From b790ff4213c6ef61514e181b223341542b6f12ff Mon Sep 17 00:00:00 2001 From: =?utf8?q?=EB=B0=95=EC=A2=85=ED=98=84/On-Device=20Lab=28SR=29/Staff?= =?utf8?q?=20Engineer/=EC=82=BC=EC=84=B1=EC=A0=84=EC=9E=90?= Date: Thu, 7 Mar 2019 11:28:16 +0900 Subject: [PATCH] Remove (deprecated) kernel testing project (#4621) This kernel testing project was introduced as a test at the early stage, but is not used anymore. Signed-off-by: Jonghyun Park --- contrib/labs/kerneltesting/CMakeLists.txt | 19 - contrib/labs/kerneltesting/conv2d/CMakeLists.txt | 15 - contrib/labs/kerneltesting/conv2d/OperationUtils.h | 90 --- contrib/labs/kerneltesting/conv2d/common.h | 89 --- contrib/labs/kerneltesting/conv2d/compatibility.h | 78 --- contrib/labs/kerneltesting/conv2d/io_accessor.cpp | 124 ----- contrib/labs/kerneltesting/conv2d/io_accessor.h | 104 ---- .../labs/kerneltesting/conv2d/nnfw_conv2d_test.cpp | 607 --------------------- contrib/labs/kerneltesting/conv2d/optimized_ops.h | 339 ------------ contrib/labs/kerneltesting/conv2d/types.h | 146 ----- 10 files changed, 1611 deletions(-) delete mode 100644 contrib/labs/kerneltesting/CMakeLists.txt delete mode 100644 contrib/labs/kerneltesting/conv2d/CMakeLists.txt delete mode 100644 contrib/labs/kerneltesting/conv2d/OperationUtils.h delete mode 100644 contrib/labs/kerneltesting/conv2d/common.h delete mode 100644 contrib/labs/kerneltesting/conv2d/compatibility.h delete mode 100644 contrib/labs/kerneltesting/conv2d/io_accessor.cpp delete mode 100644 contrib/labs/kerneltesting/conv2d/io_accessor.h delete mode 100644 contrib/labs/kerneltesting/conv2d/nnfw_conv2d_test.cpp delete mode 100644 contrib/labs/kerneltesting/conv2d/optimized_ops.h delete mode 100644 contrib/labs/kerneltesting/conv2d/types.h diff --git a/contrib/labs/kerneltesting/CMakeLists.txt b/contrib/labs/kerneltesting/CMakeLists.txt deleted file mode 100644 index 5792d0f..0000000 --- a/contrib/labs/kerneltesting/CMakeLists.txt +++ /dev/null @@ -1,19 +0,0 @@ -if(NOT ${TARGET_ARCH_BASE} STREQUAL "arm") - return() -endif(NOT ${TARGET_ARCH_BASE} STREQUAL "arm") - -nnfw_find_package(ARMCompute REQUIRED) - -function(add_kerneltesting TESTNAME SRC_FILES) - link_directories(${CMAKE_INSTALL_PREFIX}/lib) - add_executable(${TESTNAME} ${SRC_FILES}) - target_include_directories(${TESTNAME} PUBLIC - ${NNFW_INCLUDE_DIR}) - target_link_libraries(${TESTNAME} nnfw_lib_misc arm_compute_graph) - install(TARGETS ${TESTNAME} DESTINATION bin) -endfunction() - -# TODO: Enable conv2d on Tizen -if (NOT ${TARGET_OS} STREQUAL "tizen") - add_subdirectory(conv2d) -endif() diff --git a/contrib/labs/kerneltesting/conv2d/CMakeLists.txt b/contrib/labs/kerneltesting/conv2d/CMakeLists.txt deleted file mode 100644 index 25e01f5..0000000 --- a/contrib/labs/kerneltesting/conv2d/CMakeLists.txt +++ /dev/null @@ -1,15 +0,0 @@ -set(KERNELTESTING_CONV2D kerneltesting_conv2d) - -set(KERNELTESTING_CONV2D_SRCS "nnfw_conv2d_test.cpp" - "io_accessor.cpp") - -set(GEMLOWP_INCUDE ${TFLITE_DEPEND_DIR}/gemmlowp/public) -set(EIGN_INCLUDE ${TFLITE_DEPEND_DIR}/eigen - ${TFLITE_DEPEND_DIR}/eigen/Eigen) - -add_kerneltesting(${KERNELTESTING_CONV2D} "${KERNELTESTING_CONV2D_SRCS}") - -target_include_directories(${KERNELTESTING_CONV2D} PUBLIC - ${GEMLOWP_INCUDE} - ${EIGN_INCLUDE} - ) diff --git a/contrib/labs/kerneltesting/conv2d/OperationUtils.h b/contrib/labs/kerneltesting/conv2d/OperationUtils.h deleted file mode 100644 index 0beac80..0000000 --- a/contrib/labs/kerneltesting/conv2d/OperationUtils.h +++ /dev/null @@ -1,90 +0,0 @@ -/* - * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -/* - * Copyright (C) 2017 The Android Open Source Project - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#ifndef ANDROID_ML_NN_COMMON_OPERATIONS_UTILS_H -#define ANDROID_ML_NN_COMMON_OPERATIONS_UTILS_H - -#include -#include -#include - -#define LOG(ERROR) std::cerr - -// Macro to check if the input parameters for operation are valid or not. -#define NN_CHECK(v) \ - do { \ - if (!(v)) { \ - LOG(ERROR) << "NN_CHECK failed: " << #v << "'\n"; \ - return false; \ - } \ - } while(0); - -#define NN_CHECK_EQ(actual, expected) \ - NN_CHECK((actual) == (expected)) - -#define NN_OPS_CHECK NN_CHECK - -enum PaddingScheme { - kPaddingUnknown = 0, - kPaddingSame = 1, - kPaddingValid = 2, -}; - -enum class FusedActivationFunc : int32_t { - NONE = 0, - RELU = 1, - RELU1 = 2, - RELU6 = 3, -}; - - -#define ANDROID_NN_MACRO_DISPATCH(macro) \ - switch (activation) { \ - case (int32_t) FusedActivationFunc::NONE: \ - macro(kNone); \ - break; \ - case (int32_t) FusedActivationFunc::RELU: \ - macro(kRelu); \ - break; \ - case (int32_t) FusedActivationFunc::RELU1: \ - macro(kRelu1); \ - break; \ - case (int32_t) FusedActivationFunc::RELU6: \ - macro(kRelu6); \ - break; \ - default: \ - LOG(ERROR) << "Unsupported fused activation function type"; \ - return false; \ - } - - -#endif // ANDROID_ML_NN_COMMON_OPERATIONS_UTILS_H diff --git a/contrib/labs/kerneltesting/conv2d/common.h b/contrib/labs/kerneltesting/conv2d/common.h deleted file mode 100644 index 8e675e6..0000000 --- a/contrib/labs/kerneltesting/conv2d/common.h +++ /dev/null @@ -1,89 +0,0 @@ -/* - * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -/* - * Copyright (C) 2017 The Android Open Source Project - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#ifndef ANDROID_ML_NN_COMMON_OPERATIONS_INTERNAL_COMMON_H_ -#define ANDROID_ML_NN_COMMON_OPERATIONS_INTERNAL_COMMON_H_ - -#ifndef USE_NEON -#if defined(__ARM_NEON__) || defined(__ARM_NEON) -#define USE_NEON -#include -#endif -#endif - -#include -#include "types.h" - -template -struct ActivationFunctionImpl {}; - -template <> -struct ActivationFunctionImpl { - static float Eval(float x) { return x; } -}; - -template <> -struct ActivationFunctionImpl { - static float Eval(float x) { return x < 0.f ? 0.f : x; } -}; - -template <> -struct ActivationFunctionImpl { - static float Eval(float x) { return x > 1.f ? 