From 784d7736bdfc9c9d06098db56d4dc883bc12f0ea Mon Sep 17 00:00:00 2001 From: "A. Unique TensorFlower" Date: Fri, 16 Mar 2018 12:55:18 -0700 Subject: [PATCH] BREAKING_CHANGE: Remove SigmoidCentered bijector. - SoftmaxCentered solely works on vector events, and supports broadcasting. - Sigmoid exists for event_ndims=0 cases. PiperOrigin-RevId: 189380445 --- tensorflow/contrib/distributions/BUILD | 19 ---- .../python/kernel_tests/bijectors/chain_test.py | 8 +- .../python/kernel_tests/bijectors/invert_test.py | 7 +- .../bijectors/sigmoid_centered_test.py | 57 ----------- .../bijectors/softmax_centered_test.py | 56 +++------- .../kernel_tests/transformed_distribution_test.py | 12 ++- .../distributions/python/ops/bijectors/__init__.py | 2 - .../python/ops/bijectors/sigmoid_centered.py | 39 ------- .../python/ops/bijectors/softmax_centered.py | 114 ++++++--------------- .../python/ops/vector_diffeomixture.py | 2 +- .../python/contrib.distributions.bijectors.md | 1 - 11 files changed, 59 insertions(+), 258 deletions(-) delete mode 100644 tensorflow/contrib/distributions/python/kernel_tests/bijectors/sigmoid_centered_test.py delete mode 100644 tensorflow/contrib/distributions/python/ops/bijectors/sigmoid_centered.py diff --git a/tensorflow/contrib/distributions/BUILD b/tensorflow/contrib/distributions/BUILD index 6bd3f5f..e9c827a 100644 --- a/tensorflow/contrib/distributions/BUILD +++ b/tensorflow/contrib/distributions/BUILD @@ -1105,25 +1105,6 @@ cuda_py_test( ], ) -cuda_py_test( - name = "sigmoid_centered_test", - size = "small", - srcs = ["python/kernel_tests/bijectors/sigmoid_centered_test.py"], - additional_deps = [ - ":bijectors_py", - ":distributions_py", - "//third_party/py/numpy", - "@six_archive//:six", - "//tensorflow/contrib/linalg:linalg_py", - "//tensorflow/python:array_ops", - "//tensorflow/python:client_testlib", - "//tensorflow/python:framework_for_generated_wrappers", - "//tensorflow/python:framework_test_lib", - "//tensorflow/python:math_ops", - "//tensorflow/python:platform_test", - ], -) - # Tests for SinhArcSinh bijector. The file name has the extra "_bijector" to # avoid BUILD rule name conflicts with the distribution by the same name. cuda_py_test( diff --git a/tensorflow/contrib/distributions/python/kernel_tests/bijectors/chain_test.py b/tensorflow/contrib/distributions/python/kernel_tests/bijectors/chain_test.py index 20e7543..a748acd 100644 --- a/tensorflow/contrib/distributions/python/kernel_tests/bijectors/chain_test.py +++ b/tensorflow/contrib/distributions/python/kernel_tests/bijectors/chain_test.py @@ -66,12 +66,10 @@ class ChainBijectorTest(test.TestCase): def testShapeGetters(self): with self.test_session(): bijector = Chain([ - SoftmaxCentered( - event_ndims=1, validate_args=True), - SoftmaxCentered( - event_ndims=0, validate_args=True) + SoftmaxCentered(validate_args=True), + SoftmaxCentered(validate_args=True), ]) - x = tensor_shape.TensorShape([]) + x = tensor_shape.TensorShape([1]) y = tensor_shape.TensorShape([2 + 1]) self.assertAllEqual(y, bijector.forward_event_shape(x)) self.assertAllEqual( diff --git a/tensorflow/contrib/distributions/python/kernel_tests/bijectors/invert_test.py b/tensorflow/contrib/distributions/python/kernel_tests/bijectors/invert_test.py index 28e3e31..58ba9ce 100644 --- a/tensorflow/contrib/distributions/python/kernel_tests/bijectors/invert_test.py +++ b/tensorflow/contrib/distributions/python/kernel_tests/bijectors/invert_test.py @@ -37,8 +37,7 @@ class InvertBijectorTest(test.TestCase): bijectors.Exp(event_ndims=1), bijectors.Affine(shift=[0., 1.], scale_diag=[2., 3.]), bijectors.Softplus(event_ndims=1), - bijectors.SoftmaxCentered(event_ndims=1), - bijectors.SigmoidCentered(), + bijectors.SoftmaxCentered(), ]: rev = bijectors.Invert(fwd) self.assertEqual("_".join(["invert", fwd.name]), rev.name) @@ -61,9 +60,9 @@ class InvertBijectorTest(test.TestCase): def testShapeGetters(self): with self.test_session(): - bijector = bijectors.Invert(bijectors.SigmoidCentered(validate_args=True)) + bijector = bijectors.Invert(bijectors.SoftmaxCentered(validate_args=True)) x = tensor_shape.TensorShape([2]) - y = tensor_shape.TensorShape([]) + y = tensor_shape.TensorShape([1]) self.assertAllEqual(y, bijector.forward_event_shape(x)) self.assertAllEqual( y.as_list(), diff --git a/tensorflow/contrib/distributions/python/kernel_tests/bijectors/sigmoid_centered_test.py b/tensorflow/contrib/distributions/python/kernel_tests/bijectors/sigmoid_centered_test.py deleted file mode 100644 index 4ff3f33..0000000 --- a/tensorflow/contrib/distributions/python/kernel_tests/bijectors/sigmoid_centered_test.py +++ /dev/null @@ -1,57 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for Bijector.