From c494e0705d670c51ac736c8c4d92750705fe3187 Mon Sep 17 00:00:00 2001 From: Rik Snel Date: Wed, 29 Nov 2006 18:59:44 +1100 Subject: [PATCH] [CRYPTO] lib: table driven multiplications in GF(2^128) A lot of cypher modes need multiplications in GF(2^128). LRW, ABL, GCM... I use functions from this library in my LRW implementation and I will also use them in my ABL (Arbitrary Block Length, an unencumbered (correct me if I am wrong, wide block cipher mode). Elements of GF(2^128) must be presented as u128 *, it encourages automatic and proper alignment. The library contains support for two different representations of GF(2^128), see the comment in gf128mul.h. There different levels of optimization (memory/speed tradeoff). The code is based on work by Dr Brian Gladman. Notable changes: - deletion of two optimization modes - change from u32 to u64 for faster handling on 64bit machines - support for 'bbe' representation in addition to the, already implemented, 'lle' representation. - move 'inline void' functions from header to 'static void' in the source file - update to use the linux coding style conventions The original can be found at: http://fp.gladman.plus.com/AES/modes.vc8.19-06-06.zip The copyright (and GPL statement) of the original author is preserved. Signed-off-by: Rik Snel Signed-off-by: Herbert Xu --- crypto/Kconfig | 10 + crypto/Makefile | 1 + crypto/gf128mul.c | 466 ++++++++++++++++++++++++++++++++++++++++++++++ include/crypto/gf128mul.h | 198 ++++++++++++++++++++ 4 files changed, 675 insertions(+) create mode 100644 crypto/gf128mul.c create mode 100644 include/crypto/gf128mul.h diff --git a/crypto/Kconfig b/crypto/Kconfig index 4495e466..f941ffb 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig @@ -139,6 +139,16 @@ config CRYPTO_TGR192 See also: . +config CRYPTO_GF128MUL + tristate "GF(2^128) multiplication functions (EXPERIMENTAL)" + depends on EXPERIMENTAL + help + Efficient table driven implementation of multiplications in the + field GF(2^128). This is needed by some cypher modes. This + option will be selected automatically if you select such a + cipher mode. Only select this option by hand if you expect to load + an external module that requires these functions. + config CRYPTO_ECB tristate "ECB support" select CRYPTO_BLKCIPHER diff --git a/crypto/Makefile b/crypto/Makefile index aba9625..0ab9ff0 100644 --- a/crypto/Makefile +++ b/crypto/Makefile @@ -24,6 +24,7 @@ obj-$(CONFIG_CRYPTO_SHA256) += sha256.o obj-$(CONFIG_CRYPTO_SHA512) += sha512.o obj-$(CONFIG_CRYPTO_WP512) += wp512.o obj-$(CONFIG_CRYPTO_TGR192) += tgr192.o +obj-$(CONFIG_CRYPTO_GF128MUL) += gf128mul.o obj-$(CONFIG_CRYPTO_ECB) += ecb.o obj-$(CONFIG_CRYPTO_CBC) += cbc.o obj-$(CONFIG_CRYPTO_DES) += des.o diff --git a/crypto/gf128mul.c b/crypto/gf128mul.c new file mode 100644 index 0000000..0a2aadf --- /dev/null +++ b/crypto/gf128mul.c @@ -0,0 +1,466 @@ +/* gf128mul.c - GF(2^128) multiplication functions + * + * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. + * Copyright (c) 2006, Rik Snel + * + * Based on Dr Brian Gladman's (GPL'd) work published at + * http://fp.gladman.plus.com/cryptography_technology/index.htm + * See the original copyright notice below. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the Free + * Software Foundation; either version 2 of the License, or (at your option) + * any later version. + */ + +/* + --------------------------------------------------------------------------- + Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software in both source and binary + form is allowed (with or without changes) provided that: + + 1. distributions of this source code include the above copyright + notice, this list of conditions and the following disclaimer; + + 2. distributions in binary form include the above copyright + notice, this list of conditions and the following disclaimer + in the documentation and/or other associated materials; + + 3. the copyright holder's name is not used to endorse products + built using this software without specific written permission. + + ALTERNATIVELY, provided that this notice is retained in full, this product + may be distributed under the terms of the GNU General Public License (GPL), + in which case the provisions of the GPL apply INSTEAD OF those given above. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue 31/01/2006 + + This file provides fast multiplication in GF(128) as required by several + cryptographic authentication modes +*/ + +#include +#include +#include +#include + +#define gf128mul_dat(q) { \ + q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\ + q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\ + q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\ + q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\ + q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\ + q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\ + q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\ + q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\ + q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\ + q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\ + q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\ + q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\ + q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\ + q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\ + q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\ + q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\ + q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\ + q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\ + q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\ + q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\ + q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\ + q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\ + q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\ + q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\ + q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\ + q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\ + q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\ + q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\ + q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\ + q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\ + q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\ + q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \ +} + +/* Given the value i in 0..255 as the byte overflow when a field element + in GHASH is multipled by x^8, this function will return the values that + are generated in the lo 16-bit word of the field value by applying the + modular polynomial. The values lo_byte and hi_byte are returned via the + macro xp_fun(lo_byte, hi_byte) so that the values can be assembled into + memory as required by a suitable definition of this macro operating on + the table above +*/ + +#define xx(p, q) 0x##p##q + +#define xda_bbe(i) ( \ + (i & 0x80 ? xx(43, 80) : 0) ^ (i & 0x40 ? xx(21, c0) : 0) ^ \ + (i & 0x20 ? xx(10, e0) : 0) ^ (i & 0x10 ? xx(08, 70) : 0) ^ \ + (i & 0x08 ? xx(04, 38) : 0) ^ (i & 0x04 ? xx(02, 1c) : 0) ^ \ + (i & 0x02 ? xx(01, 0e) : 0) ^ (i & 0x01 ? xx(00, 87) : 0) \ +) + +#define xda_lle(i) ( \ + (i & 0x80 ? xx(e1, 00) : 0) ^ (i & 0x40 ? xx(70, 80) : 0) ^ \ + (i & 0x20 ? xx(38, 40) : 0) ^ (i & 0x10 ? xx(1c, 20) : 0) ^ \ + (i & 0x08 ? xx(0e, 10) : 0) ^ (i & 0x04 ? xx(07, 08) : 0) ^ \ + (i & 0x02 ? xx(03, 84) : 0) ^ (i & 0x01 ? xx(01, c2) : 0) \ +) + +static const u16 gf128mul_table_lle[256] = gf128mul_dat(xda_lle); +static const u16 gf128mul_table_bbe[256] = gf128mul_dat(xda_bbe); + +/* These