1.f : x < -1.f ? -1.f : x; } -}; - -template <> -struct ActivationFunctionImpl { - static float Eval(float x) { return x > 6.f ? 6.f : x < 0.f ? 0.f : x; } -}; - -template -float ActivationFunction(float x) { - return ActivationFunctionImpl::Eval(x); -} - -inline int32 MultiplyByQuantizedMultiplierSmallerThanOne( - int32 x, int32 quantized_multiplier, int right_shift) { - using gemmlowp::RoundingDivideByPOT; - using gemmlowp::SaturatingRoundingDoublingHighMul; - return RoundingDivideByPOT( - SaturatingRoundingDoublingHighMul(x, quantized_multiplier), right_shift); -} - -inline int32 MultiplyByQuantizedMultiplierGreaterThanOne( - int32 x, int32 quantized_multiplier, int left_shift) { - using gemmlowp::SaturatingRoundingDoublingHighMul; - return SaturatingRoundingDoublingHighMul(x * (1 << left_shift), - quantized_multiplier); -} - -#endif // ANDROID_ML_NN_COMMON_OPERATIONS_INTERNAL_COMMON_H_ diff --git a/contrib/labs/kerneltesting/conv2d/compatibility.h b/contrib/labs/kerneltesting/conv2d/compatibility.h deleted file mode 100644 index db8ba04..0000000 --- a/contrib/labs/kerneltesting/conv2d/compatibility.h +++ /dev/null @@ -1,78 +0,0 @@ -/* - * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -/* - * Copyright (C) 2017 The Android Open Source Project - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#ifndef ANDROID_ML_NN_COMMON_OPERATIONS_INTERNAL_COMPATIBILITY_H_ -#define ANDROID_ML_NN_COMMON_OPERATIONS_INTERNAL_COMPATIBILITY_H_ - -#ifndef ANDROID_ML_NN_COMPATIBILITY -#define ANDROID_ML_NN_COMPATIBILITY - -#include -#include - -#ifndef DCHECK -#define DCHECK(condition) (condition) ? (void)0 : assert(false) -#endif - -#ifndef DCHECK_EQ -#define DCHECK_EQ(x, y) ((x) == (y)) ? (void)0 : assert(false) -#endif - -#ifndef DCHECK_GE -#define DCHECK_GE(x, y) ((x) >= (y)) ? (void)0 : assert(false) -#endif - -#ifndef DCHECK_GT -#define DCHECK_GT(x, y) ((x) > (y)) ? (void)0 : assert(false) -#endif - -#ifndef DCHECK_LE -#define DCHECK_LE(x, y) ((x) <= (y)) ? (void)0 : assert(false) -#endif - -#ifndef DCHECK_LT -#define DCHECK_LT(x, y) ((x) < (y)) ? (void)0 : assert(false) -#endif - -#ifndef CHECK_EQ -#define CHECK_EQ(x, y) ((x) == (y)) ? (void)0 : assert(false) -#endif - -using uint8 = std::uint8_t; -using int16 = std::int16_t; -using uint16 = std::uint16_t; -using int32 = std::int32_t; -using uint32 = std::uint32_t; - -#endif - -#endif // ANDROID_ML_NN_COMMON_OPERATIONS_INTERNAL_COMPATIBILITY_H_ diff --git a/contrib/labs/kerneltesting/conv2d/io_accessor.cpp b/contrib/labs/kerneltesting/conv2d/io_accessor.cpp deleted file mode 100644 index 6d3cd9d..0000000 --- a/contrib/labs/kerneltesting/conv2d/io_accessor.cpp +++ /dev/null @@ -1,124 +0,0 @@ -/* - * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -/* - * Copyright (c) 2018 ARM Limited. - * - * SPDX-License-Identifier: MIT - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to - * deal in the Software without restriction, including without limitation the - * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or - * sell copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ -#include "io_accessor.h" - -InputAccessor::InputAccessor(const float* inputData, const Shape& inputShape) - : _inputData(inputData) - , _inputShape(inputShape) -{ -} - -WeightAccessor::WeightAccessor(const float* filterData, const Shape& filterShape) - : _filterData(filterData) - , _filterShape(filterShape) -{ -} - -BiasAccessor::BiasAccessor(const float* biasData, const Shape& biasShape) - : _biasData(biasData) - , _biasShape(biasShape) -{ -} - -OutputAccessor::OutputAccessor(float* outputData, const Shape& outputShape) - : _outputData(outputData) - , _outputShape(outputShape) -{ -} - -bool InputAccessor::access_tensor(arm_compute::ITensor &tensor) -{ - arm_compute::Window window; - window.use_tensor_dimensions(tensor.info()->tensor_shape()); - - execute_window_loop(window, [&](const arm_compute::Coordinates& id) - { - uint32_t width = getSizeOfDimension(_inputShape, 2); - uint32_t offset = id.y() * width + id.x(); - *reinterpret_cast(tensor.ptr_to_element(id)) = - *(_inputData + offset); - }); - return true; -} - -bool WeightAccessor::access_tensor(arm_compute::ITensor &tensor) -{ - arm_compute::Window window; - window.use_tensor_dimensions(tensor.info()->tensor_shape()); - - execute_window_loop(window, [&](const arm_compute::Coordinates& id) - { - uint32_t width = getSizeOfDimension(_filterShape, 2); - uint32_t offset = id.y() * width + id.x(); - *reinterpret_cast(tensor.ptr_to_element(id)) = - *(_filterData + offset); - }); - return true; -} - -bool BiasAccessor::access_tensor(arm_compute::ITensor &tensor) -{ - arm_compute::Window window; - window.use_tensor_dimensions(tensor.info()->tensor_shape()); - - execute_window_loop(window, [&](const arm_compute::Coordinates& id) - { - uint32_t width = getSizeOfDimension(_biasShape, 2); - uint32_t offset = id.y() * width + id.x(); - *reinterpret_cast(tensor.ptr_to_element(id)) = - *(_biasData + offset); - }); - return true; -} - -bool OutputAccessor::access_tensor(arm_compute::ITensor &tensor) -{ - arm_compute::Window window; - window.use_tensor_dimensions(tensor.info()->tensor_shape()); - - execute_window_loop(window, [&](const arm_compute::Coordinates& id) - { - uint32_t width = getSizeOfDimension(_outputShape, 2); - uint32_t offset = id.y() * width + id.x(); - *(_outputData + offset) = - *reinterpret_cast(tensor.ptr_to_element(id)); - }); - return false; // end the network -} diff --git a/contrib/labs/kerneltesting/conv2d/io_accessor.h b/contrib/labs/kerneltesting/conv2d/io_accessor.h deleted file mode 100644 index 0201f72..0000000 --- a/contrib/labs/kerneltesting/conv2d/io_accessor.h +++ /dev/null @@ -1,104 +0,0 @@ -/* - * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -/* - * Copyright (c) 2018 ARM Limited. - * - * SPDX-License-Identifier: MIT - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to - * deal in the Software without restriction, including without limitation the - * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or - * sell copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ -#ifndef __CONV2D_IO_ACCESSOR_H__ -#define __CONV2D_IO_ACCESSOR_H__ - -#include -#include - -#include "types.h" - -class InputAccessor : public arm_compute::graph::ITensorAccessor -{ -public: - InputAccessor(const float* inputData, const Shape& inputShape); - InputAccessor(InputAccessor&&) = default; - - // Inherited methods overriden: - bool access_tensor(arm_compute::ITensor& tensor) override; - -private: - const float* _inputData; - const Shape& _inputShape; -}; - -class WeightAccessor : public arm_compute::graph::ITensorAccessor -{ -public: - WeightAccessor(const float* filterData, const Shape& filterShape); - WeightAccessor(WeightAccessor&&) = default; - - // Inherited methods overriden: - bool access_tensor(arm_compute::ITensor& tensor) override; - -private: - const float* _filterData; - const Shape& _filterShape; -}; - -class BiasAccessor : public arm_compute::graph::ITensorAccessor -{ -public: - BiasAccessor(const float* biasData, const Shape& biasShape); - BiasAccessor(BiasAccessor&&) = default; - - // Inherited methods overriden: - bool access_tensor(arm_compute::ITensor& tensor) override; - -private: - const float* _biasData; - const Shape& _biasShape; -}; - -class OutputAccessor : public arm_compute::graph::ITensorAccessor -{ -public: - OutputAccessor(float* outputData, const Shape& outputShape); - OutputAccessor(OutputAccessor&&) = default; - - // Inherited methods overriden: - bool access_tensor(arm_compute::ITensor& tensor) override; - -private: - float* _outputData; - const Shape& _outputShape; -}; - -#endif // __CONV2D_IO_ACCESSOR_H__ diff --git a/contrib/labs/kerneltesting/conv2d/nnfw_conv2d_test.cpp b/contrib/labs/kerneltesting/conv2d/nnfw_conv2d_test.cpp deleted file mode 100644 index 190be01..0000000 --- a/contrib/labs/kerneltesting/conv2d/nnfw_conv2d_test.cpp +++ /dev/null @@ -1,607 +0,0 @@ -/* - * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -/* - * Copyright (c) 2018 ARM Limited. - * - * SPDX-License-Identifier: MIT - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to - * deal in the Software without restriction, including without limitation the - * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or - * sell copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -#include -#include -#include - -#include -#include - -#include "types.h" -#include "common.h" -#include "optimized_ops.h" -#include "OperationUtils.h" - -#include - -#include -#include - -#include "io_accessor.h" -#include "misc/environment.h" - -static constexpr int kStaticBufferSize = 1605632; -static char static_scratch_buffer[kStaticBufferSize]; - -#define ANDROID_NN_CONV_PARAMETERS(Type) \ - uint32_t height = getSizeOfDimension(inputShape, 1); \ - uint32_t width = getSizeOfDimension(inputShape, 2); \ - uint32_t filterHeight = getSizeOfDimension(filterShape, 1); \ - uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \ - uint32_t outHeight = getSizeOfDimension(outputShape, 1); \ - uint32_t outWidth = getSizeOfDimension(outputShape, 2); \ - uint32_t inDepth = getSizeOfDimension(inputShape, 3); \ - \ - uint32_t paddingHeight = (uint32_t)padding_top; \ - uint32_t paddingWidth = (uint32_t)padding_left; \ - \ - Dims<4> im2colDim; \ - im2colDim.sizes[3] = (int)getSizeOfDimension(outputShape, 0); \ - im2colDim.sizes[2] = (int)getSizeOfDimension(outputShape, 1); \ - im2colDim.sizes[1] = (int)getSizeOfDimension(outputShape, 2); \ - im2colDim.sizes[0] = (int)inDepth * filterHeight * filterWidth; \ - \ - im2colDim.strides[0] = 1; \ - for (int i=1; i<4; i++) { \ - im2colDim.strides[i] = im2colDim.strides[i-1] * im2colDim.sizes[i-1]; \ - } \ - \ - Type* im2colData = nullptr; \ - int im2colByteSize = sizeof(Type); \ - for (int i=0; i<4; i++) { \ - im2colByteSize *= im2colDim.sizes[i]; \ - } \ - if (im2colByteSize <= kStaticBufferSize) { \ - im2colData = reinterpret_cast(static_scratch_buffer); \ - } else { \ - im2colData = new (std::nothrow) Type[im2colByteSize / sizeof(Type)]; \ - } - - -bool convFloat32(const float* inputData, const Shape& inputShape, - const float* filterData, const Shape& filterShape, - const float* biasData, const Shape& biasShape, - int32_t padding_left, int32_t padding_right, - int32_t padding_top, int32_t padding_bottom, - int32_t stride_width, int32_t stride_height, - int32_t activation, - float* outputData, const Shape& outputShape) { - - ANDROID_NN_CONV_PARAMETERS(float) - - #define ANDROID_NN_CONV(activation) \ - Conv( \ - inputData, convertShapeToDims(inputShape), \ - filterData, convertShapeToDims(filterShape), \ - biasData, convertShapeToDims(biasShape), \ - stride_width, stride_height, paddingWidth, paddingHeight, \ - outputData, convertShapeToDims(outputShape), \ - im2colData, im2colDim) - - ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_CONV) - - #undef ANDROID_NN_CONV - - if (im2colByteSize > kStaticBufferSize) { - delete[] im2colData; - } - return true; -} - -//----------------------------------------------------------------------------- - -using arm_compute::DataType; -using arm_compute::graph::Target; -using arm_compute::graph::TensorDescriptor; -using arm_compute::TensorShape; -using arm_compute::graph::frontend::InputLayer; -using arm_compute::graph::frontend::OutputLayer; - -namespace acl_graph { - -bool convFloat32(const float* inputData, const Shape& inputShape, - const float* filterData, const Shape& filterShape, - const float* biasData, const Shape& biasShape, - int32_t padding_left, int32_t padding_right, - int32_t padding_top, int32_t padding_bottom, - int32_t stride_width, int32_t stride_height, - int32_t activation, - float* outputData, const Shape& outputShape) -{ - // Try with simple build-run