal to binary queue

size. Buffer cannot be null. A

size of 0 bytes is a valid value.

VisitBuckets(

BucketVisitor *visitor

)

Visit internal bucket

representation. This is a way of

interpreting internal binary

queue data without flattening.

Used when even flatten

operation is too costly.

Visitor cannot be null

ASYNCHRONOUS SEMAPHORE

Asynchronous semaphore is used for inter-process synchronization. Asynchronous semaphore can be

used to create non-blocking mechanism for locking global named semaphores.

Only one type of event is generated from asynchronous semaphore. This is AsyncLocked event which is

generated after lock has been taken. Be aware that this mechanism is heavier than single instance mechanism.

For creating single instance exclusion for applications use SingleInstance, not AsynchronousSemaphphore.

Semaphore mechanism is usually used for many consecutive locking accesses to some system resources (like a

database file, configuration files or other).

April 9, 2010

© Samsung Electronics Co., Confidential

45 Design patterns library

EVENT DELIVERY SYSTEM

For interprocess communication DPL provides a convenient mechanism of event delivery system.

[***]

SAMPLE APPLICATIONS

A few real life sample applications will be provided to better see how DPL works. All samples and

much more are provided in examples subdirectory in DPL repository. Reader is also encourages to look through

unit-tests, because those more complicated usually have interesting DPL usages.

RPC METRONOME APPLICATION

An easy example will be a server which can be used as a metronome. The main component is a RPC

sever. To connect to server client application can be used. After connection is established, server starts to send

synchronization messages in exact 1 second intervals.

DPL classes that are used: TcpSocketRPCServer, TcpSocketRPCClient, TcpSocketRPCConnection, Controller.

Example:

//

// Metronome server

//

#include <dpl/tcp_socket_rpc_server.h>

#include <dpl/tcp_socket_rpc_connection.h>

#include <dpl/controller.h>

#include <dpl/application.h>

#include <dpl/log.h>

#include <algorithm>

#include <list>

#include <cassert>

// Metronome signal event

DECLARE_GENERIC_EVENT_0(SignalEvent)

// Heart beat interval

const double HEART_BEAT_INTERVAL = 1.0; // seconds

class MetronomeServerApplication

 : public DPL::Application,

 private DPL::Controller1<SignalEvent>,

 private DPL::EventListener<

 DPL::AbstractRPCConnectionEvents::ConnectionClosedEvent>,

 private DPL::EventListener<

 DPL::AbstractRPCConnectionEvents::ConnectionBrokenEvent>,

 private DPL::EventListener<

 DPL::AbstractRPCConnectorEvents::ConnectionEstablishedEvent>

{

private:

 DPL::TcpSocketRPCServer m_rpcServer;

 typedef std::list<DPL::AbstractRPCConnection *> ConnectionList;

 ConnectionList m_connections;

 // Matronome signal received

 virtual void OnEventReceived(const SignalEvent &event)

April 9, 2010

© Samsung Electronics Co., Confidential

46 Design patterns library

 {

 (void)event;

 // Signal all conection about heart beat

 DPL::RPCFunction proc;

 proc.AppendArg((int)0);

 for (ConnectionList::iterator it = m_connections.begin();

 it != m_connections.end(); ++it)

 (*it)->AsyncCall(proc);

 // Continue to emot heart beats

 DPL::ControllerEventHandler<SignalEvent>::

 PostTimedEvent(SignalEvent(), HEART_BEAT_INTERVAL);

 }

 void RemoveConnection(DPL::AbstractRPCConnection *connection)

 {

 // Find connection

 ConnectionList::iterator it = std::find(m_connections.begin(),

 m_connections.end(), connection);

 assert(it != m_connections.end());

 // Erase connection

 m_connections.erase(it);

 // Detach RPC connection listeners

 connection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::ConnectionClosedEvent>::

 RemoveListener(this);

 connection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::ConnectionBrokenEvent>::

 RemoveListener(this);

 // Delete connection

 delete connection;

 }

 void AddConnection(DPL::AbstractRPCConnection *connection)

 {

 // Add connection

 m_connections.push_back(connection);

 // Attach event listeners

 connection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::ConnectionClosedEvent>::

 AddListener(this);

 connection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::ConnectionBrokenEvent>::

 AddListener(this);

 }

 virtual void OnEventReceived(const DPL::AbstractRPCConnectionEvents::

 ConnectionClosedEvent &event)

 {

 (void)event;

 LogInfo("Connection closed");

 // Remove connection from list

April 9, 2010

© Samsung Electronics Co., Confidential

47 Design patterns library

 RemoveConnection(

 static_cast<DPL::AbstractRPCConnection *>(event.GetSender()));

