From 7d095f1bccc9d923fe64420e552268d220160488 Mon Sep 17 00:00:00 2001 From: KB Sriram Date: Thu, 22 Feb 2018 07:21:39 -0800 Subject: [PATCH] C++ gradients for MaxPool3D, AvgPool and AvgPool3D Resolves tensorflow/tensorflow#17195 --- tensorflow/cc/gradients/nn_grad.cc | 64 +++++++++++++++++++++++++++++++++ tensorflow/cc/gradients/nn_grad_test.cc | 44 +++++++++++++++++++++-- 2 files changed, 105 insertions(+), 3 deletions(-) diff --git a/tensorflow/cc/gradients/nn_grad.cc b/tensorflow/cc/gradients/nn_grad.cc index 13a3bba..63a67f0 100644 --- a/tensorflow/cc/gradients/nn_grad.cc +++ b/tensorflow/cc/gradients/nn_grad.cc @@ -196,6 +196,70 @@ Status MaxPoolGradV2Helper(const Scope& scope, const Operation& op, } REGISTER_GRADIENT_OP("MaxPoolV2", MaxPoolGradV2Helper); +Status MaxPool3DGradHelper(const Scope& scope, const Operation& op, + const std::vector& grad_inputs, + std::vector* grad_outputs) { + std::vector ksize; + std::vector strides; + string padding; + string data_format; + auto attrs = op.output(0).node()->attrs(); + TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "ksize", &ksize)); + TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "strides", &strides)); + TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "padding", &padding)); + TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "data_format", &data_format)); + MaxPool3DGrad::Attrs grad_attrs; + grad_attrs.DataFormat(data_format); + auto dx = MaxPool3DGrad(scope, op.input(0), op.output(0), grad_inputs[0], + ksize, strides, padding, grad_attrs); + grad_outputs->push_back(dx); + return scope.status(); +} +REGISTER_GRADIENT_OP("MaxPool3D", MaxPool3DGradHelper); + +Status AvgPoolGradHelper(const Scope& scope, const Operation& op, + const std::vector& grad_inputs, + std::vector* grad_outputs) { + std::vector ksize; + std::vector strides; + string padding; + string data_format; + auto attrs = op.output(0).node()->attrs(); + TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "ksize", &ksize)); + TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "strides", &strides)); + TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "padding", &padding)); + TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "data_format", &data_format)); + internal::AvgPoolGrad::Attrs grad_attrs; + grad_attrs.DataFormat(data_format); + auto dx = + internal::AvgPoolGrad(scope, Shape(scope, op.input(0)), grad_inputs[0], + ksize, strides, padding, grad_attrs); + grad_outputs->push_back(dx); + return scope.status(); +} +REGISTER_GRADIENT_OP("AvgPool", AvgPoolGradHelper); + +Status AvgPool3DGradHelper(const Scope& scope, const Operation& op, + const std::vector& grad_inputs, + std::vector* grad_outputs) { + std::vector ksize; + std::vector strides; + string padding; + string data_format; + auto attrs = op.output(0).node()->attrs(); + TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "ksize", &ksize)); + TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "strides", &strides)); + TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "padding", &padding)); + TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "data_format", &data_format)); + AvgPool3DGrad::Attrs grad_attrs; + grad_attrs.DataFormat(data_format); + auto dx = AvgPool3DGrad(scope, Shape(scope, op.input(0)), grad_inputs[0], + ksize, strides, padding, grad_attrs); + grad_outputs->push_back(dx); + return scope.status(); +} +REGISTER_GRADIENT_OP("AvgPool3D", AvgPool3DGradHelper); + Status LRNGradHelper(const Scope& scope, const Operation& op, const std::vector& grad_inputs, std::vector* grad_outputs){ diff --git a/tensorflow/cc/gradients/nn_grad_test.cc b/tensorflow/cc/gradients/nn_grad_test.cc index 0cfe5f6..c4eba7e 100644 --- a/tensorflow/cc/gradients/nn_grad_test.cc +++ b/tensorflow/cc/gradients/nn_grad_test.cc @@ -31,8 +31,11 @@ using ops::Elu; using ops::L2Loss; using ops::LogSoftmax; using ops::LRN; +using ops::AvgPool; +using ops::AvgPool3D; using ops::MaxPool; using ops::MaxPoolV2; +using ops::MaxPool3D; using ops::Placeholder; using ops::Relu; using ops::Relu6; @@ -70,9 +73,9 @@ class NNGradTest : public ::testing::Test { // Sets tensor with random values, ensuring that the max value is largest by // a reasonable amount. - // This is an issue for MaxPool and MaxPoolV2, in which perturbations by the - // numeric gradient computation in the gradient checker can change the max - // value if values are too close together. + // This is an issue for MaxPool, MaxPoolV2 and MaxPool3D, in which + // perturbations by the numeric gradient computation in the gradient checker + // can change the max value if values are too close together. template void SetRandomValuesWithBumpedMax(Tensor* tensor) { auto tensor_flat = tensor->flat(); @@ -203,6 +206,41 @@ TEST_F(NNGradTest, MaxPoolGradV2Helper) { RunTest(x, x_init_value, y, y_shape); } +TEST_F(NNGradTest, MaxPool3DGradHelper) { + TensorShape x_shape({1, 3, 3, 3, 1}); + TensorShape y_shape({1, 1, 1, 1, 1}); + auto x = Placeholder(scope_, DT_FLOAT, Placeholder::Shape(x_shape)); + // Setup window and strides so that we only do one MaxPool3D. + const std::vector ksize{1, 3, 3, 3, 1}; + const std::vector strides{1, 3, 3, 3, 1}; + auto y = MaxPool3D(scope_, x, ksize, strides, "VALID"); + Tensor x_init_value = Tensor(DT_FLOAT, x_shape); + SetRandomValuesWithBumpedMax(&x_init_value); + RunTest(x, x_init_value, y, y_shape); +} + +TEST_F(NNGradTest, AvgPoolGradHelper) { + TensorShape x_shape({1, 2, 2, 1}); + TensorShape y_shape({1, 1, 1, 1}); + auto x = Placeholder(scope_, DT_FLOAT, Placeholder::Shape(x_shape)); + // Setup window and strides so that we only do one AvgPool. + const std::vector ksize{1, 2, 2, 1}; + const std::vector strides{1, 2, 2, 1}; + auto y = AvgPool(scope_, x, ksize, strides, "SAME"); + RunTest(x, x_shape, y, y_shape); +} + +TEST_F(NNGradTest, AvgPool3DGradHelper) { + TensorShape x_shape({1, 3, 3, 3, 1}); + TensorShape y_shape({1, 1, 1, 1, 1}); + auto x = Placeholder(scope_, DT_FLOAT, Placeholder::Shape(x_shape)); + // Setup window and strides so that we only do one AvgPool3D. + const std::vector ksize{1, 3, 3, 3, 1}; + const std::vector strides{1, 3, 3, 3, 1}; + auto y = AvgPool3D(scope_, x, ksize, strides, "SAME"); + RunTest(x, x_shape, y, y_shape); +} + TEST_F(NNGradTest, LRN){ TensorShape x_shape({1, 1, 2, 1}); auto x = Placeholder(scope_, DT_FLOAT, Placeholder::Shape(x_shape)); -- 2.7.4