From 9cf861e8faf21cbd623ef762127767d241a86088 Mon Sep 17 00:00:00 2001 From: Martin Kroeker Date: Sun, 28 Feb 2021 18:51:03 +0100 Subject: [PATCH] Add rewritten cchkee.F from Reference-LAPACK PR335 --- lapack-netlib/TESTING/EIG/cchkee.F | 2553 ++++++++++++++++++++++++++++++++++++ 1 file changed, 2553 insertions(+) create mode 100644 lapack-netlib/TESTING/EIG/cchkee.F diff --git a/lapack-netlib/TESTING/EIG/cchkee.F b/lapack-netlib/TESTING/EIG/cchkee.F new file mode 100644 index 0000000..0d3d749 --- /dev/null +++ b/lapack-netlib/TESTING/EIG/cchkee.F @@ -0,0 +1,2553 @@ +*> \brief \b CCHKEE +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +* Definition: +* =========== +* +* PROGRAM CCHKEE +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> CCHKEE tests the COMPLEX LAPACK subroutines for the matrix +*> eigenvalue problem. The test paths in this version are +*> +*> NEP (Nonsymmetric Eigenvalue Problem): +*> Test CGEHRD, CUNGHR, CHSEQR, CTREVC, CHSEIN, and CUNMHR +*> +*> SEP (Hermitian Eigenvalue Problem): +*> Test CHETRD, CUNGTR, CSTEQR, CSTERF, CSTEIN, CSTEDC, +*> and drivers CHEEV(X), CHBEV(X), CHPEV(X), +*> CHEEVD, CHBEVD, CHPEVD +*> +*> SVD (Singular Value Decomposition): +*> Test CGEBRD, CUNGBR, and CBDSQR +*> and the drivers CGESVD, CGESDD +*> +*> CEV (Nonsymmetric Eigenvalue/eigenvector Driver): +*> Test CGEEV +*> +*> CES (Nonsymmetric Schur form Driver): +*> Test CGEES +*> +*> CVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver): +*> Test CGEEVX +*> +*> CSX (Nonsymmetric Schur form Expert Driver): +*> Test CGEESX +*> +*> CGG (Generalized Nonsymmetric Eigenvalue Problem): +*> Test CGGHD3, CGGBAL, CGGBAK, CHGEQZ, and CTGEVC +*> +*> CGS (Generalized Nonsymmetric Schur form Driver): +*> Test CGGES +*> +*> CGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver): +*> Test CGGEV +*> +*> CGX (Generalized Nonsymmetric Schur form Expert Driver): +*> Test CGGESX +*> +*> CXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver): +*> Test CGGEVX +*> +*> CSG (Hermitian Generalized Eigenvalue Problem): +*> Test CHEGST, CHEGV, CHEGVD, CHEGVX, CHPGST, CHPGV, CHPGVD, +*> CHPGVX, CHBGST, CHBGV, CHBGVD, and CHBGVX +*> +*> CHB (Hermitian Band Eigenvalue Problem): +*> Test CHBTRD +*> +*> CBB (Band Singular Value Decomposition): +*> Test CGBBRD +*> +*> CEC (Eigencondition estimation): +*> Test CTRSYL, CTREXC, CTRSNA, and CTRSEN +*> +*> CBL (Balancing a general matrix) +*> Test CGEBAL +*> +*> CBK (Back transformation on a balanced matrix) +*> Test CGEBAK +*> +*> CGL (Balancing a matrix pair) +*> Test CGGBAL +*> +*> CGK (Back transformation on a matrix pair) +*> Test CGGBAK +*> +*> GLM (Generalized Linear Regression Model): +*> Tests CGGGLM +*> +*> GQR (Generalized QR and RQ factorizations): +*> Tests CGGQRF and CGGRQF +*> +*> GSV (Generalized Singular Value Decomposition): +*> Tests CGGSVD, CGGSVP, CTGSJA, CLAGS2, CLAPLL, and CLAPMT +*> +*> CSD (CS decomposition): +*> Tests CUNCSD +*> +*> LSE (Constrained Linear Least Squares): +*> Tests CGGLSE +*> +*> Each test path has a different set of inputs, but the data sets for +*> the driver routines xEV, xES, xVX, and xSX can be concatenated in a +*> single input file. The first line of input should contain one of the +*> 3-character path names in columns 1-3. The number of remaining lines +*> depends on what is found on the first line. +*> +*> The number of matrix types used in testing is often controllable from +*> the input file. The number of matrix types for each path, and the +*> test routine that describes them, is as follows: +*> +*> Path name(s) Types Test routine +*> +*> CHS or NEP 21 CCHKHS +*> CST or SEP 21 CCHKST (routines) +*> 18 CDRVST (drivers) +*> CBD or SVD 16 CCHKBD (routines) +*> 5 CDRVBD (drivers) +*> CEV 21 CDRVEV +*> CES 21 CDRVES +*> CVX 21 CDRVVX +*> CSX 21 CDRVSX +*> CGG 26 CCHKGG (routines) +*> CGS 26 CDRGES +*> CGX 5 CDRGSX +*> CGV 26 CDRGEV +*> CXV 2 CDRGVX +*> CSG 21 CDRVSG +*> CHB 15 CCHKHB +*> CBB 15 CCHKBB +*> CEC - CCHKEC +*> CBL - CCHKBL +*> CBK - CCHKBK +*> CGL - CCHKGL +*> CGK - CCHKGK +*> GLM 8 CCKGLM +*> GQR 8 CCKGQR +*> GSV 8 CCKGSV +*> CSD 3 CCKCSD +*> LSE 8 CCKLSE +*> +*>----------------------------------------------------------------------- +*> +*> NEP input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NPARMS, INTEGER +*> Number of values of the parameters NB, NBMIN, NX, NS, and +*> MAXB. +*> +*> line 5: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 6: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for the minimum blocksize NBMIN. +*> +*> line 7: NXVAL, INTEGER array, dimension (NPARMS) +*> The values for the crossover point NX. +*> +*> line 8: INMIN, INTEGER array, dimension (NPARMS) +*> LAHQR vs TTQRE crossover point, >= 11 +*> +*> line 9: INWIN, INTEGER array, dimension (NPARMS) +*> recommended deflation window size +*> +*> line 10: INIBL, INTEGER array, dimension (NPARMS) +*> nibble crossover point +*> +*> line 11: ISHFTS, INTEGER array, dimension (NPARMS) +*> number of simultaneous shifts) +*> +*> line 12: IACC22, INTEGER array, dimension (NPARMS) +*> select structured matrix multiply: 0, 1 or 2) +*> +*> line 13: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. To have all of the test +*> ratios printed, use THRESH = 0.0 . +*> +*> line 14: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 14 was 2: +*> +*> line 15: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow +*> the user to specify the matrix types. Each line contains +*> a 3-character path name in columns 1-3, and the number +*> of matrix types must be the first nonblank item in columns +*> 4-80. If the number of matrix types is at least 1 but is +*> less than the maximum number of possible types, a second +*> line will be read to get the numbers of the matrix types to +*> be used. For example, +*> NEP 21 +*> requests all of the matrix types for the nonsymmetric +*> eigenvalue problem, while +*> NEP 4 +*> 9 10 11 12 +*> requests only matrices of type 9, 10, 11, and 12. +*> +*> The valid 3-character path names are 'NEP' or 'CHS' for the +*> nonsymmetric eigenvalue routines. +*> +*>----------------------------------------------------------------------- +*> +*> SEP or CSG input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NPARMS, INTEGER +*> Number of values of the parameters NB, NBMIN, and NX. +*> +*> line 5: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 6: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for the minimum blocksize NBMIN. +*> +*> line 7: NXVAL, INTEGER array, dimension (NPARMS) +*> The values for the crossover point NX. +*> +*> line 8: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 9: TSTCHK, LOGICAL +*> Flag indicating whether or not to test the LAPACK routines. +*> +*> line 10: TSTDRV, LOGICAL +*> Flag indicating whether or not to test the driver routines. +*> +*> line 11: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 12: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 12 was 2: +*> +*> line 13: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 13-EOF: Lines specifying matrix types, as for NEP. +*> The valid 3-character path names are 'SEP' or 'CST' for the +*> Hermitian eigenvalue routines and driver routines, and +*> 'CSG' for the routines for the Hermitian generalized +*> eigenvalue problem. +*> +*>----------------------------------------------------------------------- +*> +*> SVD input file: +*> +*> line 2: NN, INTEGER +*> Number of values of M and N. +*> +*> line 3: MVAL, INTEGER array, dimension (NN) +*> The values for the matrix row dimension M. +*> +*> line 4: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix column dimension N. +*> +*> line 5: NPARMS, INTEGER +*> Number of values of the parameter NB, NBMIN, NX, and NRHS. +*> +*> line 6: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 7: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for the minimum blocksize NBMIN. +*> +*> line 8: NXVAL, INTEGER array, dimension (NPARMS) +*> The values for the crossover point NX. +*> +*> line 9: NSVAL, INTEGER