functions multiply a field element by x, by x^4 and by x^8 + * in the polynomial field representation. It uses 32-bit word operations + * to gain speed but compensates for machine endianess and hence works + * correctly on both styles of machine. + */ + +static void gf128mul_x_lle(be128 *r, const be128 *x) +{ + u64 a = be64_to_cpu(x->a); + u64 b = be64_to_cpu(x->b); + u64 _tt = gf128mul_table_lle[(b << 7) & 0xff]; + + r->b = cpu_to_be64((b >> 1) | (a << 63)); + r->a = cpu_to_be64((a >> 1) ^ (_tt << 48)); +} + +static void gf128mul_x_bbe(be128 *r, const be128 *x) +{ + u64 a = be64_to_cpu(x->a); + u64 b = be64_to_cpu(x->b); + u64 _tt = gf128mul_table_bbe[a >> 63]; + + r->a = cpu_to_be64((a << 1) | (b >> 63)); + r->b = cpu_to_be64((b << 1) ^ _tt); +} + +static void gf128mul_x8_lle(be128 *x) +{ + u64 a = be64_to_cpu(x->a); + u64 b = be64_to_cpu(x->b); + u64 _tt = gf128mul_table_lle[b & 0xff]; + + x->b = cpu_to_be64((b >> 8) | (a << 56)); + x->a = cpu_to_be64((a >> 8) ^ (_tt << 48)); +} + +static void gf128mul_x8_bbe(be128 *x) +{ + u64 a = be64_to_cpu(x->a); + u64 b = be64_to_cpu(x->b); + u64 _tt = gf128mul_table_bbe[a >> 56]; + + x->a = cpu_to_be64((a << 8) | (b >> 56)); + x->b = cpu_to_be64((b << 8) ^ _tt); +} + +void gf128mul_lle(be128 *r, const be128 *b) +{ + be128 p[8]; + int i; + + p[0] = *r; + for (i = 0; i < 7; ++i) + gf128mul_x_lle(&p[i + 1], &p[i]); + + memset(r, 0, sizeof(r)); + for (i = 0;;) { + u8 ch = ((u8 *)b)[15 - i]; + + if (ch & 0x80) + be128_xor(r, r, &p[0]); + if (ch & 0x40) + be128_xor(r, r, &p[1]); + if (ch & 0x20) + be128_xor(r, r, &p[2]); + if (ch & 0x10) + be128_xor(r, r, &p[3]); + if (ch & 0x08) + be128_xor(r, r, &p[4]); + if (ch & 0x04) + be128_xor(r, r, &p[5]); + if (ch & 0x02) + be128_xor(r, r, &p[6]); + if (ch & 0x01) + be128_xor(r, r, &p[7]); + + if (++i >= 16) + break; + + gf128mul_x8_lle(r); + } +} +EXPORT_SYMBOL(gf128mul_lle); + +void gf128mul_bbe(be128 *r, const be128 *b) +{ + be128 p[8]; + int i; + + p[0] = *r; + for (i = 0; i < 7; ++i) + gf128mul_x_bbe(&p[i + 1], &p[i]); + + memset(r, 0, sizeof(r)); + for (i = 0;;) { + u8 ch = ((u8 *)b)[i]; + + if (ch & 0x80) + be128_xor(r, r, &p[7]); + if (ch & 0x40) + be128_xor(r, r, &p[6]); + if (ch & 0x20) + be128_xor(r, r, &p[5]); + if (ch & 0x10) + be128_xor(r, r, &p[4]); + if (ch & 0x08) + be128_xor(r, r, &p[3]); + if (ch & 0x04) + be128_xor(r, r, &p[2]); + if (ch & 0x02) + be128_xor(r, r, &p[1]); + if (ch & 0x01) + be128_xor(r, r, &p[0]); + + if (++i >= 16) + break; + + gf128mul_x8_bbe(r); + } +} +EXPORT_SYMBOL(gf128mul_bbe); + +/* This version uses 64k bytes of table space. + A 16 byte buffer has to be multiplied by a 16 byte key + value in GF(128). If we consider a GF(128) value in + the buffer's lowest byte, we can construct a table of + the 256 16 byte values that result from the 256 values + of this byte. This requires 4096 bytes. But we also + need tables for each of the 16 higher bytes in the + buffer as well, which makes 64 kbytes in total. +*/ +/* additional explanation + * t[0][BYTE] contains g*BYTE + * t[1][BYTE] contains g*x^8*BYTE + * .. + * t[15][BYTE] contains g*x^120*BYTE */ +struct gf128mul_64k *gf128mul_init_64k_lle(const be128 *g) +{ + struct gf128mul_64k *t; + int i, j, k; + + t = kzalloc(sizeof(*t), GFP_KERNEL); + if (!t) + goto out; + + for (i = 0; i < 16; i++) { + t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL); + if (!t->t[i]) { + gf128mul_free_64k(t); + t = NULL; + goto out; + } + } + + t->t[0]->t[128] = *g; + for (j = 64; j > 0; j >>= 1) + gf128mul_x_lle(&t->t[0]->t[j], &t->t[0]->t[j + j]); + + for (i = 0;;) { + for (j = 2; j < 256; j += j) + for (k = 1; k < j; ++k) + be128_xor(&t->t[i]->t[j + k], + &t->t[i]->t[j], &t->t[i]->t[k]); + + if (++i >= 16) + break; + + for (j = 128; j > 0; j >>= 1) { + t->t[i]->t[j] = t->t[i - 