 }

 virtual void OnEventReceived(const DPL::AbstractRPCConnectionEvents::

 ConnectionBrokenEvent &event)

 {

 (void)event;

 LogInfo("Connection broken");

 // Remove connection from list

 RemoveConnection(

 static_cast<DPL::AbstractRPCConnection *>(event.GetSender()));

 }

 virtual void OnEventReceived(const DPL::AbstractRPCConnectorEvents::

 ConnectionEstablishedEvent &event)

 {

 // Save connection pointer

 LogInfo("New connection");

 // Add nre connection to list

 AddConnection(event.GetArg1());

 }

public:

 MetronomeServerApplication(int argc, char **argv)

 : Application(argc, argv, "rpc")

 {

 // Attach RPC server listeners

 m_rpcServer.DPL::EventSupport<

 DPL::AbstractRPCConnectorEvents::ConnectionEstablishedEvent>::

 AddListener(this);

 // Inherit calling context

 Touch();

 // Open RPC server

 m_rpcServer.Open(12345);

 // Start heart beat

 DPL::ControllerEventHandler<SignalEvent>::

 PostTimedEvent(SignalEvent(), HEART_BEAT_INTERVAL);

 // Started

 LogInfo("Metronome server started");

 }

 virtual ~MetronomeServerApplication()

 {

 // Delete all RPC connections

 while (!m_connections.empty())

 RemoveConnection(m_connections.front());

 // Close RPC server

 m_rpcServer.CloseAll();

 // Detach RPC server listener

April 9, 2010

© Samsung Electronics Co., Confidential

48 Design patterns library

 m_rpcServer.DPL::EventSupport<

 DPL::AbstractRPCConnectorEvents::ConnectionEstablishedEvent>::

 RemoveListener(this);

 }

};

int main(int argc, char *argv[])

{

 return MetronomeServerApplication(argc, argv).Exec();

}

Example:

//

// Metronome client

//

#include <dpl/tcp_socket_rpc_client.h>

#include <dpl/tcp_socket_rpc_connection.h>

#include <dpl/application.h>

#include <dpl/log.h>

class MetronomeClientApplication

 : public DPL::Application,

 private DPL::EventListener<

 DPL::AbstractRPCConnectionEvents::AsyncCallEvent>,

 private DPL::EventListener<

 DPL::AbstractRPCConnectionEvents::ConnectionClosedEvent>,

 private DPL::EventListener<

 DPL::AbstractRPCConnectionEvents::ConnectionBrokenEvent>,

 private DPL::EventListener<

 DPL::AbstractRPCConnectorEvents::ConnectionEstablishedEvent>

{

private:

 DPL::TcpSocketRPCClient m_rpcClient;

 DPL::ScopedPtr<DPL::AbstractRPCConnection> m_rpcConnection;

 virtual void OnEventReceived(const DPL::AbstractRPCConnectionEvents::

 AsyncCallEvent &event)

 {

 (void)event;

 // Heart beat

 LogInfo("* Got metronome signal *");

 }

 virtual void OnEventReceived(const DPL::AbstractRPCConnectionEvents::

 ConnectionClosedEvent &event)

 {

 (void)event;

 LogInfo("Connection closed");

 // Must quit

 Quit();

 }

 virtual void OnEventReceived(const DPL::AbstractRPCConnectionEvents::

 ConnectionBrokenEvent &event)

 {

 (void)event;

April 9, 2010

© Samsung Electronics Co., Confidential

49 Design patterns library

 LogInfo("Connection broken");

 // Must quit

 Quit();

 }

 virtual void OnEventReceived(const DPL::AbstractRPCConnectorEvents::

 ConnectionEstablishedEvent &event)

 {

 // Save connection pointer

 LogInfo("Connected to metronome server");

 m_rpcConnection.Reset(event.GetArg1());

 // Attach event listeners

 m_rpcConnection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::AsyncCallEvent>::

 AddListener(this);

 m_rpcConnection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::ConnectionClosedEvent>::

 AddListener(this);

 m_rpcConnection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::ConnectionBrokenEvent>::

 AddListener(this);

 }

public:

 MetronomeClientApplication(int argc, char **argv)

 : Application(argc, argv, "rpc")

 {

 // Attach RPC server listeners

 m_rpcClient.DPL::EventSupport<

 DPL::AbstractRPCConnectorEvents::ConnectionEstablishedEvent>::

 AddListener(this);

 // Open RPC server

 m_rpcClient.Open("127.0.0.1", 12345);

 // Started

 LogInfo("Metronome client started");

 }

 virtual ~MetronomeClientApplication()

 {

 // Delete all RPC connections

 if (m_rpcConnection.Get())