array, dimension (NPARMS) +*> The values for the number of right hand sides NRHS. +*> +*> line 10: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 11: TSTCHK, LOGICAL +*> Flag indicating whether or not to test the LAPACK routines. +*> +*> line 12: TSTDRV, LOGICAL +*> Flag indicating whether or not to test the driver routines. +*> +*> line 13: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 14: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 14 was 2: +*> +*> line 15: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 15-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path names are 'SVD' or 'CBD' for both the +*> SVD routines and the SVD driver routines. +*> +*>----------------------------------------------------------------------- +*> +*> CEV and CES data files: +*> +*> line 1: 'CEV' or 'CES' in columns 1 to 3. +*> +*> line 2: NSIZES, INTEGER +*> Number of sizes of matrices to use. Should be at least 0 +*> and at most 20. If NSIZES = 0, no testing is done +*> (although the remaining 3 lines are still read). +*> +*> line 3: NN, INTEGER array, dimension(NSIZES) +*> Dimensions of matrices to be tested. +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHSEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 5: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> If it is 0., all test case data will be printed. +*> +*> line 6: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 6 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 8 and following: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'CEV' to test CGEEV, or +*> 'CES' to test CGEES. +*> +*>----------------------------------------------------------------------- +*> +*> The CVX data has two parts. The first part is identical to CEV, +*> and the second part consists of test matrices with precomputed +*> solutions. +*> +*> line 1: 'CVX' in columns 1-3. +*> +*> line 2: NSIZES, INTEGER +*> If NSIZES = 0, no testing of randomly generated examples +*> is done, but any precomputed examples are tested. +*> +*> line 3: NN, INTEGER array, dimension(NSIZES) +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> +*> line 5: THRESH, REAL +*> +*> line 6: NEWSD, INTEGER +*> +*> If line 6 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> +*> lines 8 and following: The first line contains 'CVX' in columns 1-3 +*> followed by the number of matrix types, possibly with +*> a second line to specify certain matrix types. +*> If the number of matrix types = 0, no testing of randomly +*> generated examples is done, but any precomputed examples +*> are tested. +*> +*> remaining lines : Each matrix is stored on 1+N+N**2 lines, where N is +*> its dimension. The first line contains the dimension N and +*> ISRT (two integers). ISRT indicates whether the last N lines +*> are sorted by increasing real part of the eigenvalue +*> (ISRT=0) or by increasing imaginary part (ISRT=1). The next +*> N**2 lines contain the matrix rowwise, one entry per line. +*> The last N lines correspond to each eigenvalue. Each of +*> these last N lines contains 4 real values: the real part of +*> the eigenvalues, the imaginary part of the eigenvalue, the +*> reciprocal condition number of the eigenvalues, and the +*> reciprocal condition number of the vector eigenvector. The +*> end of data is indicated by dimension N=0. Even if no data +*> is to be tested, there must be at least one line containing +*> N=0. +*> +*>----------------------------------------------------------------------- +*> +*> The CSX data is like CVX. The first part is identical to CEV, and the +*> second part consists of test matrices with precomputed solutions. +*> +*> line 1: 'CSX' in columns 1-3. +*> +*> line 2: NSIZES, INTEGER +*> If NSIZES = 0, no testing of randomly generated examples +*> is done, but any precomputed examples are tested. +*> +*> line 3: NN, INTEGER array, dimension(NSIZES) +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> +*> line 5: THRESH, REAL +*> +*> line 6: NEWSD, INTEGER +*> +*> If line 6 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> +*> lines 8 and following: The first line contains 'CSX' in columns 1-3 +*> followed by the number of matrix types, possibly with +*> a second line to specify certain matrix types. +*> If the number of matrix types = 0, no testing of randomly +*> generated examples is done, but any precomputed examples +*> are tested. +*> +*> remaining lines : Each matrix is stored on 3+N**2 lines, where N is +*> its dimension. The first line contains the dimension N, the +*> dimension M of an invariant subspace, and ISRT. The second +*> line contains M integers, identifying the eigenvalues in the +*> invariant subspace (by their position in a list of +*> eigenvalues ordered by increasing real part (if ISRT=0) or +*> by increasing imaginary part (if ISRT=1)). The next N**2 +*> lines contain the matrix rowwise. The last line contains the +*> reciprocal condition number for the average of the selected +*> eigenvalues, and the reciprocal condition number for the +*> corresponding right invariant subspace. The end of data in +*> indicated by a line containing N=0, M=0, and ISRT = 0. Even +*> if no data is to be tested, there must be at least one line +*> containing N=0, M=0 and ISRT=0. +*> +*>----------------------------------------------------------------------- +*> +*> CGG input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NPARMS, INTEGER +*> Number of values of the parameters NB, NBMIN, NBCOL, NS, and +*> MAXB. +*> +*> line 5: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 6: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for NBMIN, the minimum row dimension for blocks. +*> +*> line 7: NSVAL, INTEGER array, dimension (NPARMS) +*> The values for the number of shifts. +*> +*> line 8: MXBVAL, INTEGER array, dimension (NPARMS) +*> The values for MAXB, used in determining minimum blocksize. +*> +*> line 9: IACC22, INTEGER array, dimension (NPARMS) +*> select structured matrix multiply: 1 or 2) +*> +*> line 10: NBCOL, INTEGER array, dimension (NPARMS) +*> The values for NBCOL, the minimum column dimension for +*> blocks. +*> +*> line 11: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 12: TSTCHK, LOGICAL +*> Flag indicating whether or not to test the LAPACK routines. +*> +*> line 13: TSTDRV, LOGICAL +*> Flag indicating whether or not to test the driver routines. +*> +*> line 14: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 15: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 15 was 2: +*> +*> line 16: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 17-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'CGG' for the generalized +*> eigenvalue problem routines and driver routines. +*> +*>----------------------------------------------------------------------- +*> +*> CGS and CGV input files: +*> +*> line 1: 'CGS' or 'CGV' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension(NN) +*> Dimensions of matrices to be tested. +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHGEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 5: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> If it is 0., all test case data will be printed. +*> +*> line 6: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits. +*> +*> line 7: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 17 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 7-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'CGS' for the generalized +*> eigenvalue problem routines and driver routines. +*> +*>----------------------------------------------------------------------- +*> +*> CGX input file: +*> line 1: 'CGX' in columns 1 to 3. +*> +*> line 2: N, INTEGER +*> Value of N. +*> +*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHGEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 4: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> Information will be printed about each test for which the +*> test ratio is greater than or equal to the threshold. +*> +*> line 