1]->t[j]; + gf128mul_x8_lle(&t->t[i]->t[j]); + } + } + +out: + return t; +} +EXPORT_SYMBOL(gf128mul_init_64k_lle); + +struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g) +{ + struct gf128mul_64k *t; + int i, j, k; + + t = kzalloc(sizeof(*t), GFP_KERNEL); + if (!t) + goto out; + + for (i = 0; i < 16; i++) { + t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL); + if (!t->t[i]) { + gf128mul_free_64k(t); + t = NULL; + goto out; + } + } + + t->t[0]->t[1] = *g; + for (j = 1; j <= 64; j <<= 1) + gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]); + + for (i = 0;;) { + for (j = 2; j < 256; j += j) + for (k = 1; k < j; ++k) + be128_xor(&t->t[i]->t[j + k], + &t->t[i]->t[j], &t->t[i]->t[k]); + + if (++i >= 16) + break; + + for (j = 128; j > 0; j >>= 1) { + t->t[i]->t[j] = t->t[i - 1]->t[j]; + gf128mul_x8_bbe(&t->t[i]->t[j]); + } + } + +out: + return t; +} +EXPORT_SYMBOL(gf128mul_init_64k_bbe); + +void gf128mul_free_64k(struct gf128mul_64k *t) +{ + int i; + + for (i = 0; i < 16; i++) + kfree(t->t[i]); + kfree(t); +} +EXPORT_SYMBOL(gf128mul_free_64k); + +void gf128mul_64k_lle(be128 *a, struct gf128mul_64k *t) +{ + u8 *ap = (u8 *)a; + be128 r[1]; + int i; + + *r = t->t[0]->t[ap[0]]; + for (i = 1; i < 16; ++i) + be128_xor(r, r, &t->t[i]->t[ap[i]]); + *a = *r; +} +EXPORT_SYMBOL(gf128mul_64k_lle); + +void gf128mul_64k_bbe(be128 *a, struct gf128mul_64k *t) +{ + u8 *ap = (u8 *)a; + be128 r[1]; + int i; + + *r = t->t[0]->t[ap[15]]; + for (i = 1; i < 16; ++i) + be128_xor(r, r, &t->t[i]->t[ap[15 - i]]); + *a = *r; +} +EXPORT_SYMBOL(gf128mul_64k_bbe); + +/* This version uses 4k bytes of table space. + A 16 byte buffer has to be multiplied by a 16 byte key + value in GF(128). If we consider a GF(128) value in a + single byte, we can construct a table of the 256 16 byte + values that result from the 256 values of this byte. + This requires 4096 bytes. If we take the highest byte in + the buffer and use this table to get the result, we then + have to multiply by x^120 to get the final value. For the + next highest byte the result has to be multiplied by x^112 + and so on. But we can do this by accumulating the result + in an accumulator starting with the result for the top + byte. We repeatedly multiply the accumulator value by + x^8 and then add in (i.e. xor) the 16 bytes of the next + lower byte in the buffer, stopping when we reach the + lowest byte. This requires a 4096 byte table. +*/ +struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g) +{ + struct gf128mul_4k *t; + int j, k; + + t = kzalloc(sizeof(*t), GFP_KERNEL); + if (!t) + goto out; + + t->t[128] = *g; + for (j = 64; j > 0; j >>= 1) + gf128mul_x_lle(&t->t[j], &t->t[j+j]); + + for (j = 2; j < 256; j += j) + for (k = 1; k < j; ++k) + be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); + +out: + return t; +} +EXPORT_SYMBOL(gf128mul_init_4k_lle); + +struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g) +{ + struct gf128mul_4k *t; + int j, k; + + t = kzalloc(sizeof(*t), GFP_KERNEL); + if (!t) + goto out; + + t->t[1] = *g; + for (j = 1; j <= 64; j <<= 1) + gf128mul_x_bbe(&t->t[j + j], &t->t[j]); + + for (j = 2; j < 256; j += j) + for (k = 1; k < j; ++k) + be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); + +out: + return t; +} +EXPORT_SYMBOL(gf128mul_init_4k_bbe); + +void gf128mul_4k_lle(be128 *a, struct gf128mul_4k *t) +{ + u8 *ap = (u8 *)a; + be128 r[1]; + int i = 15; + + *r = t->t[ap[15]]; + while (i--) { + gf128mul_x8_lle(r); + be128_xor(r, r, &t->t[ap[i]]); + } + *a = *r; +} +EXPORT_SYMBOL(gf128mul_4k_lle); + +void gf128mul_4k_bbe(be128 *a, struct gf128mul_4k *t) +{ + u8 *ap = (u8 *)a; + be128 r[1]; + int i = 0; + + *r = t->t[ap[0]]; + while (++i < 16) { + gf128mul_x8_bbe(r); + be128_xor(r, r, &t->t[ap[i]]); + } + *a = *r; +} +EXPORT_SYMBOL(gf128mul_4k_bbe); + +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)"); diff --git a/include/crypto/gf128mul.h b/include/crypto/gf128mul.h new file mode 100644 index 0000000..4fd3152 --- /dev/null +++ b/include/crypto/gf128mul.h @@ -0,0 +1,198 @@ +/* gf128mul.h - GF(2^128) multiplication functions + * + * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. + * Copyright (c) 2006 Rik Snel + * + * Based on Dr Brian Gladman's (GPL'd) work published at + * http://fp.gladman.plus.com/cryptography_technology/index.htm + * See the original copyright notice below. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the Free + * Software Foundation; either version 2 of the License, or (at your option) + * any later version. + */ +/* + --------------------------------------------------------------------------- + Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software in both source and binary + form is allowed (with or without changes) provided that: + + 1. distributions of this source code include the above copyright + notice, this list of conditions and the following disclaimer; + + 2. distributions in binary form include the above copyright + notice, this list of conditions and the following disclaimer + in the documentation and/or other associated materials; + + 3. the copyright holder's name is not used to endorse products + built using this software without specific written permission. + + ALTERNATIVELY, provided that this notice is retained in full, this product + may be distributed under the terms of the GNU General Public License (GPL), + in which case the provisions of the GPL apply INSTEAD OF those given above. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 31/01/2006 + + An implementation of field multiplication in Galois Field GF(128) +*/ + +#ifndef _CRYPTO_GF128MUL_H +#define _CRYPTO_GF128MUL_H + +#include +#include + +/* Comment by Rik: + * + * For some background on GF(2^128) see for example: http://- + * csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-revised-spec.pdf + * + * The elements of GF(2^128) := GF(2)[X]/(X^128-X^7-X^2-X^1-1) can + * be mapped to computer memory in a variety of ways. Let's examine + * three common cases. + * + * Take a look at the 16 binary octets below in memory order. The msb's + * are left and the lsb's are right. char b[16] is an array and b[0] is + * the first octet. + * + * 80000000 00000000 00000000 00000000 .... 00000000 00000000 00000000 + * b[0] b[1] b[2] b[3] b[13] b[14] b[15] + * + * Every bit is a coefficient of some power of X. We can store the bits + * in every byte in little-endian order and the bytes themselves also in + * little endian order. I will call this lle (little-little-endian). + * The above buffer represents the polynomial 1, and X^7+X^2+X^1+1 looks + * like 11100001 00000000 .... 00000000 = { 0xE1, 0x00, }. + * This format was originally implemented in gf128mul and is used + * in GCM (Galois/Counter mode) and in ABL (Arbitrary Block Length). + * + * Another convention says: store the bits in bigendian order and the + * bytes also. This is bbe (big-big-endian). Now the buffer above + * represents X^127. X^7+X^2+X^1+1 looks like 00000000 .... 10000111, + * b[15] = 0x87 and the rest is 0. LRW uses this convention and bbe + * is partly implemented. + * + * Both of the above formats are easy to implement on big-endian + * machines. + * + * EME (which is patent encumbered) uses the ble format (bits are stored + * in big endian order and the bytes in little endian). The above buffer + * represents X^7 in this case and the primitive polynomial is b[0] = 0x87. + * + * The common machine word-size is smaller than 128 bits, so to make + * an efficient implementation we must split into machine word sizes. + * This file uses one 32bit for the moment. Machine endianness