From ca6fb27ea6415d038796eca33559eaa2305d5e78 Mon Sep 17 00:00:00 2001 From: Ernest Galbrun Date: Mon, 7 Jul 2014 09:49:57 +0200 Subject: [PATCH] removed some tabs --- modules/video/src/tvl1flow.cpp | 86 +++++++++++++++++++++--------------------- 1 file changed, 43 insertions(+), 43 deletions(-) diff --git a/modules/video/src/tvl1flow.cpp b/modules/video/src/tvl1flow.cpp index f251b95..8518cea 100644 --- a/modules/video/src/tvl1flow.cpp +++ b/modules/video/src/tvl1flow.cpp @@ -373,20 +373,20 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray CV_Assert( I0.type() == I1.type() ); CV_Assert( !useInitialFlow || (_flow.size() == I0.size() && _flow.type() == CV_32FC2) ); CV_Assert( nscales > 0 ); - bool use_gamma = gamma != 0; + bool use_gamma = gamma != 0; // allocate memory for the pyramid structure dm.I0s.resize(nscales); dm.I1s.resize(nscales); dm.u1s.resize(nscales); dm.u2s.resize(nscales); - dm.u3s.resize(nscales); + dm.u3s.resize(nscales); I0.convertTo(dm.I0s[0], dm.I0s[0].depth(), I0.depth() == CV_8U ? 1.0 : 255.0); I1.convertTo(dm.I1s[0], dm.I1s[0].depth(), I1.depth() == CV_8U ? 1.0 : 255.0); dm.u1s[0].create(I0.size()); dm.u2s[0].create(I0.size()); - if (use_gamma) dm.u3s[0].create(I0.size()); + if (use_gamma) dm.u3s[0].create(I0.size()); if (useInitialFlow) { @@ -409,25 +409,25 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray dm.v1_buf.create(I0.size()); dm.v2_buf.create(I0.size()); - dm.v3_buf.create(I0.size()); + dm.v3_buf.create(I0.size()); dm.p11_buf.create(I0.size()); dm.p12_buf.create(I0.size()); dm.p21_buf.create(I0.size()); dm.p22_buf.create(I0.size()); - dm.p31_buf.create(I0.size()); - dm.p32_buf.create(I0.size()); + dm.p31_buf.create(I0.size()); + dm.p32_buf.create(I0.size()); dm.div_p1_buf.create(I0.size()); dm.div_p2_buf.create(I0.size()); - dm.div_p3_buf.create(I0.size()); + dm.div_p3_buf.create(I0.size()); dm.u1x_buf.create(I0.size()); dm.u1y_buf.create(I0.size()); dm.u2x_buf.create(I0.size()); dm.u2y_buf.create(I0.size()); dm.u3x_buf.create(I0.size()); - dm.u3y_buf.create(I0.size()); + dm.u3y_buf.create(I0.size()); // create the scales for (int s = 1; s < nscales; ++s) @@ -454,14 +454,14 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray dm.u1s[s].create(dm.I0s[s].size()); dm.u2s[s].create(dm.I0s[s].size()); } - if (use_gamma) dm.u3s[s].create(dm.I0s[s].size()); + if (use_gamma) dm.u3s[s].create(dm.I0s[s].size()); } if (!useInitialFlow) { dm.u1s[nscales - 1].setTo(Scalar::all(0)); dm.u2s[nscales - 1].setTo(Scalar::all(0)); } - if (use_gamma) dm.u3s[nscales - 1].setTo(Scalar::all(0)); + if (use_gamma) dm.u3s[nscales - 1].setTo(Scalar::all(0)); // pyramidal structure for computing the optical flow for (int s = nscales - 1; s >= 0; --s) { @@ -477,7 +477,7 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray // zoom the optical flow for the next finer scale resize(dm.u1s[s], dm.u1s[s - 1], dm.I0s[s - 1].size()); resize(dm.u2s[s], dm.u2s[s - 1], dm.I0s[s - 1].size()); - if (use_gamma) resize(dm.u3s[s], dm.u3s[s - 1], dm.I0s[s - 1].size()); + if (use_gamma) resize(dm.u3s[s], dm.u3s[s - 1], dm.I0s[s - 1].size()); // scale the optical flow with the appropriate zoom factor (don't scale