5: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 6: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 6 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> If line 2 was 0: +*> +*> line 7-EOF: Precomputed examples are tested. +*> +*> remaining lines : Each example is stored on 3+2*N*N lines, where N is +*> its dimension. The first line contains the dimension (a +*> single integer). The next line contains an integer k such +*> that only the last k eigenvalues will be selected and appear +*> in the leading diagonal blocks of $A$ and $B$. The next N*N +*> lines contain the matrix A, one element per line. The next N*N +*> lines contain the matrix B. The last line contains the +*> reciprocal of the eigenvalue cluster condition number and the +*> reciprocal of the deflating subspace (associated with the +*> selected eigencluster) condition number. The end of data is +*> indicated by dimension N=0. Even if no data is to be tested, +*> there must be at least one line containing N=0. +*> +*>----------------------------------------------------------------------- +*> +*> CXV input files: +*> line 1: 'CXV' in columns 1 to 3. +*> +*> line 2: N, INTEGER +*> Value of N. +*> +*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHGEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 4: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> Information will be printed about each test for which the +*> test ratio is greater than or equal to the threshold. +*> +*> line 5: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 6: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 6 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> If line 2 was 0: +*> +*> line 7-EOF: Precomputed examples are tested. +*> +*> remaining lines : Each example is stored on 3+2*N*N lines, where N is +*> its dimension. The first line contains the dimension (a +*> single integer). The next N*N lines contain the matrix A, one +*> element per line. The next N*N lines contain the matrix B. +*> The next line contains the reciprocals of the eigenvalue +*> condition numbers. The last line contains the reciprocals of +*> the eigenvector condition numbers. The end of data is +*> indicated by dimension N=0. Even if no data is to be tested, +*> there must be at least one line containing N=0. +*> +*>----------------------------------------------------------------------- +*> +*> CHB input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NK, INTEGER +*> Number of values of K. +*> +*> line 5: KVAL, INTEGER array, dimension (NK) +*> The values for the matrix dimension K. +*> +*> line 6: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 7 was 2: +*> +*> line 8: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 8-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'CHB'. +*> +*>----------------------------------------------------------------------- +*> +*> CBB input file: +*> +*> line 2: NN, INTEGER +*> Number of values of M and N. +*> +*> line 3: MVAL, INTEGER array, dimension (NN) +*> The values for the matrix row dimension M. +*> +*> line 4: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix column dimension N. +*> +*> line 4: NK, INTEGER +*> Number of values of K. +*> +*> line 5: KVAL, INTEGER array, dimension (NK) +*> The values for the matrix bandwidth K. +*> +*> line 6: NPARMS, INTEGER +*> Number of values of the parameter NRHS +*> +*> line 7: NSVAL, INTEGER array, dimension (NPARMS) +*> The values for the number of right hand sides NRHS. +*> +*> line 8: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 9: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 9 was 2: +*> +*> line 10: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 10-EOF: Lines specifying matrix types, as for SVD. +*> The 3-character path name is 'CBB'. +*> +*>----------------------------------------------------------------------- +*> +*> CEC input file: +*> +*> line 2: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> lines 3-EOF: +*> +*> Input for testing the eigencondition routines consists of a set of +*> specially constructed test cases and their solutions. The data +*> format is not intended to be modified by the user. +*> +*>----------------------------------------------------------------------- +*> +*> CBL and CBK input files: +*> +*> line 1: 'CBL' in columns 1-3 to test CGEBAL, or 'CBK' in +*> columns 1-3 to test CGEBAK. +*> +*> The remaining lines consist of specially constructed test cases. +*> +*>----------------------------------------------------------------------- +*> +*> CGL and CGK input files: +*> +*> line 1: 'CGL' in columns 1-3 to test CGGBAL, or 'CGK' in +*> columns 1-3 to test CGGBAK. +*> +*> The remaining lines consist of specially constructed test cases. +*> +*>----------------------------------------------------------------------- +*> +*> GLM data file: +*> +*> line 1: 'GLM' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M (row dimension). +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P (row dimension). +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N (column dimension), note M <= N <= M+P. +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GLM' for the generalized +*> linear regression model routines. +*> +*>----------------------------------------------------------------------- +*> +*> GQR data file: +*> +*> line 1: 'GQR' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M. +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P. +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N. +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GQR' for the generalized +*> QR and RQ routines. +*> +*>----------------------------------------------------------------------- +*> +*> GSV data file: +*> +*> line 1: 'GSV' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M (row dimension). +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P (row dimension). +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N (column dimension). +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GSV' for the generalized +*> SVD routines. +*> +*>----------------------------------------------------------------------- +*> +*> CSD data file: +*> +*> line 1: 'CSD' in columns 1 to 3. +*> +*> line 2: NM, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NM) +*> Values of M (row and column dimension of orthogonal matrix). +*> +*> line 4: PVAL, INTEGER array, dimension(NM) +*> Values of P (row dimension of top-left block). +*> +*> line 5: NVAL, INTEGER array, dimension(NM) +*> Values of N (column dimension of top-left block). +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'CSD' for the CSD routine. +*> +*>----------------------------------------------------------------------- +*> +*> LSE data file: +*> +*> line 1: 'LSE' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M. +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P. +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N, note P <= N <= P+M. +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GSV' for the generalized +*> SVD routines. +*> +*>----------------------------------------------------------------------- +*> +*> NMAX is currently set to 132 and must be at least 12 for some of the +*> precomputed examples, and LWORK = NMAX*(5*NMAX+20) in the parameter +*> statements below. For SVD, we assume NRHS may be as big as N. The +*> parameter NEED is set to 14 to allow for 14 N-by-N matrices for CGG. +*> \endverbatim +* +* Arguments: +* ========== +* +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date June 2016 +* +*> \ingroup complex_eig +* +* ===================================================================== + PROGRAM CCHKEE +* +#if defined(_OPENMP) + use omp_lib +#endif +* +* -- LAPACK test routine (version 3.7.