with ACL Layer - arm_compute::graph::frontend::Stream graph{0, "ACL_CONV2D_TEST"}; - - Target target_hint = nnfw::misc::get_env_int("NNFW_ACL_USENEON") - ? Target::NEON : Target::CL; - - // Not sure about which index is which value - uint32_t tsi_c = getSizeOfDimension(inputShape, 0); - uint32_t tsi_h = getSizeOfDimension(inputShape, 1); - uint32_t tsi_w = getSizeOfDimension(inputShape, 2); - uint32_t tsi_n = getSizeOfDimension(inputShape, 3); - - uint32_t tsk_h = getSizeOfDimension(filterShape, 1); - uint32_t tsk_w = getSizeOfDimension(filterShape, 2); - uint32_t tsk_n = getSizeOfDimension(filterShape, 3); - - graph << target_hint - << InputLayer(TensorDescriptor(TensorShape(tsi_w, tsi_h, tsi_c, tsi_n), DataType::F32), - std::unique_ptr(new InputAccessor(inputData, inputShape))) - << arm_compute::graph::frontend::ConvolutionLayer( - tsk_w, tsk_h, tsk_n, - std::unique_ptr(new WeightAccessor(filterData, filterShape)), - std::unique_ptr(new BiasAccessor(biasData, biasShape)), - arm_compute::PadStrideInfo(stride_width, stride_height, padding_top, padding_bottom)) - ; - if (activation != static_cast(FusedActivationFunc::NONE)) { - arm_compute::ActivationLayerInfo::ActivationFunction actFunc = - arm_compute::ActivationLayerInfo::ActivationFunction::RELU; - - graph << arm_compute::graph::frontend::ActivationLayer(arm_compute::ActivationLayerInfo(actFunc)); - // Activation does not provide output Tensor and makes next layer fail to add to graph - // when it's the last(output) layer. To solve this, need to add a dummy layer. - uint32_t tso_c = getSizeOfDimension(outputShape, 0); - uint32_t tso_h = getSizeOfDimension(outputShape, 1); - uint32_t tso_w = getSizeOfDimension(outputShape, 2); - uint32_t tso_n = getSizeOfDimension(outputShape, 3); - graph << arm_compute::graph::frontend::ReshapeLayer(TensorShape(tso_w, tso_h, tso_c, tso_n)); - } - graph << OutputLayer(std::unique_ptr(new OutputAccessor(outputData, outputShape))) - ; - - graph.run(); - - return true; -} - -} // namespace acl_graph - -//----------------------------------------------------------------------------- - -using arm_compute::TensorInfo; - -namespace acl_runtime { - -TensorShape calculate_convolution_layer_output_shape( - const arm_compute::TensorShape &input_shape, - const arm_compute::TensorShape &weights_shape, - const arm_compute::PadStrideInfo &conv_info) -{ - unsigned int output_width = 0; - unsigned int output_height = 0; - - // Get output width and height - std::tie(output_width, output_height) = - arm_compute::scaled_dimensions( - input_shape.x(), input_shape.y(), - weights_shape.x(), weights_shape.y(), - conv_info); - - // Create output shape - TensorShape output_shape = input_shape; - output_shape.set(0, output_width); - output_shape.set(1, output_height); - output_shape.set(2, weights_shape[3]); - - return output_shape; -} - -bool convFloat32(const float* inputData, const Shape& inputShape, - const float* filterData, const Shape& filterShape, - const float* biasData, const Shape& biasShape, - int32_t padding_left, int32_t padding_right, - int32_t padding_top, int32_t padding_bottom, - int32_t stride_width, int32_t stride_height, - int32_t activation, - float* outputData, const Shape& outputShape) -{ - arm_compute::CLScheduler::get().default_init(); - - uint32_t tsi_c = getSizeOfDimension(inputShape, 0); - uint32_t tsi_h = getSizeOfDimension(inputShape, 1); - uint32_t tsi_w = getSizeOfDimension(inputShape, 2); - uint32_t tsi_n = getSizeOfDimension(inputShape, 3); - - uint32_t tsk_h = getSizeOfDimension(filterShape, 1); - uint32_t tsk_w = getSizeOfDimension(filterShape, 2); - uint32_t tsk_n = getSizeOfDimension(filterShape, 3); - - TensorShape input_shape = TensorShape(tsi_w, tsi_h, tsi_c, tsi_n); - TensorShape filter_shape = TensorShape(tsi_w, tsi_h, tsi_c, tsi_n); - arm_compute::PadStrideInfo conv_info = - arm_compute::PadStrideInfo(stride_width, stride_height, padding_top, padding_bottom); - - TensorShape output_shape = calculate_convolution_layer_output_shape( - input_shape, filter_shape, conv_info); - - uint32_t tso_c = output_shape[0]; - uint32_t tso_w = output_shape[1]; - uint32_t tso_h = output_shape[2]; - uint32_t tso_n = output_shape[3]; - - arm_compute::CLTensor input, output, bias, filter; - - input.allocator()->init(TensorInfo(tsi_w, tsi_h, arm_compute::Format::F32)); - output.allocator()->init(TensorInfo(tso_w, tso_h, arm_compute::Format::F32)); - bias.allocator()->init(TensorInfo(tso_w, tso_h, arm_compute::Format::F32)); - filter.allocator()->init(TensorInfo(tsk_w, tsk_h, arm_compute::Format::F32)); - - input.allocator()->allocate(); - output.allocator()->allocate(); - bias.allocator()->allocate(); - filter.allocator()->allocate(); - - input.map(); - InputAccessor ia(inputData, inputShape); - ia.access_tensor(input); - input.unmap(); - - bias.map(); - BiasAccessor ba(biasData, biasShape); - ba.access_tensor(bias); - bias.unmap(); - - filter.map(); - WeightAccessor fa(filterData, filterShape); - fa.access_tensor(filter); - filter.unmap(); - - arm_compute::CLConvolutionLayer conv_f; - conv_f.configure(&input, &filter, &bias, &output, conv_info); - - arm_compute::CLScheduler::get().sync(); - - conv_f.run(); - - output.map(); - OutputAccessor oa(outputData, outputShape); - oa.access_tensor(output); - output.unmap(); - - return true; -} - -} // namespace acl_runtime - -//----------------------------------------------------------------------------- - -enum COMPUTE_TYPE { - COMPUTE_DEFAULT = 0, - COMPUTE_ACLGRAPH, - COMPUTE_ACLRT -}; - -bool convFloat32(const float* inputData, const Shape& inputShape, - const float* filterData, const Shape& filterShape, - const float* biasData, const Shape& biasShape, - int32_t padding_left, int32_t padding_right, - int32_t padding_top, int32_t padding_bottom, - int32_t stride_width, int32_t stride_height, - int32_t activation, - float* outputData, const