 {

 m_rpcConnection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::AsyncCallEvent>::

 RemoveListener(this);

 m_rpcConnection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::ConnectionClosedEvent>::

 RemoveListener(this);

 m_rpcConnection->DPL::EventSupport<

 DPL::AbstractRPCConnectionEvents::ConnectionBrokenEvent>::

 RemoveListener(this);

 m_rpcConnection.Reset();

 }

 // Close RPC server

 m_rpcClient.CloseAll();

April 9, 2010

© Samsung Electronics Co., Confidential

50 Design patterns library

 // Detach RPC server listener

 m_rpcClient.DPL::EventSupport<

 DPL::AbstractRPCConnectorEvents::ConnectionEstablishedEvent>::

 RemoveListener(this);

 }

};

int main(int argc, char *argv[])

{

 return MetronomeClientApplication(argc, argv).Exec();

}

Description:

Application is divided into two parts: a server and a client. Both are based on DPL application class. In

server application, we server application class derivers from base application and additionally add support for

listening for RPC connection events and RPC connector event (connected event). It is also a controller. One of

possible simplest way of implementing exact metronome heart beats is to continuously send timed events to

itself. If we stop to send next heart beat event, all process will be stopped. Heart beats are initiated in server

application constructor by sending initial heart beat event.

Additionally, in server application constructor RPC server is initialized. Tcp RPC server (which can be replaced

for example by Unix TCP server) is a type of RPC connector. It means that it generates connection established

events. Such event contains new incoming connection (Abstract RPC connection). If desired, abstract RPC

connection can be casted to a proper implementation of RPC connection (Unix/Tcp RPC connection), but

usually it is not needed. Important note must be taken:

Note:

Always remember to attach connection established event handler. Incoming connections are

dynamically allocated and resulting pointer is passed to event listeners. If there are no such, the pointer will be

lost. Also remember to delete all stored abstract RPC connections (or use any of smart pointers).

When example server receives new connection, it attaches to all event supports from new connection. These

are: connection closed, connection broken and asynchronous call.

If connection closed or connection broken event is received, from event sender field, we extract which abstract

RPC connection was closed or broken. Then all event listeners are removed, stored connection removed and

finally object is deleted.

Asynchronous calls from client are simply ignored. They are not used in this example server.

If a heart beat event is generated and handled, all stored connections are enumerated, and for each of them, a

RPC call is executed.

Note that all these operations are in the same context – main application loop. There is no need to add any

synchronization mechanism for stored connections list.

Client application is even simpler. Similarly to RPC server, a RPC client is a type of RPC connector. It generated

connection established events, for which we should register a listener. To initiate a connection, Open() method

is used. Some example parameters are given. After connection is established, we store the only connection to

server, and register for all RPC connection events. Connection closed and connection broken event are handled

in a way that application simply quits. Asynchronous calls are interpreted here. These are heart beats from

server. After such is received, simple message is generated to screen.

April 9, 2010

© Samsung Electronics Co., Confidential

51 Design patterns library

SYNCHRONOUS EVENT CALLS

Implementing synchronous event calls, executed in dedicated controller thread. This kind of situation

can occur when a synchronous API is implemented on top of asynchronous API. This is a standard situation;

application core logic is usually asynchronous.

To effectively solve this kind of synchronization, WaitableEvent object can be used. Scenario is as follows: an

event with parameters for call, pointer to resulting structure and a pointer to a waitable event is posted to a

controller. Controller is working in context of dedicated thread. Upon receiving event, it processes it and sets

resulting structure pointed by pointer passed in event. After all operations are done, controller signals

WaitableEvent. From the other side, we post an event, and simply wait until waitable event is signaled.

Diagram:

Example:

#include <dpl/controller.h>

#include <dpl/generic_event.h>

#include <dpl/waitable_event.h>

DECLARE_GENERIC_EVENT_3(AsyncEvent, int, int *, WaitableEvent *)

void SynchronousAPICall(int parameter)

{

 WaitableEvent syncEvent;

 int result;

 int param = 23;

 CONTROLLER_POST_EVENT(FooController,

 AsyncEvent(param, &result, &syncEvent);

 DPL::WaitForSingleHandle(syncEvent.GetHandle());

 printf(“result is: %i\n”, result);

}

[…]

FooController::OnEventReceived(const AsyncEvent &event)

{

 int param = event.GetArg0();

 int *result = event.GetArg1();

 DPL::WaitableEvent *syncEvent = event.GetArg2();

 *result = param >> 1;

April 9, 2010

© Samsung Electronics Co., Confidential

52 Design patterns library

 syncEvent->Signal();

}