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* June 2016 +* +* ===================================================================== +* +* .. Parameters .. + INTEGER NMAX + PARAMETER ( NMAX = 132 ) + INTEGER NCMAX + PARAMETER ( NCMAX = 20 ) + INTEGER NEED + PARAMETER ( NEED = 14 ) + INTEGER LWORK + PARAMETER ( LWORK = NMAX*( 5*NMAX+20 ) ) + INTEGER LIWORK + PARAMETER ( LIWORK = NMAX*( NMAX+20 ) ) + INTEGER MAXIN + PARAMETER ( MAXIN = 20 ) + INTEGER MAXT + PARAMETER ( MAXT = 30 ) + INTEGER NIN, NOUT + PARAMETER ( NIN = 5, NOUT = 6 ) +* .. +* .. Local Scalars .. + LOGICAL CBB, CBK, CBL, CES, CEV, CGG, CGK, CGL, CGS, + $ CGV, CGX, CHB, CSD, CSX, CVX, CXV, FATAL, GLM, + $ GQR, GSV, LSE, NEP, SEP, SVD, TSTCHK, TSTDIF, + $ TSTDRV, TSTERR + CHARACTER C1 + CHARACTER*3 C3, PATH + CHARACTER*32 VNAME + CHARACTER*10 INTSTR + CHARACTER*80 LINE + INTEGER I, I1, IC, INFO, ITMP, K, LENP, MAXTYP, NEWSD, + $ NK, NN, NPARMS, NRHS, NTYPES, + $ VERS_MAJOR, VERS_MINOR, VERS_PATCH, N_THREADS + REAL EPS, S1, S2, THRESH, THRSHN +* .. +* .. Local Arrays .. + LOGICAL DOTYPE( MAXT ), LOGWRK( NMAX ) + INTEGER IOLDSD( 4 ), ISEED( 4 ), IWORK( LIWORK ), + $ KVAL( MAXIN ), MVAL( MAXIN ), MXBVAL( MAXIN ), + $ NBCOL( MAXIN ), NBMIN( MAXIN ), NBVAL( MAXIN ), + $ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ), + $ PVAL( MAXIN ) + INTEGER INMIN( MAXIN ), INWIN( MAXIN ), INIBL( MAXIN ), + $ ISHFTS( MAXIN ), IACC22( MAXIN ) + REAL ALPHA( NMAX ), BETA( NMAX ), DR( NMAX, 12 ), + $ RESULT( 500 ) + COMPLEX DC( NMAX, 6 ), TAUA( NMAX ), TAUB( NMAX ), + $ X( 5*NMAX ) +* .. +* .. Allocatable Arrays .. + INTEGER AllocateStatus + REAL, DIMENSION(:), ALLOCATABLE :: RWORK, S + COMPLEX, DIMENSION(:), ALLOCATABLE :: WORK + COMPLEX, DIMENSION(:,:), ALLOCATABLE :: A, B, C +* .. +* .. External Functions .. + LOGICAL LSAMEN + REAL SECOND, SLAMCH + EXTERNAL LSAMEN, SECOND, SLAMCH +* .. +* .. External Subroutines .. + EXTERNAL ALAREQ, CCHKBB, CCHKBD, CCHKBK, CCHKBL, CCHKEC, + $ CCHKGG, CCHKGK, CCHKGL, CCHKHB, CCHKHS, CCHKST, + $ CCKCSD, CCKGLM, CCKGQR, CCKGSV, CCKLSE, CDRGES, + $ CDRGEV, CDRGSX, CDRGVX, CDRVBD, CDRVES, CDRVEV, + $ CDRVSG, CDRVST, CDRVSX, CDRVVX, CERRBD, + $ CERRED, CERRGG, CERRHS, CERRST, ILAVER, XLAENV, + $ CDRGES3, CDRGEV3, + $ CCHKST2STG, CDRVST2STG, CCHKHB2STG +* .. +* .. Intrinsic Functions .. + INTRINSIC LEN, MIN +* .. +* .. Scalars in Common .. + LOGICAL LERR, OK + CHARACTER*32 SRNAMT + INTEGER INFOT, MAXB, NPROC, NSHIFT, NUNIT, SELDIM, + $ SELOPT +* .. +* .. Arrays in Common .. + LOGICAL SELVAL( 20 ) + INTEGER IPARMS( 100 ) + REAL SELWI( 20 ), SELWR( 20 ) +* .. +* .. Common blocks .. + COMMON / CENVIR / NPROC, NSHIFT, MAXB + COMMON / CLAENV / IPARMS + COMMON / INFOC / INFOT, NUNIT, OK, LERR + COMMON / SRNAMC / SRNAMT + COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI +* .. +* .. Data statements .. + DATA INTSTR / '0123456789' / + DATA IOLDSD / 0, 0, 0, 1 / +* .. +* .. Allocate memory dynamically .. +* + ALLOCATE ( S(NMAX*NMAX), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( A(NMAX*NMAX,NEED), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( B(NMAX*NMAX,5), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( C(NCMAX*NCMAX,NCMAX*NCMAX), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( RWORK(LWORK), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( WORK(LWORK), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" +* .. +* .. Executable Statements .. +* + A = 0.0 + B = 0.0 + C = 0.0 + DC = 0.0 + S1 = SECOND( ) + FATAL = .FALSE. + NUNIT = NOUT +* +* Return to here to read multiple sets of data +* + 10 CONTINUE +* +* Read the first line and set the 3-character test path +* + READ( NIN, FMT = '(A80)', END = 380 )LINE + PATH = LINE( 1: 3 ) + NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'CHS' ) + SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'CST' ) .OR. + $ LSAMEN( 3, PATH, 'CSG' ) .OR. LSAMEN( 3, PATH, 'SE2' ) + SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'CBD' ) + CEV = LSAMEN( 3, PATH, 'CEV' ) + CES = LSAMEN( 3, PATH, 'CES' ) + CVX = LSAMEN( 3, PATH, 'CVX' ) + CSX = LSAMEN( 3, PATH, 'CSX' ) + CGG = LSAMEN( 3, PATH, 'CGG' ) + CGS = LSAMEN( 3, PATH, 'CGS' ) + CGX = LSAMEN( 3, PATH, 'CGX' ) + CGV = LSAMEN( 3, PATH, 'CGV' ) + CXV = LSAMEN( 3, PATH, 'CXV' ) + CHB = LSAMEN( 3, PATH, 'CHB' ) + CBB = LSAMEN( 3, PATH, 'CBB' ) + GLM = LSAMEN( 3, PATH, 'GLM' ) + GQR = LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' ) + GSV = LSAMEN( 3, PATH, 'GSV' ) + CSD = LSAMEN( 3, PATH, 'CSD' ) + LSE = LSAMEN( 3, PATH, 'LSE' ) + CBL = LSAMEN( 3, PATH, 'CBL' ) + CBK = LSAMEN( 3, PATH, 'CBK' ) + CGL = LSAMEN( 3, PATH, 'CGL' ) + CGK = LSAMEN( 3, PATH, 'CGK' ) +* +* Report values of parameters. +* + IF( PATH.EQ.' ' ) THEN + GO TO 10 + ELSE IF( NEP ) THEN + WRITE( NOUT, FMT = 9987 ) + ELSE IF( SEP ) THEN + WRITE( NOUT, FMT = 9986 ) + ELSE IF( SVD ) THEN + WRITE( NOUT, FMT = 9985 ) + ELSE IF( CEV ) THEN + WRITE( NOUT, FMT = 9979 ) + ELSE IF( CES ) THEN + WRITE( NOUT, FMT = 9978 ) + ELSE IF( CVX ) THEN + WRITE( NOUT, FMT = 9977 ) + ELSE IF( CSX ) THEN + WRITE( NOUT, FMT = 9976 ) + ELSE IF( CGG ) THEN + WRITE( NOUT, FMT = 9975 ) + ELSE IF( CGS ) THEN + WRITE( NOUT, FMT = 9964 ) + ELSE IF( CGX ) THEN + WRITE( NOUT, FMT = 9965 ) + ELSE IF( CGV ) THEN + WRITE( NOUT, FMT = 9963 ) + ELSE IF( CXV ) THEN + WRITE( NOUT, FMT = 9962 ) + ELSE IF( CHB ) THEN + WRITE( NOUT, FMT = 9974 ) + ELSE IF( CBB ) THEN + WRITE( NOUT, FMT = 9967 ) + ELSE IF( GLM ) THEN + WRITE( NOUT, FMT = 9971 ) + ELSE IF( GQR ) THEN + WRITE( NOUT, FMT = 9970 ) + ELSE IF( GSV ) THEN + WRITE( NOUT, FMT = 9969 ) + ELSE IF( CSD ) THEN + WRITE( NOUT, FMT = 9960 ) + ELSE IF( LSE ) THEN + WRITE( NOUT, FMT = 9968 ) + ELSE IF( CBL ) THEN +* +* CGEBAL: Balancing +* + CALL CCHKBL( NIN, NOUT ) + GO TO 380 + ELSE IF( CBK ) THEN +* +* CGEBAK: Back transformation +* + CALL CCHKBK( NIN, NOUT ) + GO TO 380 + ELSE IF( CGL ) THEN +* +* CGGBAL: Balancing +* + CALL CCHKGL( NIN, NOUT ) + GO TO 380 + ELSE IF( CGK ) THEN +* +* CGGBAK: Back transformation +* + CALL CCHKGK( NIN, NOUT ) + GO TO 380 + ELSE IF( LSAMEN( 3, PATH, 'CEC' ) ) THEN +* +* CEC: Eigencondition estimation +* + READ( NIN, FMT = * )THRESH + CALL XLAENV( 1, 1 ) + CALL XLAENV( 12, 1 ) + TSTERR = .TRUE. + CALL CCHKEC( THRESH, TSTERR, NIN, NOUT ) + GO TO 380 + ELSE + WRITE( NOUT, FMT = 9992 )PATH + GO TO 380 + END IF + CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH ) + WRITE( NOUT, FMT = 9972 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH + WRITE( NOUT, FMT = 9984 ) +* +* Read the number of values of M, P, and N. +* + READ( NIN, FMT = * )NN + IF( NN.LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NN ', NN, 1 + NN = 0 + FATAL = .TRUE. + ELSE IF( NN.GT.MAXIN ) THEN + WRITE( NOUT, FMT = 9988 )' NN ', NN, MAXIN + NN = 0 + FATAL = .TRUE. + END IF +* +* Read the values of M +* + IF( .NOT.( CGX .OR. CXV ) ) THEN + READ( NIN, FMT = * )( MVAL( I ), I = 1, NN ) + IF( SVD ) THEN + VNAME = ' M ' + ELSE + VNAME = ' N ' + END IF + DO 20 I = 1, NN + IF( MVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )VNAME, MVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( MVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )VNAME, MVAL( I ), NMAX + FATAL = .TRUE. + END IF + 20 CONTINUE + WRITE( NOUT, FMT = 9983 )'M: ', ( MVAL( I ), I = 1, NN ) + END IF +* +* Read the values of P +* + IF( GLM .OR. GQR .OR. GSV .OR. CSD .OR. LSE ) THEN + READ( NIN, FMT = * )( PVAL( I ), I = 1, NN ) + DO 30 I = 1, NN + IF( PVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' P ', PVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( PVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' P ', PVAL( I ), NMAX + FATAL = .TRUE. + END IF + 30 CONTINUE + WRITE( NOUT, FMT = 9983 )'P: ', ( PVAL( I ), I = 1, NN ) + END IF +* +* Read the values of N +* + IF( SVD .OR. CBB .OR. GLM .OR. GQR .OR. GSV .OR. CSD .OR. + $ LSE ) THEN + READ( NIN, FMT = * )( NVAL( I ), I = 1, NN ) + DO 40 I = 1, NN + IF( NVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' N ', NVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' N ', NVAL( I ), NMAX + FATAL = .TRUE. + END IF + 40 CONTINUE + ELSE + DO 50 I = 1, NN + NVAL( I ) = MVAL( I ) + 50 CONTINUE + END IF + IF( .NOT.