Shape& outputShape, - COMPUTE_TYPE compType) { - - switch (compType) - { - case COMPUTE_DEFAULT : - return convFloat32(inputData, inputShape, filterData, filterShape, - biasData, biasShape, padding_left, padding_right, - padding_top, padding_bottom, stride_width, stride_height, - activation, outputData, outputShape); - - case COMPUTE_ACLGRAPH : - return acl_graph::convFloat32(inputData, inputShape, filterData, filterShape, - biasData, biasShape, padding_left, padding_right, - padding_top, padding_bottom, stride_width, stride_height, - activation, outputData, outputShape); - - case COMPUTE_ACLRT : - return acl_runtime::convFloat32(inputData, inputShape, filterData, filterShape, - biasData, biasShape, padding_left, padding_right, - padding_top, padding_bottom, stride_width, stride_height, - activation, outputData, outputShape); - } - return false; -} - -//----------------------------------------------------------------------------- - -void dumpData(const char* name, const float* data, const Shape& shape) -{ - uint32_t height = getSizeOfDimension(shape, 1); - uint32_t width = getSizeOfDimension(shape, 2); - - std::cout << "---" << name << "---" << std::endl; - for (int h = 0; h < height; h++) { - std::cout << "H=" << h << " | "; - for (int w = 0; w < width; w++) { - std::cout << data[h * width + w] << ","; - } - std::cout << std::endl; - } -} - -void initData(float* outputData, int num, float value) -{ - for (int i = 0; i < num; i++) { - *(outputData + i) = value; - } -} - -void initDataSeq(float* outputData, int num, float value) -{ - for (int i = 0; i < num; i++) { - *(outputData + i) = value; - value += 1.0; - } -} - -// compareData -// return true if result == expected with the shape info, -// otherwise false -bool compareData(const float* result, const float* expected, const Shape& shape) -{ - NN_CHECK_EQ(shape.dimensions.size(), 4); - - uint32_t height = getSizeOfDimension(shape, 1); - uint32_t width = getSizeOfDimension(shape, 2); - uint32_t numitems = height * width; - for (int item = 0; item < numitems; item++) { - if (*(result + item) != *(expected + item)) { - LOG(ERROR) << "compareData failed: result " << *(result + item) - << ", expected " << *(expected + item) << std::endl; - return false; - } - } - return true; -} - -int test_3x3_1x1_one(COMPUTE_TYPE comptype) -{ - float inputData[9]; - const Shape inputShape = { OperandType::FLOAT32, {1,3,3,1}, 1.0, 0 }; - float filterData[9]; - const Shape filterShape = { OperandType::FLOAT32, {1,3,3,1}, 1.0, 0 }; - float biasData[1] = { 1.0 }; - const Shape biasShape = { OperandType::FLOAT32, {1,1,1,1}, 1.0, 0 }; - int32_t padding_left = 0; - int32_t padding_right = 0; - int32_t padding_top = 0; - int32_t padding_bottom = 0; - int32_t stride_width = 1; - int32_t stride_height = 1; - int32_t activation = static_cast(FusedActivationFunc::RELU); - float* outputData = new float[9]; - const Shape outputShape = { OperandType::FLOAT32, {1,1,1,1}, 1.0, 0 }; - float* expectData = new float[9]; - bool bret; - - initData(inputData, sizeof(inputData) / sizeof(inputData[0]), 1.0); - initData(filterData, sizeof(filterData) / sizeof(filterData[0]), 1.0); - initData(outputData, sizeof(outputData) / sizeof(outputData[0]), 0.0); - initData(expectData, sizeof(expectData) / sizeof(expectData[0]), 0.0); - - bret = convFloat32(inputData, inputShape, - filterData, filterShape, - biasData, biasShape, - padding_left, padding_right, - padding_top, padding_bottom, - stride_width, stride_height, - activation, - expectData, outputShape, - COMPUTE_DEFAULT); - - bret = convFloat32(inputData, inputShape, - filterData, filterShape, - biasData, biasShape, - padding_left, padding_right, - padding_top, padding_bottom, - stride_width, stride_height, - activation, - outputData, outputShape, - comptype); - - dumpData("Input ", inputData, inputShape); - dumpData("Filter ", filterData, filterShape); - dumpData("Bias ", biasData, biasShape); - dumpData("Output ", outputData, outputShape); - std::cout << std::endl; - - bret = compareData(outputData, expectData, outputShape); - - delete outputData; - delete expectData; - - if (!bret) - { - LOG(ERROR) << "TEST FAILED " << __FUNCTION__ << std::endl; - return -1; - } - return 0; -} - -int test_3x3_3x3_one(void) -{ - float inputData[9]; - const Shape inputShape = { OperandType::FLOAT32, {1,3,3,1}, 1.0, 0 }; - float filterData[9]; - const Shape filterShape = { OperandType::FLOAT32, {1,3,3,1}, 1.0, 0 }; - float biasData[1] = { 1.0 }; - const Shape biasShape = { OperandType::FLOAT32, {1,1,1,1}, 1.0, 0 }; - int32_t padding_left = 1; - int32_t padding_right = 1; - int32_t padding_top = 1; - int32_t padding_bottom = 1; - int32_t stride_width = 1; - int32_t stride_height = 1; - int32_t activation = static_cast(FusedActivationFunc::RELU); - float* outputData = new float[9]; - const Shape outputShape = { OperandType::FLOAT32, {1,3,3,1}, 1.0, 0 }; - float* expectData = new float[9]; - bool bret; - - initData(inputData, sizeof(inputData) / sizeof(inputData[0]), 1.0); - initData(filterData, sizeof(filterData) / sizeof(filterData[0]), 1.0); - initData(outputData, sizeof(outputData) / sizeof(outputData[0]), 0.0); - initData(expectData, sizeof(expectData) / sizeof(expectData[0]), 0.0); - - bret = convFloat32(inputData, inputShape, - filterData, filterShape, - biasData, biasShape, - padding_left, padding_right, - padding_top, padding_bottom, - stride_width, stride_height, - activation, - expectData, outputShape, - COMPUTE_DEFAULT); - - bret = convFloat32(inputData, inputShape, - filterData, filterShape, - biasData, biasShape, - padding_left, padding_right, - padding_top, padding_bottom, - stride_width, stride_height, - activation, - outputData, outputShape, - COMPUTE_ACLGRAPH); - - dumpData("Input ", inputData, inputShape); - dumpData("Filter ", filterData, filterShape); - dumpData("Bias ", biasData, biasShape); - dumpData("Output ", outputData, outputShape); - std::cout << std::endl; - - bret = compareData(outputData, expectData, outputShape); - - delete outputData; - delete expectData; - - if (!bret) - { - LOG(ERROR) << "TEST FAILED " << __FUNCTION__ << std::endl; - return -1; - } - return 0; -} - -int test_3x3_3x3_seq(void) -{ - float inputData[9]; - const Shape inputShape = { OperandType::FLOAT32, {1,3,3,1}, 1.0, 0 }; - float filterData[9]; - const Shape filterShape = { OperandType::FLOAT32, {1,3,3,1}, 1.0, 0 }; - float biasData[1] = { 1.0 }; - const Shape biasShape = { OperandType::FLOAT32, {1,1,1,1}, 1.0, 0 }; - int32_t padding_left = 1; - int32_t padding_right = 1; - int32_t padding_top = 1; - int32_t padding_bottom = 1; - int32_t stride_width = 1; - int32_t stride_height = 1; - int32_t activation = static_cast(FusedActivationFunc::RELU); - float* outputData = new float[9]; - const Shape outputShape = { OperandType::FLOAT32, {1,3,3,1}, 1.0, 0 }; - float* expectData = new float[9]; - bool bret; - - initDataSeq(inputData, sizeof(inputData) / sizeof(inputData[0]), 1.0); - initDataSeq(filterData, sizeof(filterData) / sizeof(filterData[0]), 1.0); - initDataSeq(outputData, sizeof(outputData) / sizeof(outputData[0]), 0.0); - initData(expectData, sizeof(expectData) / sizeof(expectData[0]), 0.0); - - bret = convFloat32(inputData, inputShape, - filterData, filterShape, - biasData, biasShape, - padding_left, padding_right, - padding_top, padding_bottom, - stride_width, stride_height, - activation, - expectData, outputShape, - COMPUTE_DEFAULT); - - bret = convFloat32(inputData, inputShape, - filterData, filterShape, - biasData, biasShape, - padding_left, padding_right, - padding_top, padding_bottom, - stride_width, stride_height, - activation, - outputData, outputShape, - COMPUTE_ACLGRAPH); - - dumpData("Input ", inputData, inputShape); - dumpData("Filter ", filterData, filterShape); - dumpData("Bias ", biasData, biasShape); - dumpData("Output ", outputData, outputShape); - std::cout << std::endl; - - bret = compareData(outputData, expectData, outputShape); - - delete outputData; - delete expectData; - - if (!bret) - { - LOG(ERROR) << "TEST FAILED " << __FUNCTION__ << std::endl; - return -1; - } - return 0; -} - -int main(int argc, char* argv[]) -{ - int result; - - // input 3x3, output 1x1, all data 1.0 - result = test_3x3_1x1_one(COMPUTE_ACLGRAPH); - if (result) return result; - result = test_3x3_1x1_one(COMPUTE_ACLRT); - if (result) return result; - - // input 3x3, output 3x3, all data 1.0 - result = test_3x3_3x3_one(); - if (result) return result; - - result = test_3x3_3x3_seq(); - if (result) return result; - - return result; -} diff --git a/contrib/labs/kerneltesting/conv2d/optimized_ops.h b/contrib/labs/kerneltesting/conv2d/optimized_ops.h deleted file mode 100644 index 1d8c4ff..0000000 --- a/contrib/labs/kerneltesting/conv2d/optimized_ops.h +++ /dev/null @@ -1,339 +0,0 @@ -/* - * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -/* - * Copyright (C) 2017 The Android Open Source Project - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#ifndef ANDROID_ML_NN_COMMON_OPERATIONS_INTERNAL_OPTIMIZED_OPS_H_ -#define ANDROID_ML_NN_COMMON_OPERATIONS_INTERNAL_OPTIMIZED_OPS_H_ - -// Make a local VectorMap typedef allowing to map a float array -// as a Eigen matrix expression. The same explanation as for VectorMap -// above also applies here. -template -using MatrixMap = typename std::conditional< - std::is_const::value, - Eigen::Map::type, - Eigen::Dynamic, Eigen::Dynamic>>, - Eigen::Map>>::type; - -template -MatrixMap MapAsMatrixWithFirstDimAsRows(Scalar* data, - const Dims& dims) { - const int rows = dims.sizes[0]; - int cols = 1; - for (int d = 1; d < N; d++) { - cols *= dims.sizes[d]; - } - return MatrixMap(data, rows, cols); -} - -template -MatrixMap MapAsMatrixWithLastDimAsCols(Scalar* data, - const Dims& dims) { - const int cols = dims.sizes[N - 1]; - int rows = 1; - for (int d = 0; d < N - 1; d++) { - rows *= dims.sizes[d]; - } - return MatrixMap(data, rows, cols); -} - -template -inline void ExtractPatchIntoBufferColumn( - const Dims<4>& input_dims, int w, int h, int b, int kheight, int kwidth, - int stride_width, int stride_height, int pad_width, int pad_height, - int in_width, int in_height, int in_depth, int single_buffer_length, - int buffer_id, const T* in_data, T* conv_buffer_data, uint8 byte_zero) { - gemmlowp::ScopedProfilingLabel label("ExtractPatchIntoBufferColumn"); - // This chunk of code reshapes all the inputs corresponding to - // output (b, h, w) to a column vector in conv_buffer(:, buffer_id). - const int kwidth_times_indepth = kwidth * in_depth; - const int inwidth_times_indepth = in_width * in_depth; - const int ih_ungated_start = h * stride_height - pad_height; - const int ih_ungated_end = (ih_ungated_start + kheight); - const int ih_end = std::min(ih_ungated_end, in_height); - const int iw_ungated_start = w * stride_width - pad_width; - const int iw_ungated_end = (iw_ungated_start + kwidth); - const int iw_end = std::min(iw_ungated_end, in_width); - // If the patch is off the edge of the input image, skip writing those rows - // and columns from the patch into the output array. - const int h_offset = std::max(0, -ih_ungated_start); - const int w_offset = std::max(0, -iw_ungated_start); - const int ih_start = std::max(0, ih_ungated_start); - const int iw_start = std::max(0, iw_ungated_start); - const int single_row_num = - std::min(kwidth - w_offset, in_width - iw_start) * in_depth; - const int output_row_offset = (buffer_id * single_buffer_length); - int out_offset = - output_row_offset + (h_offset * kwidth + w_offset) * in_depth; - int in_offset = Offset(input_dims, 0, iw_start, ih_start, b); - - // Express all of the calculations as padding around the input patch. - const int top_padding = h_offset; - const int bottom_padding = (ih_ungated_end - ih_end); - const int left_padding = w_offset; - const