u3!) multiply(dm.u1s[s - 1], Scalar::all(1 / scaleStep), dm.u1s[s - 1]); @@ -944,7 +944,7 @@ struct EstimateVBody : ParallelLoopBody void EstimateVBody::operator() (const Range& range) const { - bool use_gamma = gamma != 0; + bool use_gamma = gamma != 0; for (int y = range.start; y < range.end; ++y) { const float* I1wxRow = I1wx[y]; @@ -957,12 +957,12 @@ void EstimateVBody::operator() (const Range& range) const float* v1Row = v1[y]; float* v2Row = v2[y]; - float* v3Row = use_gamma ? v3[y]:NULL; + float* v3Row = use_gamma ? v3[y]:NULL; for (int x = 0; x < I1wx.cols; ++x) - { - const float rho = use_gamma ? rhoRow[x] + (I1wxRow[x] * u1Row[x] + I1wyRow[x] * u2Row[x]) + gamma * u3Row[x] : - rhoRow[x] + (I1wxRow[x] * u1Row[x] + I1wyRow[x] * u2Row[x]); + { + const float rho = use_gamma ? rhoRow[x] + (I1wxRow[x] * u1Row[x] + I1wyRow[x] * u2Row[x]) + gamma * u3Row[x] : + rhoRow[x] + (I1wxRow[x] * u1Row[x] + I1wyRow[x] * u2Row[x]); float d1 = 0.0f; float d2 = 0.0f; float d3 = 0.0f; @@ -970,25 +970,25 @@ void EstimateVBody::operator() (const Range& range) const { d1 = l_t * I1wxRow[x]; d2 = l_t * I1wyRow[x]; - if (use_gamma) d3 = l_t * gamma; + if (use_gamma) d3 = l_t * gamma; } else if (rho > l_t * gradRow[x]) { d1 = -l_t * I1wxRow[x]; d2 = -l_t * I1wyRow[x]; - if (use_gamma) d3 = -l_t * gamma; + if (use_gamma) d3 = -l_t * gamma; } else if (gradRow[x] > std::numeric_limits::epsilon()) { float fi = -rho / gradRow[x]; d1 = fi * I1wxRow[x]; d2 = fi * I1wyRow[x]; - if (use_gamma) d3 = fi * gamma; + if (use_gamma) d3 = fi * gamma; } v1Row[x] = u1Row[x] + d1; v2Row[x] = u2Row[x] + d2; - if (use_gamma) v3Row[x] = u3Row[x] + d3; + if (use_gamma) v3Row[x] = u3Row[x] + d3; } } } @@ -1005,17 +1005,17 @@ void estimateV(const Mat_& I1wx, const Mat_& I1wy, const Mat_& v1, const Mat_& v2, const Mat_& CV_DbgAssert( u1.size() == v1.size() ); CV_DbgAssert( u2.size() == v1.size() ); - float error = 0.0f; - bool use_gamma = gamma != 0; + float error = 0.0f; + bool use_gamma = gamma != 0; for (int y = 0; y < v1.rows; ++y) { const float* v1Row = v1[y]; @@ -1059,10 +1059,10 @@ float estimateU(const Mat_& v1, const Mat_& v2, const Mat_& u1Row[x] = v1Row[x] + theta * divP1Row[x]; u2Row[x] = v2Row[x] + theta * divP2Row[x]; - if (use_gamma) u3Row[x] = v3Row[x] + theta * divP3Row[x]; + if (use_gamma) u3Row[x] = v3Row[x] + theta * divP3Row[x]; error += use_gamma?(u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k) + (u3Row[x] - u3k) * (u3Row[x] - u3k): - (u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k); + (u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k); } } @@ -1089,7 +1089,7 @@ struct EstimateDualVariablesBody : ParallelLoopBody mutable Mat_ p31; mutable Mat_ p32; float taut; - bool use_gamma; + bool use_gamma; }; void EstimateDualVariablesBody::operator() (const Range& range) const @@ -1118,14 +1118,14 @@ void EstimateDualVariablesBody::operator() (const Range& range) const const float ng1 = 1.0f + taut * g1; const float ng2 = 1.0f + taut * g2; - const float ng3 = 1.0f + taut * g3; + const float ng3 = 1.0f + taut * g3; p11Row[x] = (p11Row[x] + taut * u1xRow[x]) / ng1; p12Row[x] = (p12Row[x] + taut * u1yRow[x]) / ng1; p21Row[x] = (p21Row[x] + taut * u2xRow[x]) / ng2; p22Row[x] = (p22Row[x] + taut * u2yRow[x]) / ng2; - if (use_gamma) p31Row[x] = (p31Row[x] + taut * u3xRow[x]) / ng3; - if (use_gamma) p32Row[x] = (p32Row[x] + taut * u3yRow[x]) / ng3; + if (use_gamma) p31Row[x] = (p31Row[x] + taut * u3xRow[x]) / ng3; + if (use_gamma) p32Row[x] = (p32Row[x] + taut * u3yRow[x]) / ng3; } } } @@ -1165,7 +1165,7 @@ void estimateDualVariables(const Mat_& u1x, const Mat_& u1y, body.p31 = p31; body.p32 = p32; body.taut = taut; - body.use_gamma = use_gamma; + body.use_gamma = use_gamma; parallel_for_(Range(0, u1x.rows), body); } @@ -1283,21 +1283,21 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_& I0, const Mat_ Mat_ v1 = dm.v1_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ v2 = dm.v2_buf(Rect(0, 0, I0.cols, I0.rows)); - Mat_ v3 = dm.v3_buf(Rect(0, 0, I0.cols, I0.rows)); + Mat_ v3 = dm.v3_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ p11 = dm.p11_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ p12 = dm.p12_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ p21 = dm.p21_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ p22 = dm.p22_buf(Rect(0, 0, I0.cols, I0.rows)); - Mat_ p31 = dm.p31_buf(Rect(0, 0, I0.cols, I0.rows)); - Mat_ p32 = dm.p32_buf(Rect(0, 0, I0.cols, I0.rows)); + Mat_ p31 = dm.p31_buf(Rect(0, 0, I0.cols, I0.rows)); + Mat_ p32 = dm.p32_buf(Rect(0, 0, I0.cols, I0.rows)); p11.setTo(Scalar::all(0)); p12.setTo(Scalar::all(0)); p21.setTo(Scalar::all(0)); - p22.setTo(Scalar::all(0)); - bool use_gamma = gamma != 0.; - if (use_gamma) p31.setTo(Scalar::all(0)); - if (use_gamma) p32.setTo(Scalar::all(0)); + p22.setTo(Scalar::all(0)); + bool use_gamma = gamma != 0.; + if (use_gamma) p31.setTo(Scalar::all(0)); + if (use_gamma) p32.setTo(Scalar::all(0)); Mat_ div_p1 = dm.div_p1_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_ div_p2 = dm.div_p2_buf(Rect(0, 0, I0.cols, I0.rows)); @@ -1333,20 +1333,20 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_& I0, const Mat_ for (int n_inner = 0; error > scaledEpsilon && n_inner < innerIterations; ++n_inner) { // estimate the values of the variable (v1, v2) (thresholding operator TH) - estimateV(I1wx, I1wy, u1, u2, u3, grad, rho_c, v1, v2, v3, l_t, static_cast(gamma)); + estimateV(I1wx, I1wy, u1, u2, u3, grad, rho_c, v1, v2, v3, l_t, static_cast(gamma)); // compute the divergence of the dual variable (p1, p2, p3) divergence(p11, p12, div_p1); divergence(p21, p22, div_p2); - if (use_gamma) divergence(p31, p32, div_p3); + if (use_gamma) divergence(p31, p32, div_p3); // estimate the values of the optical flow (u1, u2) - error = estimateU(v1, v2, v3, div_p1, div_p2, div_p3, u1, u2, u3, static_cast(theta), static_cast(gamma)); + error = estimateU(v1, v2, v3, div_p1, div_p2, div_p3, u1, u2, u3, static_cast(theta), static_cast(gamma)); // compute the gradient of the optical flow (Du1, Du2) forwardGradient(u1, u1x, u1y); forwardGradient(u2, u2x, u2y); - if (use_gamma) forwardGradient(u3, u3x, u3y); + if (use_gamma) forwardGradient(u3, u3x, u3y); // estimate the values of the dual variable (p1, p2, p3) estimateDualVariables(u1x, u1y, u2x, u2y, u3x, u3y, p11, p12, p21, p22, p31, p32, taut, use_gamma); -- 2.7.4