( CGX .OR. CXV ) ) THEN + WRITE( NOUT, FMT = 9983 )'N: ', ( NVAL( I ), I = 1, NN ) + ELSE + WRITE( NOUT, FMT = 9983 )'N: ', NN + END IF +* +* Read the number of values of K, followed by the values of K +* + IF( CHB .OR. CBB ) THEN + READ( NIN, FMT = * )NK + READ( NIN, FMT = * )( KVAL( I ), I = 1, NK ) + DO 60 I = 1, NK + IF( KVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' K ', KVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( KVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' K ', KVAL( I ), NMAX + FATAL = .TRUE. + END IF + 60 CONTINUE + WRITE( NOUT, FMT = 9983 )'K: ', ( KVAL( I ), I = 1, NK ) + END IF +* + IF( CEV .OR. CES .OR. CVX .OR. CSX ) THEN +* +* For the nonsymmetric QR driver routines, only one set of +* parameters is allowed. +* + READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), + $ INMIN( 1 ), INWIN( 1 ), INIBL(1), ISHFTS(1), IACC22(1) + IF( NBVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NBMIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NXVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( INMIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( INWIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( INIBL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( ISHFTS( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( 1 ), 1 + FATAL = .TRUE. + ELSE IF( IACC22( 1 ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( 1 ), 0 + FATAL = .TRUE. + END IF + CALL XLAENV( 1, NBVAL( 1 ) ) + CALL XLAENV( 2, NBMIN( 1 ) ) + CALL XLAENV( 3, NXVAL( 1 ) ) + CALL XLAENV(12, MAX( 11, INMIN( 1 ) ) ) + CALL XLAENV(13, INWIN( 1 ) ) + CALL XLAENV(14, INIBL( 1 ) ) + CALL XLAENV(15, ISHFTS( 1 ) ) + CALL XLAENV(16, IACC22( 1 ) ) + WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) + WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'INMIN: ', INMIN( 1 ) + WRITE( NOUT, FMT = 9983 )'INWIN: ', INWIN( 1 ) + WRITE( NOUT, FMT = 9983 )'INIBL: ', INIBL( 1 ) + WRITE( NOUT, FMT = 9983 )'ISHFTS: ', ISHFTS( 1 ) + WRITE( NOUT, FMT = 9983 )'IACC22: ', IACC22( 1 ) +* + ELSE IF( CGS .OR. CGX .OR. CGV .OR. CXV ) THEN +* +* For the nonsymmetric generalized driver routines, only one set of +* parameters is allowed. +* + READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), + $ NSVAL( 1 ), MXBVAL( 1 ) + IF( NBVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NBMIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NXVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NSVAL( 1 ).LT.2 ) THEN + WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( 1 ), 2 + FATAL = .TRUE. + ELSE IF( MXBVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( 1 ), 1 + FATAL = .TRUE. + END IF + CALL XLAENV( 1, NBVAL( 1 ) ) + CALL XLAENV( 2, NBMIN( 1 ) ) + CALL XLAENV( 3, NXVAL( 1 ) ) + CALL XLAENV( 4, NSVAL( 1 ) ) + CALL XLAENV( 8, MXBVAL( 1 ) ) + WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) + WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'NS: ', NSVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'MAXB: ', MXBVAL( 1 ) + ELSE IF( .NOT.CHB .AND. .NOT.GLM .AND. .NOT.GQR .AND. .NOT. + $ GSV .AND. .NOT.CSD .AND. .NOT.LSE ) THEN +* +* For the other paths, the number of parameters can be varied +* from the input file. Read the number of parameter values. +* + READ( NIN, FMT = * )NPARMS + IF( NPARMS.LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )'NPARMS', NPARMS, 1 + NPARMS = 0 + FATAL = .TRUE. + ELSE IF( NPARMS.GT.MAXIN ) THEN + WRITE( NOUT, FMT = 9988 )'NPARMS', NPARMS, MAXIN + NPARMS = 0 + FATAL = .TRUE. + END IF +* +* Read the values of NB +* + IF( .NOT.CBB ) THEN + READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS ) + DO 70 I = 1, NPARMS + IF( NBVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NBVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' NB ', NBVAL( I ), NMAX + FATAL = .TRUE. + END IF + 70 CONTINUE + WRITE( NOUT, FMT = 9983 )'NB: ', + $ ( NBVAL( I ), I = 1, NPARMS ) + END IF +* +* Read the values of NBMIN +* + IF( NEP .OR. SEP .OR. SVD .OR. CGG ) THEN + READ( NIN, FMT = * )( NBMIN( I ), I = 1, NPARMS ) + DO 80 I = 1, NPARMS + IF( NBMIN( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( I ), 0 + FATAL = .TRUE. + ELSE IF( NBMIN( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )'NBMIN ', NBMIN( I ), NMAX + FATAL = .TRUE. + END IF + 80 CONTINUE + WRITE( NOUT, FMT = 9983 )'NBMIN:', + $ ( NBMIN( I ), I = 1, NPARMS ) + ELSE + DO 90 I = 1, NPARMS + NBMIN( I ) = 1 + 90 CONTINUE + END IF +* +* Read the values of NX +* + IF( NEP .OR. SEP .OR. SVD ) THEN + READ( NIN, FMT = * )( NXVAL( I ), I = 1, NPARMS ) + DO 100 I = 1, NPARMS + IF( NXVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NXVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' NX ', NXVAL( I ), NMAX + FATAL = .TRUE. + END IF + 100 CONTINUE + WRITE( NOUT, FMT = 9983 )'NX: ', + $ ( NXVAL( I ), I = 1, NPARMS ) + ELSE + DO 110 I = 1, NPARMS + NXVAL( I ) = 1 + 110 CONTINUE + END IF +* +* Read the values of NSHIFT (if CGG) or NRHS (if SVD +* or CBB). +* + IF( SVD .OR. CBB .OR. CGG ) THEN + READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS ) + DO 120 I = 1, NPARMS + IF( NSVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NSVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' NS ', NSVAL( I ), NMAX + FATAL = .TRUE. + END IF + 120 CONTINUE + WRITE( NOUT, FMT = 9983 )'NS: ', + $ ( NSVAL( I ), I = 1, NPARMS ) + ELSE + DO 130 I = 1, NPARMS + NSVAL( I ) = 1 + 130 CONTINUE + END IF +* +* Read the values for MAXB. +* + IF( CGG ) THEN + READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS ) + DO 140 I = 1, NPARMS + IF( MXBVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( MXBVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' MAXB ', MXBVAL( I ), NMAX + FATAL = .TRUE. + END IF + 140 CONTINUE + WRITE( NOUT, FMT = 9983 )'MAXB: ', + $ ( MXBVAL( I ), I = 1, NPARMS ) + ELSE + DO 150 I = 1, NPARMS + MXBVAL( I ) = 1 + 150 CONTINUE + END IF +* +* Read the values for INMIN. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( INMIN( I ), I = 1, NPARMS ) + DO 540 I = 1, NPARMS + IF( INMIN( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( I ), 0 + FATAL = .TRUE. + END IF + 540 CONTINUE + WRITE( NOUT, FMT = 9983 )'INMIN: ', + $ ( INMIN( I ), I = 1, NPARMS ) + ELSE + DO 550 I = 1, NPARMS + INMIN( I ) = 1 + 550 CONTINUE + END IF +* +* Read the values for INWIN. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( INWIN( I ), I = 1, NPARMS ) + DO 560 I = 1, NPARMS + IF( INWIN( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( I ), 0 + FATAL = .TRUE. + END IF + 560 CONTINUE + WRITE( NOUT, FMT = 9983 )'INWIN: ', + $ ( INWIN( I ), I = 1, NPARMS ) + ELSE + DO 570 I = 1, NPARMS + INWIN( I ) = 1 + 570 CONTINUE + END IF +* +* Read the values for INIBL. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( INIBL( I ), I = 1, NPARMS ) + DO 580 I = 1, NPARMS + IF( INIBL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( I ), 0 + FATAL = .TRUE. + END IF + 580 CONTINUE + WRITE( NOUT, FMT = 9983 )'INIBL: ', + $ ( INIBL( I ), I = 1, NPARMS ) + ELSE + DO 590 I = 1, NPARMS + INIBL( I ) = 1 + 590 CONTINUE + END IF +* +* Read the values for ISHFTS. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( ISHFTS( I ), I = 1, NPARMS ) + DO 600 I = 1, NPARMS + IF( ISHFTS( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( I ), 0 + FATAL = .TRUE. + END IF + 600 CONTINUE + WRITE( NOUT, FMT = 9983 )'ISHFTS: ', + $ ( ISHFTS( I ), I = 1, NPARMS ) + ELSE + DO 610 I = 1, NPARMS + ISHFTS( I ) = 1 + 610 CONTINUE + END IF +* +* Read the values for IACC22. +* + IF( NEP .OR. CGG ) THEN + READ( NIN, FMT = * )( IACC22( I ), I = 1, NPARMS ) + DO 620 I = 1, NPARMS + IF( IACC22( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( I ), 0 + FATAL = .TRUE. + END IF + 620 CONTINUE + WRITE( NOUT, FMT = 9983 )'IACC22: ', + $ ( IACC22( I ), I = 1, NPARMS ) + ELSE + DO 630 I = 1, NPARMS + IACC22( I ) = 1 + 630 CONTINUE + END IF +* +* Read the values for NBCOL. +* + IF( CGG ) THEN + READ( NIN, FMT = * )( NBCOL( I ), I = 1, NPARMS ) + DO 160 I = 1, NPARMS + IF( NBCOL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )'NBCOL ', NBCOL( I ), 0 + FATAL = .TRUE. + ELSE IF( NBCOL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )'NBCOL ', NBCOL( I ), NMAX + FATAL = .TRUE. + END IF + 160 CONTINUE + WRITE( NOUT, FMT = 9983 )'NBCOL:', + $ ( NBCOL( I ), I = 1, NPARMS ) + ELSE + DO 170 I = 1, NPARMS + NBCOL( I ) = 1 + 170 CONTINUE + END IF + END IF +* +* Calculate and print the machine dependent constants. +* + WRITE( NOUT, FMT = * ) + EPS = SLAMCH( 'Underflow threshold' ) + WRITE( NOUT, FMT = 9981 )'underflow', EPS + EPS = SLAMCH( 'Overflow threshold' ) + WRITE( NOUT, FMT = 9981 )'overflow ', EPS + EPS = SLAMCH( 'Epsilon' ) + WRITE( NOUT, FMT = 9981 )'precision', EPS +* +* Read the threshold value for the test ratios. +* + READ( NIN, FMT = * )THRESH + WRITE( NOUT, FMT = 9982 )THRESH + IF( SEP .OR. SVD .OR. CGG ) THEN +* +* Read the flag that indicates whether to test LAPACK routines. +* + READ( NIN, FMT = * )TSTCHK +* +* Read the flag that indicates whether to test driver routines. +* + READ( NIN, FMT = * )TSTDRV + END IF +* +* Read the flag that indicates whether to test the error exits. +* + READ( NIN, FMT = * )TSTERR +* +* Read the code describing how to set the random number seed. +* + READ( NIN, FMT = * )NEWSD +* +* If NEWSD = 2, read another line with 4 integers for the seed. +* + IF( NEWSD.EQ.2 ) + $ READ( NIN, FMT = * )( IOLDSD( I ), I = 1, 4 ) +* + DO 180 I = 1, 4 + ISEED( I ) = IOLDSD( I ) + 180 CONTINUE +* + IF( FATAL ) THEN + WRITE( NOUT, FMT = 9999 ) + STOP + END IF +* +* Read the input lines indicating the test path and its parameters. +* The first three characters indicate the test path, and the number +* of test matrix types must be the first nonblank item in columns +* 4-80. +* + 190 CONTINUE +* + IF( .NOT.( CGX .OR. CXV ) ) THEN +* + 200 CONTINUE + READ( NIN, FMT = '(A80)', END = 380 )LINE + C3 = LINE( 1: 3 ) + LENP = LEN( LINE ) + I = 3 + ITMP = 0 + I1 = 0 + 210 CONTINUE + I = I + 1 + IF( I.GT.LENP ) THEN + IF( I1.GT.0 ) THEN + GO TO 240 + ELSE + NTYPES = MAXT + GO TO 240 + END IF + END IF + IF( LINE( I: I ).NE.' ' .AND. LINE( I: I ).NE.',' ) THEN + I1 = I + C1 = LINE( I1: I1 ) +* +* Check that a valid integer was read +* + DO 220 K = 1, 10 + IF( C1.EQ.INTSTR( K: K ) ) THEN + IC = K - 1 + GO TO 230 + END IF + 220 CONTINUE + WRITE( NOUT, FMT = 9991 )I, LINE + GO TO 200 + 230 CONTINUE + ITMP = 10*ITMP + IC + GO TO 210 + ELSE IF( I1.GT.0 ) THEN + GO TO 240 + ELSE + GO TO 210 + END IF + 240 CONTINUE + NTYPES = ITMP +* +* Skip the tests if NTYPES is <= 0. +* + IF( .NOT.( CEV .OR. CES .OR. CVX .OR. CSX .OR. CGV .OR. + $ CGS ) .AND. NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + GO TO 200 + END IF +* + ELSE + IF( CGX ) + $ C3 = 'CGX' + IF( CXV ) + $ C3 = 'CXV' + END IF +* +* Reset the random number seed. +* + IF( NEWSD.EQ.0 ) THEN + DO 250 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 250 CONTINUE + END IF +* + IF( LSAMEN( 3, C3, 'CHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN +* +* ------------------------------------- +* NEP: Nonsymmetric Eigenvalue Problem +* ------------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* NS = number of shifts +* MAXB = minimum submatrix size +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL CERRHS( 'CHSEQR', NOUT ) + DO 270 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) + CALL XLAENV(12, MAX( 11, INMIN( I ) ) ) + CALL XLAENV(13, INWIN( I ) ) + CALL XLAENV(14, INIBL( I ) ) + CALL XLAENV(15, ISHFTS( I ) ) + CALL XLAENV(16, IACC22( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 260 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 260 CONTINUE + END IF + WRITE( NOUT, FMT = 9961 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ), MAX( 11, INMIN(I)), + $ INWIN( I ), INIBL( I ), ISHFTS( I ), IACC22( I ) + CALL CCHKHS( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 5 ), NMAX, A( 1, 6 ), + $ A( 1, 7 ), DC( 1, 1 ), DC( 1, 2 ), A( 1, 8 ), + $ A( 1, 9 ), A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), + $ DC( 1, 3 ), WORK, LWORK, RWORK, IWORK, LOGWRK, + $ RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CCHKHS', INFO + 270 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'CST' ) .OR. LSAMEN( 3, C3, 'SEP' ) + $ .OR. LSAMEN( 3, C3, 'SE2' ) ) THEN +* +* ---------------------------------- +* SEP: Symmetric Eigenvalue Problem +* ---------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 1, 1 ) + CALL XLAENV( 9, 25 ) + IF( TSTERR ) THEN +#if defined(_OPENMP) + N_THREADS = OMP_GET_NUM_THREADS() + CALL OMP_SET_NUM_THREADS(1) +#endif + CALL CERRST( 'CST', NOUT ) +#if defined(_OPENMP) + CALL OMP_SET_NUM_THREADS(N_THREADS) +#endif + END IF + DO 290 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 280 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 280 CONTINUE + END IF + WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ) + IF( TSTCHK ) THEN + IF( LSAMEN( 3, C3, 'SE2' ) ) THEN + CALL CCHKST2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), + $ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ), + $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), + $ DR( 1, 7 ), DR( 1, 8 ), DR( 1, 9 ), + $ DR( 1, 10 ), DR( 1, 11 ), A( 1, 3 ), NMAX, + $ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ), + $ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK, + $ RESULT, INFO ) + ELSE + CALL CCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), + $ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ), + $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), + $ DR( 1, 7 ), DR( 1, 8 ), DR( 1, 9 ), + $ DR( 1, 10 ), DR( 1, 11 ), A( 1, 3 ), NMAX, + $ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ), + $ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK, + $ RESULT, INFO ) + ENDIF + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CCHKST', INFO + END IF + IF( TSTDRV ) THEN + IF( LSAMEN( 3, C3, 'SE2' ) ) THEN + CALL CDRVST2STG( NN, NVAL, 18, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ), + $ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ), + $ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ), + $ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK, + $ LWORK, IWORK, LIWORK, RESULT, INFO ) + ELSE + CALL CDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ), + $ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ), + $ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ), + $ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK, + $ LWORK, IWORK, LIWORK, RESULT, INFO ) + ENDIF + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CDRVST', INFO + END IF + 290 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'CSG' ) ) THEN +* +* ---------------------------------------------- +* CSG: Hermitian Generalized Eigenvalue Problem +* ---------------------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 9, 25 ) + DO 310 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 300 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 300 CONTINUE + END IF + WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ) + IF( TSTCHK ) THEN +* CALL CDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, +* $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, +* $ DR( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ), +* $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK, +* $ LWORK, RWORK, LWORK, IWORK, LIWORK, RESULT, +* $ INFO ) + CALL CDRVSG2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, + $ DR( 1, 3 ), DR( 1, 4 ), A( 1, 3 ), NMAX, + $ A( 1, 4 ), A( 1, 5 ), A( 1, 6 ), + $ A( 1, 7 ), WORK, LWORK, RWORK, LWORK, + $ IWORK, LIWORK, RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CDRVSG', INFO + END IF + 310 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'CBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN +* +* ---------------------------------- +* SVD: Singular Value Decomposition +* ---------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* NRHS = number of right hand sides +* + MAXTYP = 16 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 9, 25 ) +* +* Test the error exits +* + CALL XLAENV( 