int right_padding = (iw_ungated_end - iw_end); - assert(single_row_num == - ((kwidth - (left_padding + right_padding)) * in_depth)); - - // Write out zeroes to the elements representing the top rows of the input - // patch that are off the edge of the input image. - if (top_padding > 0) { - const int top_row_elements = (top_padding * kwidth * in_depth); - memset(conv_buffer_data + output_row_offset, byte_zero, - (top_row_elements * sizeof(T))); - } - - // If the patch is on the interior of the input image horizontally, just copy - // over the rows sequentially, otherwise add zero padding at the start or end. - if ((left_padding == 0) && (right_padding == 0)) { - for (int ih = ih_start; ih < ih_end; ++ih) { - memcpy(conv_buffer_data + out_offset, in_data + in_offset, - single_row_num * sizeof(T)); - out_offset += kwidth_times_indepth; - in_offset += inwidth_times_indepth; - } - } else { - for (int ih = ih_start; ih < ih_end; ++ih) { - if (left_padding > 0) { - const int left_start = (out_offset - (left_padding * in_depth)); - memset(conv_buffer_data + left_start, byte_zero, - (left_padding * in_depth * sizeof(T))); - } - memcpy(conv_buffer_data + out_offset, in_data + in_offset, - single_row_num * sizeof(T)); - if (right_padding > 0) { - const int right_start = (out_offset + single_row_num); - memset(conv_buffer_data + right_start, byte_zero, - (right_padding * in_depth * sizeof(T))); - } - out_offset += kwidth_times_indepth; - in_offset += inwidth_times_indepth; - } - } - - // If the bottom of the patch falls off the input image, pad the values - // representing those input rows with zeroes. - if (bottom_padding > 0) { - const int bottom_row_elements = (bottom_padding * kwidth * in_depth); - const int bottom_start = - output_row_offset + - ((top_padding + (ih_end - ih_start)) * kwidth * in_depth); - memset(conv_buffer_data + bottom_start, byte_zero, - (bottom_row_elements * sizeof(T))); - } -} - -#ifdef USE_NEON -template -void AddBiasAndEvalActivationFunction(const float* bias_data, - const Dims<4>& bias_dims, - float* array_data, - const Dims<4>& array_dims) { - gemmlowp::ScopedProfilingLabel label("AddBiasAndEvalActivationFunction"); - const int bias_size = bias_dims.sizes[3] * bias_dims.strides[3]; - const int array_size = array_dims.sizes[3] * array_dims.strides[3]; - DCHECK_EQ((array_size % bias_size), 0); - float* array_ptr = array_data; - float* array_end_ptr = array_ptr + array_size; - const auto zero = vdupq_n_f32(0); - const auto six = vdupq_n_f32(6); - const auto neg_one = vdupq_n_f32(-1); - const auto one = vdupq_n_f32(1); - for (; array_ptr != array_end_ptr; array_ptr += bias_size) { - int i = 0; - for (; i <= bias_size - 16; i += 16) { - auto b0 = vld1q_f32(bias_data + i); - auto b1 = vld1q_f32(bias_data + i + 4); - auto b2 = vld1q_f32(bias_data + i + 8); - auto b3 = vld1q_f32(bias_data + i + 12); - auto a0 = vld1q_f32(array_ptr + i); - auto a1 = vld1q_f32(array_ptr + i + 4); - auto a2 = vld1q_f32(array_ptr + i + 8); - auto a3 = vld1q_f32(array_ptr + i + 12); - auto x0 = vaddq_f32(a0, b0); - auto x1 = vaddq_f32(a1, b1); - auto x2 = vaddq_f32(a2, b2); - auto x3 = vaddq_f32(a3, b3); - if (Ac == FusedActivationFunctionType::kRelu || - Ac == FusedActivationFunctionType::kRelu6) { - x0 = vmaxq_f32(zero, x0); - x1 = vmaxq_f32(zero, x1); - x2 = vmaxq_f32(zero, x2); - x3 = vmaxq_f32(zero, x3); - if (Ac == FusedActivationFunctionType::kRelu6) { - x0 = vminq_f32(six, x0); - x1 = vminq_f32(six, x1); - x2 = vminq_f32(six, x2); - x3 = vminq_f32(six, x3); - } - } else if (Ac == FusedActivationFunctionType::kRelu1) { - x0 = vmaxq_f32(neg_one, x0); - x1 = vmaxq_f32(neg_one, x1); - x2 = vmaxq_f32(neg_one, x2); - x3 = vmaxq_f32(neg_one, x3); - x0 = vminq_f32(one, x0); - x1 = vminq_f32(one, x1); - x2 = vminq_f32(one, x2); - x3 = vminq_f32(one, x3); - } - vst1q_f32(array_ptr + i, x0); - vst1q_f32(array_ptr + i + 4, x1); - vst1q_f32(array_ptr + i + 8, x2); - vst1q_f32(array_ptr + i + 12, x3); - } - for (; i <= bias_size - 4; i += 4) { - auto b = vld1q_f32(bias_data + i); - auto a = vld1q_f32(array_ptr + i); - auto x = vaddq_f32(a, b); - if (Ac == FusedActivationFunctionType::kRelu || - Ac == FusedActivationFunctionType::kRelu6) { - x = vmaxq_f32(zero, x); - if (Ac == FusedActivationFunctionType::kRelu6) { - x = vminq_f32(six, x); - } - } else if (Ac == FusedActivationFunctionType::kRelu1) { - x = vmaxq_f32(neg_one, x); - x = vminq_f32(one, x); - } - vst1q_f32(array_ptr + i, x); - } - for (; i < bias_size; i++) { - array_ptr[i] = ActivationFunction(array_ptr[i] + bias_data[i]); - } - } -} -#else // not NEON -template -void AddBiasAndEvalActivationFunction(const float* bias_data, - const Dims<4>& bias_dims, - float* array_data, - const Dims<4>& array_dims) { - gemmlowp::ScopedProfilingLabel label("AddBiasAndEvalActivationFunction"); - const int bias_size = bias_dims.sizes[3] * bias_dims.strides[3]; - const int array_size = array_dims.sizes[3] * array_dims.strides[3]; - DCHECK_EQ((array_size % bias_size), 0); - for (int array_offset = 0; array_offset < array_size; - array_offset += bias_size) { - for (int i = 0; i < bias_size; i++) { - array_data[array_offset + i] = - ActivationFunction(array_data[array_offset + i] + bias_data[i]); - } - } -} -#endif - -template -void Gemm(const Eigen::MatrixBase& lhs, const Eigen::MatrixBase& rhs, - Eigen::MatrixBase* result) { - if (rhs.cols() == 1) { - gemmlowp::ScopedProfilingLabel label("GEMV"); - result->col(0).noalias() = lhs * rhs.col(0); - } else { - gemmlowp::ScopedProfilingLabel label("GEMM"); - result->noalias() = lhs * rhs; - } -} - -template -void Im2col(const T* input_data, const Dims<4>& input_dims, int stride_width, - int stride_height, int pad_width, int pad_height, int kheight, - int kwidth, uint8 byte_zero, T* output_data, - const Dims<4>& output_dims) { - gemmlowp::ScopedProfilingLabel