comes into + * play. The lle format in relation to machine endianness is discussed + * below by the original author of gf128mul Dr Brian Gladman. + * + * Let's look at the bbe and ble format on a little endian machine. + * + * bbe on a little endian machine u32 x[4]: + * + * MS x[0] LS MS x[1] LS + * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls + * 103..96 111.104 119.112 127.120 71...64 79...72 87...80 95...88 + * + * MS x[2] LS MS x[3] LS + * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls + * 39...32 47...40 55...48 63...56 07...00 15...08 23...16 31...24 + * + * ble on a little endian machine + * + * MS x[0] LS MS x[1] LS + * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls + * 31...24 23...16 15...08 07...00 63...56 55...48 47...40 39...32 + * + * MS x[2] LS MS x[3] LS + * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls + * 95...88 87...80 79...72 71...64 127.120 199.112 111.104 103..96 + * + * Multiplications in GF(2^128) are mostly bit-shifts, so you see why + * ble (and lbe also) are easier to implement on a little-endian + * machine than on a big-endian machine. The converse holds for bbe + * and lle. + * + * Note: to have good alignment, it seems to me that it is sufficient + * to keep elements of GF(2^128) in type u64[2]. On 32-bit wordsize + * machines this will automatically aligned to wordsize and on a 64-bit + * machine also. + */ +/* Multiply a GF128 field element by x. Field elements are held in arrays + of bytes in which field bits 8n..8n + 7 are held in byte[n], with lower + indexed bits placed in the more numerically significant bit positions + within bytes. + + On little endian machines the bit indexes translate into the bit + positions within four 32-bit words in the following way + + MS x[0] LS MS x[1] LS + ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls + 24...31 16...23 08...15 00...07 56...63 48...55 40...47 32...39 + + MS x[2] LS MS x[3] LS + ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls + 88...95 80...87 72...79 64...71 120.127 112.119 104.111 96..103 + + On big endian machines the bit indexes translate into the bit + positions within four 32-bit words in the following way + + MS x[0] LS MS x[1] LS + ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls + 00...07 08...15 16...23 24...31 32...39 40...47 48...55 56...63 + + MS x[2] LS MS x[3] LS + ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls + 64...71 72...79 80...87 88...95 96..103 104.111 112.119 120.127 +*/ + +/* A slow generic version of gf_mul, implemented for lle and bbe + * It multiplies a and b and puts the result in a */ +void gf128mul_lle(be128 *a, const be128 *b); + +void gf128mul_bbe(be128 *a, const be128 *b); + + +/* 4k table optimization */ + +struct gf128mul_4k { + be128 t[256]; +}; + +struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g); +struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g); +void gf128mul_4k_lle(be128 *a, struct gf128mul_4k *t); +void gf128mul_4k_bbe(be128 *a, struct gf128mul_4k *t); + +static inline void gf128mul_free_4k(struct gf128mul_4k *t) +{ + kfree(t); +} + + +/* 64k table optimization, implemented for lle and bbe */ + +struct gf128mul_64k { + struct gf128mul_4k *t[16]; +}; + +/* first initialize with the constant factor with which you + * want to multiply and then call gf128_64k_lle with the other + * factor in the first argument, the table in the second and a + * scratch register in the third. Afterwards *a = *r. */ +struct gf128mul_64k *gf128mul_init_64k_lle(const be128 *g); +struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g); +void gf128mul_free_64k(struct gf128mul_64k *t); +void gf128mul_64k_lle(be128 *a, struct gf128mul_64k *t); +void gf128mul_64k_bbe(be128 *a, struct gf128mul_64k *t); + +#endif /* _CRYPTO_GF128MUL_H */ -- 2.7.4