1, 1 ) + IF( TSTERR .AND. TSTCHK ) + $ CALL CERRBD( 'CBD', NOUT ) + IF( TSTERR .AND. TSTDRV ) + $ CALL CERRED( 'CBD', NOUT ) +* + DO 330 I = 1, NPARMS + NRHS = NSVAL( I ) + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) + IF( NEWSD.EQ.0 ) THEN + DO 320 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 320 CONTINUE + END IF + WRITE( NOUT, FMT = 9995 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ), NRHS + IF( TSTCHK ) THEN + CALL CCHKBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, NRHS, ISEED, + $ THRESH, A( 1, 1 ), NMAX, DR( 1, 1 ), + $ DR( 1, 2 ), DR( 1, 3 ), DR( 1, 4 ), + $ A( 1, 2 ), NMAX, A( 1, 3 ), A( 1, 4 ), + $ A( 1, 5 ), NMAX, A( 1, 6 ), NMAX, A( 1, 7 ), + $ A( 1, 8 ), WORK, LWORK, RWORK, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CCHKBD', INFO + END IF + IF( TSTDRV ) + $ CALL CDRVBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, ISEED, + $ THRESH, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, + $ A( 1, 3 ), NMAX, A( 1, 4 ), A( 1, 5 ), + $ A( 1, 6 ), DR( 1, 1 ), DR( 1, 2 ), + $ DR( 1, 3 ), WORK, LWORK, RWORK, IWORK, NOUT, + $ INFO ) + 330 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'CEV' ) ) THEN +* +* -------------------------------------------- +* CEV: Nonsymmetric Eigenvalue Problem Driver +* CGEEV (eigenvalues and eigenvectors) +* -------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL CERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL CDRVEV( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), DC( 1, 1 ), + $ DC( 1, 2 ), A( 1, 3 ), NMAX, A( 1, 4 ), NMAX, + $ A( 1, 5 ), NMAX, RESULT, WORK, LWORK, RWORK, + $ IWORK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CGEEV', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'CES' ) ) THEN +* +* -------------------------------------------- +* CES: Nonsymmetric Eigenvalue Problem Driver +* CGEES (Schur form) +* -------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL CERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL CDRVES( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ DC( 1, 1 ), DC( 1, 2 ), A( 1, 4 ), NMAX, + $ RESULT, WORK, LWORK, RWORK, IWORK, LOGWRK, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CGEES', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'CVX' ) ) THEN +* +* -------------------------------------------------------------- +* CVX: Nonsymmetric Eigenvalue Problem Expert Driver +* CGEEVX (eigenvalues, eigenvectors and condition numbers) +* -------------------------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL CERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL CDRVVX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), DC( 1, 1 ), + $ DC( 1, 2 ), A( 1, 3 ), NMAX, A( 1, 4 ), NMAX, + $ A( 1, 5 ), NMAX, DR( 1, 1 ), DR( 1, 2 ), + $ DR( 1, 3 ), DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), + $ DR( 1, 7 ), DR( 1, 8 ), RESULT, WORK, LWORK, + $ RWORK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CGEEVX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'CSX' ) ) THEN +* +* --------------------------------------------------- +* CSX: Nonsymmetric Eigenvalue Problem Expert Driver +* CGEESX (Schur form and condition numbers) +* --------------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL CERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL CDRVSX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ DC( 1, 1 ), DC( 1, 2 ), DC( 1, 3 ), A( 1, 4 ), + $ NMAX, A( 1, 5 ), RESULT, WORK, LWORK, RWORK, + $ LOGWRK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CGEESX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'CGG' ) ) THEN +* +* ------------------------------------------------- +* CGG: Generalized Nonsymmetric Eigenvalue Problem +* ------------------------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NS = number of shifts +* MAXB = minimum submatrix size +* IACC22: structured matrix multiply +* NBCOL = minimum column dimension for blocks +* + MAXTYP = 26 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV(1,1) + IF( TSTCHK .AND. TSTERR ) + $ CALL CERRGG( C3, NOUT ) + DO 350 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 4, NSVAL( I ) ) + CALL XLAENV( 8, MXBVAL( I ) ) + CALL XLAENV( 16, IACC22( I ) ) + CALL XLAENV( 5, NBCOL( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 340 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 340 CONTINUE + END IF + WRITE( NOUT, FMT = 9996 )C3, NBVAL( I ), NBMIN( I ), + $ NSVAL( I ), MXBVAL( I ), IACC22( I ), NBCOL( I ) + TSTDIF = .FALSE. + THRSHN = 10. + IF( TSTCHK ) THEN + CALL CCHKGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ TSTDIF, THRSHN, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), + $ A( 1, 6 ), A( 1, 7 ), A( 1, 8 ), A( 1, 9 ), + $ NMAX, A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), + $ DC( 1, 1 ), DC( 1, 2 ), DC( 1, 3 ), + $ DC( 1, 4 ), A( 1, 13 ), A( 1, 14 ), WORK, + $ LWORK, RWORK, LOGWRK, RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CCHKGG', INFO + END IF + 350 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'CGS' ) ) THEN +* +* ------------------------------------------------- +* CGS: Generalized Nonsymmetric Eigenvalue Problem +* CGGES (Schur form) +* ------------------------------------------------- +* + MAXTYP = 26 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL CERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL CDRGES( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ DC( 1, 1 ), DC( 1, 2 ), WORK, LWORK, RWORK, + $ RESULT, LOGWRK, INFO ) +* + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CDRGES', INFO +* +* Blocked version +* + CALL XLAENV(16,2) + CALL CDRGES3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ DC( 1, 1 ), DC( 1, 2 ), WORK, LWORK, RWORK, + $ RESULT, LOGWRK, INFO ) +* + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CDRGES3', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + + GO TO 10 +* + ELSE IF( CGX ) THEN +* +* ------------------------------------------------- +* CGX Generalized Nonsymmetric Eigenvalue Problem +* CGGESX (Schur form and condition numbers) +* ------------------------------------------------- +* + MAXTYP = 5 + NTYPES = MAXTYP + IF( NN.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL CERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 5, 2 ) + CALL CDRGSX( NN, NCMAX, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), + $ A( 1, 6 ), DC( 1, 1 ), DC( 1, 2 ), C, + $ NCMAX*NCMAX, S, WORK, LWORK, RWORK, IWORK, + $ LIWORK, LOGWRK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CDRGSX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'CGV' ) ) THEN +* +* ------------------------------------------------- +* CGV: Generalized Nonsymmetric Eigenvalue Problem +* CGGEV (Eigenvalue/vector form) +* ------------------------------------------------- +* + MAXTYP = 26 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL CERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL CDRGEV( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ A( 1, 9 ), NMAX, DC( 1, 1 ), DC( 1, 2 ), + $ DC( 1, 3 ), DC( 1, 4 ), WORK, LWORK, RWORK, + $ RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CDRGEV', INFO +* +* Blocked version +* + CALL XLAENV(16,2) + CALL CDRGEV3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ A( 1, 9 ), NMAX, DC( 1, 1 ), DC( 1, 2 ), + $ DC( 1, 3 ), DC( 1, 4 ), WORK, LWORK, RWORK, + $ RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CDRGEV3', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( CXV ) THEN +* +* ------------------------------------------------- +* CXV: Generalized Nonsymmetric Eigenvalue Problem +* CGGEVX (eigenvalue/vector with condition numbers) +* ------------------------------------------------- +* + MAXTYP = 2 + NTYPES = MAXTYP + IF( NN.