label("Im2col"); - DCHECK(IsPackedWithoutStrides(input_dims)); - DCHECK(IsPackedWithoutStrides(output_dims)); - const int batches = MatchingArraySize(input_dims, 3, output_dims, 3); - const int input_depth = ArraySize(input_dims, 0); - const int input_width = ArraySize(input_dims, 1); - const int input_height = ArraySize(input_dims, 2); - const int output_depth = ArraySize(output_dims, 0); - const int output_width = ArraySize(output_dims, 1); - const int output_height = ArraySize(output_dims, 2); - - int buffer_id = 0; - // Loop over the output nodes. - for (int b = 0; b < batches; ++b) { - for (int h = 0; h < output_height; ++h) { - for (int w = 0; w < output_width; ++w) { - ExtractPatchIntoBufferColumn( - input_dims, w, h, b, kheight, kwidth, stride_width, stride_height, - pad_width, pad_height, input_width, input_height, input_depth, - output_depth, buffer_id, input_data, output_data, byte_zero); - ++buffer_id; - } - } - } -} - -template -void Conv(const float* input_data, const Dims<4>& input_dims, - const float* filter_data, const Dims<4>& filter_dims, - const float* bias_data, const Dims<4>& bias_dims, int stride_width, - int stride_height, int pad_width, int pad_height, float* output_data, - const Dims<4>& output_dims, float* im2col_data, - const Dims<4>& im2col_dims) { - (void)im2col_data; - (void)im2col_dims; - gemmlowp::ScopedProfilingLabel label("Conv"); - - const float* gemm_input_data = nullptr; - const Dims<4>* gemm_input_dims = nullptr; - const int filter_width = ArraySize(filter_dims, 1); - const int filter_height = ArraySize(filter_dims, 2); - const bool need_im2col = stride_width != 1 || stride_height != 1 || - filter_width != 1 || filter_height != 1; - if (need_im2col) { - DCHECK(im2col_data); - Im2col(input_data, input_dims, stride_width, stride_height, pad_width, - pad_height, filter_height, filter_width, 0, im2col_data, - im2col_dims); - gemm_input_data = im2col_data; - gemm_input_dims = &im2col_dims; - } else { - DCHECK(!im2col_data); - gemm_input_data = input_data; - gemm_input_dims = &input_dims; - } - - const auto im2col_matrix_map = - MapAsMatrixWithFirstDimAsRows(gemm_input_data, *gemm_input_dims); - const auto filter_matrix_map = - MapAsMatrixWithLastDimAsCols(filter_data, filter_dims); - auto output_matrix_map = - MapAsMatrixWithFirstDimAsRows(output_data, output_dims); - - Gemm(filter_matrix_map.transpose(), im2col_matrix_map, &output_matrix_map); - - AddBiasAndEvalActivationFunction(bias_data, bias_dims, output_data, - output_dims); -} - -#endif // ANDROID_ML_NN_COMMON_OPERATIONS_INTERNAL_OPTIMIZED_OPS_H_ diff --git a/contrib/labs/kerneltesting/conv2d/types.h b/contrib/labs/kerneltesting/conv2d/types.h deleted file mode 100644 index 3d09457..0000000 --- a/contrib/labs/kerneltesting/conv2d/types.h +++ /dev/null @@ -1,146 +0,0 @@ -/* - * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -/* - * Copyright (C) 2017 The Android Open Source Project - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#ifndef ANDROID_ML_NN_COMMON_OPERATIONS_INTERNAL_TYPES_H_ -#define ANDROID_ML_NN_COMMON_OPERATIONS_INTERNAL_TYPES_H_ - -enum class OperandType : int32_t { - FLOAT32 = 0, - INT32 = 1, - UINT32 = 2, - TENSOR_FLOAT32 = 3, - TENSOR_INT32 = 4, - TENSOR_QUANT8_ASYMM = 5, - OEM = 10000, - TENSOR_OEM_BYTE = 10001, -}; - -#include "compatibility.h" - -enum class FusedActivationFunctionType { kNone, kRelu6, kRelu1, kRelu }; - -template -struct Dims { - int sizes[N]; - int strides[N]; -}; - -// The type and dimensions of an operand. -struct Shape { - OperandType type; - std::vector dimensions; - float scale; - int32_t offset; -}; - -inline uint32_t getSizeOfDimension(const Shape& shape, uint32_t dimensionIdx) { - if (dimensionIdx >= shape.dimensions.size()) { - // TODO, log the error - return 0; - } - return shape.dimensions[dimensionIdx]; -} - -inline Dims<4> convertShapeToDims(const Shape& shape) { - Dims<4> dims; - for (int i=0; i<4; i++) { - dims.sizes[i] = 1; - } - - if (shape.dimensions.size() == 1) { - dims.sizes[0] = (int)getSizeOfDimension(shape, 0); - } else { - for (int i=0; i<4; i++) { - int src = (int)shape.dimensions.size()-i-1; - if (src >= 0) { - dims.sizes[i] = (int)getSizeOfDimension(shape, src); - } - } - } - - dims.strides[0] = 1; - for (int i = 1; i<4; i++) { - dims.strides[i] = dims.strides[i-1] * dims.sizes[i-1]; - } - return dims; -} - -inline int Offset(const Dims<4>& dims, int i0, int i1, int i2, int i3) { - DCHECK(i0 >= 0 && i0 < dims.sizes[0]); - DCHECK(i1 >= 0 && i1 < dims.sizes[1]); - DCHECK(i2 >= 0 && i2 < dims.sizes[2]); - DCHECK(i3 >= 0 && i3 < dims.sizes[3]); - return i0 * dims.strides[0] + i1 * dims.strides[1] + i2 * dims.strides[2] + - i3 * dims.strides[3]; -} - -// Get array size, DCHECKing that the dim index is in range. -template -int ArraySize(const Dims& array, int index) { - DCHECK(index >= 0 && index < N); - return array.sizes[index]; -} - -// Get common array size, DCHECKing that they all agree. -template -int MatchingArraySize(const ArrayType1& array1, int index1, - const ArrayType2& array2, int index2) { - DCHECK_EQ(ArraySize(array1, index1), ArraySize(array2, index2)); - return ArraySize(array1, index1); -} - -template -int MatchingArraySize(const ArrayType1& array1, int index1, - const ArrayType2& array2, int index2, Args... args) { - DCHECK_EQ(ArraySize(array1, index1), ArraySize(array2, index2)); - return MatchingArraySize(array1, index1, args...); -} - -inline int RequiredBufferSizeForDims(const Dims<4>& dims) { - int max_offset = 0; - for (int i = 0; i < 4; i++) { - max_offset += (dims.sizes[i] - 1) * dims.strides[i]; - } - return max_offset + 1; -} - -template -bool IsPackedWithoutStrides(const Dims& dims) { - int expected_stride = 1; - for (int d = 0; d < N; d++) { - if (dims.strides[d] != expected_stride) return false; - expected_stride *= dims.sizes[d]; - } - return true; -} - -#endif // ANDROID_ML_NN_COMMON_OPERATIONS_INTERNAL_TYPES_H_ -- 2.7.4