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL CERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL CDRGVX( NN, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), DC( 1, 1 ), + $ DC( 1, 2 ), A( 1, 5 ), A( 1, 6 ), IWORK( 1 ), + $ IWORK( 2 ), DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ), + $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), WORK, + $ LWORK, RWORK, IWORK( 3 ), LIWORK-2, RESULT, + $ LOGWRK, INFO ) +* + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CDRGVX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'CHB' ) ) THEN +* +* ------------------------------ +* CHB: Hermitian Band Reduction +* ------------------------------ +* + MAXTYP = 15 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + IF( TSTERR ) THEN +#if defined(_OPENMP) + N_THREADS = OMP_GET_NUM_THREADS() + CALL OMP_SET_NUM_THREADS(1) +#endif + CALL CERRST( 'CHB', NOUT ) +#if defined(_OPENMP) + CALL OMP_SET_NUM_THREADS(N_THREADS) +#endif + END IF +* CALL CCHKHB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH, +* $ NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ), DR( 1, 2 ), +* $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT, +* $ INFO ) + CALL CCHKHB2STG( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, + $ THRESH, NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ), + $ DR( 1, 2 ), DR( 1, 3 ), DR( 1, 4 ), DR( 1, 5 ), + $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CCHKHB', INFO +* + ELSE IF( LSAMEN( 3, C3, 'CBB' ) ) THEN +* +* ------------------------------ +* CBB: General Band Reduction +* ------------------------------ +* + MAXTYP = 15 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + DO 370 I = 1, NPARMS + NRHS = NSVAL( I ) +* + IF( NEWSD.EQ.0 ) THEN + DO 360 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 360 CONTINUE + END IF + WRITE( NOUT, FMT = 9966 )C3, NRHS + CALL CCHKBB( NN, MVAL, NVAL, NK, KVAL, MAXTYP, DOTYPE, NRHS, + $ ISEED, THRESH, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), 2*NMAX, DR( 1, 1 ), DR( 1, 2 ), + $ A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, A( 1, 6 ), + $ NMAX, A( 1, 7 ), WORK, LWORK, RWORK, RESULT, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CCHKBB', INFO + 370 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'GLM' ) ) THEN +* +* ----------------------------------------- +* GLM: Generalized Linear Regression Model +* ----------------------------------------- +* + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL CERRGG( 'GLM', NOUT ) + CALL CCKGLM( NN, NVAL, MVAL, PVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, + $ WORK, DR( 1, 1 ), NIN, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CCKGLM', INFO +* + ELSE IF( LSAMEN( 3, C3, 'GQR' ) ) THEN +* +* ------------------------------------------ +* GQR: Generalized QR and RQ factorizations +* ------------------------------------------ +* + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL CERRGG( 'GQR', NOUT ) + CALL CCKGQR( NN, MVAL, NN, PVAL, NN, NVAL, NTYPES, ISEED, + $ THRESH, NMAX, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), TAUA, B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), + $ B( 1, 4 ), B( 1, 5 ), TAUB, WORK, DR( 1, 1 ), NIN, + $ NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CCKGQR', INFO +* + ELSE IF( LSAMEN( 3, C3, 'GSV' ) ) THEN +* +* ---------------------------------------------- +* GSV: Generalized Singular Value Decomposition +* ---------------------------------------------- +* + CALL XLAENV(1,1) + IF( TSTERR ) + $ CALL CERRGG( 'GSV', NOUT ) + CALL CCKGSV( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), + $ A( 1, 3 ), B( 1, 3 ), A( 1, 4 ), ALPHA, BETA, + $ B( 1, 4 ), IWORK, WORK, DR( 1, 1 ), NIN, NOUT, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CCKGSV', INFO +* + ELSE IF( LSAMEN( 3, C3, 'CSD' ) ) THEN +* +* ---------------------------------------------- +* CSD: CS Decomposition +* ---------------------------------------------- +* + CALL XLAENV(1,1) + IF( TSTERR ) + $ CALL CERRGG( 'CSD', NOUT ) + CALL CCKCSD( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), + $ A( 1, 5 ), A( 1, 6 ), RWORK, IWORK, WORK, + $ DR( 1, 1 ), NIN, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CCKCSD', INFO +* + ELSE IF( LSAMEN( 3, C3, 'LSE' ) ) THEN +* +* -------------------------------------- +* LSE: Constrained Linear Least Squares +* -------------------------------------- +* + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL CERRGG( 'LSE', NOUT ) + CALL CCKLSE( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, + $ WORK, DR( 1, 1 ), NIN, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'CCKLSE', INFO + ELSE + WRITE( NOUT, FMT = * ) + WRITE( NOUT, FMT = * ) + WRITE( NOUT, FMT = 9992 )C3 + END IF + IF( .NOT.( CGX .OR. CXV ) ) + $ GO TO 190 + 380 CONTINUE + WRITE( NOUT, FMT = 9994 ) + S2 = SECOND( ) + WRITE( NOUT, FMT = 9993 )S2 - S1 +* + DEALLOCATE (S, STAT = AllocateStatus) + DEALLOCATE (A, STAT = AllocateStatus) + DEALLOCATE (B, STAT = AllocateStatus) + DEALLOCATE (C, STAT = AllocateStatus) + DEALLOCATE (RWORK, STAT = AllocateStatus) + DEALLOCATE (WORK, STAT = AllocateStatus) +* + 9999 FORMAT( / ' Execution not attempted due to input errors' ) + 9997 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4 ) + 9996 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NS =', I4, + $ ', MAXB =', I4, ', IACC22 =', I4, ', NBCOL =', I4 ) + 9995 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, + $ ', NRHS =', I4 ) + 9994 FORMAT( / / ' End of tests' ) + 9993 FORMAT( ' Total time used = ', F12.2, ' seconds', / ) + 9992 FORMAT( 1X, A3, ': Unrecognized path name' ) + 9991 FORMAT( / / ' *** Invalid integer value in column ', I2, + $ ' of input', ' line:', / A79 ) + 9990 FORMAT( / / 1X, A3, ' routines were not tested' ) + 9989 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be >=', + $ I6 ) + 9988 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be <=', + $ I6 ) + 9987 FORMAT( ' Tests of the Nonsymmetric Eigenvalue Problem routines' ) + 9986 FORMAT( ' Tests of the Hermitian Eigenvalue Problem routines' ) + 9985 FORMAT( ' Tests of the Singular Value Decomposition routines' ) + 9984 FORMAT( / ' The following parameter values will be used:' ) + 9983 FORMAT( 4X, A, 10I6, / 10X, 10I6 ) + 9982 FORMAT( / ' Routines pass computational tests if test ratio is ', + $ 'less than', F8.2, / ) + 9981 FORMAT( ' Relative machine ', A, ' is taken to be', E16.6 ) + 9980 FORMAT( ' *** Error code from ', A, ' = ', I4 ) + 9979 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', + $ / ' CGEEV (eigenvalues and eigevectors)' ) + 9978 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', + $ / ' CGEES (Schur form)' ) + 9977 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', + $ ' Driver', / ' CGEEVX (eigenvalues, eigenvectors and', + $ ' condition numbers)' ) + 9976 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', + $ ' Driver', / ' CGEESX (Schur form and condition', + $ ' numbers)' ) + 9975 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem routines' ) + 9974 FORMAT( ' Tests of CHBTRD', / ' (reduction of a Hermitian band ', + $ 'matrix to real tridiagonal form)' ) + 9973 FORMAT( / 1X, 71( '-' ) ) + 9972 FORMAT( / ' LAPACK VERSION ', I1, '.', I1, '.', I1 ) + 9971 FORMAT( / ' Tests of the Generalized Linear Regression Model ', + $ 'routines' ) + 9970 FORMAT( / ' Tests of the Generalized QR and RQ routines' ) + 9969 FORMAT( / ' Tests of the Generalized Singular Value', + $ ' Decomposition routines' ) + 9968 FORMAT( / ' Tests of the Linear Least Squares routines' ) + 9967 FORMAT( ' Tests of CGBBRD', / ' (reduction of a general band ', + $ 'matrix to real bidiagonal form)' ) + 9966 FORMAT( / / 1X, A3, ': NRHS =', I4 ) + 9965 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Expert Driver CGGESX' ) + 9964 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Driver CGGES' ) + 9963 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Driver CGGEV' ) + 9962 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Expert Driver CGGEVX' ) + 9961 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, + $ ', INMIN=', I4, + $ ', INWIN =', I4, ', INIBL =', I4, ', ISHFTS =', I4, + $ ', IACC22 =', I4) + 9960 FORMAT( / ' Tests of the CS Decomposition routines' ) +* +* End of CCHKEE +* + END -- 2.7.4