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import numpy as np - -from tensorflow.contrib.distributions.python.ops.bijectors.sigmoid_centered import SigmoidCentered -from tensorflow.python.platform import test - - -class SigmoidCenteredBijectorTest(test.TestCase): - """Tests correctness of the Y = g(X) = (1 + exp(-X))^-1 transformation.""" - - def testBijector(self): - with self.test_session(): - sigmoid = SigmoidCentered() - self.assertEqual("sigmoid_centered", sigmoid.name) - x = np.log([[2., 3, 4], - [4., 8, 12]]) - y = [[[2. / 3, 1. / 3], - [3. / 4, 1. / 4], - [4. / 5, 1. / 5]], - [[4. / 5, 1. / 5], - [8. / 9, 1. / 9], - [12. / 13, 1. / 13]]] - self.assertAllClose(y, sigmoid.forward(x).eval()) - self.assertAllClose(x, sigmoid.inverse(y).eval()) - self.assertAllClose( - -np.sum(np.log(y), axis=2), - sigmoid.inverse_log_det_jacobian(y).eval(), - atol=0., - rtol=1e-7) - self.assertAllClose( - -sigmoid.inverse_log_det_jacobian(y).eval(), - sigmoid.forward_log_det_jacobian(x).eval(), - atol=0., - rtol=1e-7) - - -if __name__ == "__main__": - test.main() diff --git a/tensorflow/contrib/distributions/python/kernel_tests/bijectors/softmax_centered_test.py b/tensorflow/contrib/distributions/python/kernel_tests/bijectors/softmax_centered_test.py index 4a7679d..cad4dd1 100644 --- a/tensorflow/contrib/distributions/python/kernel_tests/bijectors/softmax_centered_test.py +++ b/tensorflow/contrib/distributions/python/kernel_tests/bijectors/softmax_centered_test.py @@ -34,34 +34,9 @@ rng = np.random.RandomState(42) class SoftmaxCenteredBijectorTest(test.TestCase): """Tests correctness of the Y = g(X) = exp(X) / sum(exp(X)) transformation.""" - def testBijectorScalar(self): - with self.test_session(): - softmax = SoftmaxCentered() # scalar by default - self.assertEqual("softmax_centered", softmax.name) - x = np.log([[2., 3, 4], - [4., 8, 12]]) - y = [[[2. / 3, 1. / 3], - [3. / 4, 1. / 4], - [4. / 5, 1. / 5]], - [[4. / 5, 1. / 5], - [8. / 9, 1. / 9], - [12. / 13, 1. / 13]]] - self.assertAllClose(y, softmax.forward(x).eval()) - self.assertAllClose(x, softmax.inverse(y).eval()) - self.assertAllClose( - -np.sum(np.log(y), axis=2), - softmax.inverse_log_det_jacobian(y).eval(), - atol=0., - rtol=1e-7) - self.assertAllClose( - -softmax.inverse_log_det_jacobian(y).eval(), - softmax.forward_log_det_jacobian(x).eval(), - atol=0., - rtol=1e-7) - def testBijectorVector(self): with self.test_session(): - softmax = SoftmaxCentered(event_ndims=1) + softmax = SoftmaxCentered() self.assertEqual("softmax_centered", softmax.name) x = np.log([[2., 3, 4], [4., 8, 12]]) y = [[0.2, 0.3, 0.4, 0.1], [0.16, 0.32, 0.48, 0.04]] @@ -80,7 +55,7 @@ class SoftmaxCenteredBijectorTest(test.TestCase): def testBijectorUnknownShape(self): with self.test_session(): - softmax = SoftmaxCentered(event_ndims=1) + softmax = SoftmaxCentered() self.assertEqual("softmax_centered", softmax.name) x = array_ops.placeholder(shape=[2, None], dtype=dtypes.float32) real_x = np.log([[2., 3, 4], [4., 8, 12]]) @@ -106,24 +81,21 @@ class SoftmaxCenteredBijectorTest(test.TestCase): def testShapeGetters(self): with self.test_session(): - for x, y, b in ((tensor_shape.TensorShape([]), - tensor_shape.TensorShape([2]), - SoftmaxCentered( - event_ndims=0, validate_args=True)), - (tensor_shape.TensorShape([4]), - tensor_shape.TensorShape([5]), - SoftmaxCentered( - event_ndims=1, validate_args=True))): - self.assertAllEqual(y, b.forward_event_shape(x)) - self.assertAllEqual(y.as_list(), - b.forward_event_shape_tensor(x.as_list()).eval()) - self.assertAllEqual(x, b.inverse_event_shape(y)) - self.assertAllEqual(x.as_list(), - b.inverse_event_shape_tensor(y.as_list()).eval()) + x = tensor_shape.TensorShape([4]) + y = tensor_shape.TensorShape([5]) + bijector = SoftmaxCentered(validate_args=True) + self.assertAllEqual(y, bijector.forward_event_shape(x)) + self.assertAllEqual(y.as_list(), + bijector.forward_event_shape_tensor( + x.as_list()).eval()) + self.assertAllEqual(x, bijector.inverse_event_shape(y)) + self.assertAllEqual(x.as_list(), + bijector.inverse_event_shape_tensor( + y.as_list()).eval()) def testBijectiveAndFinite(self): with self.test_session(): - softmax = SoftmaxCentered(event_ndims=1) + softmax = SoftmaxCentered() x = np.linspace(-50, 50, num=10).reshape(5, 2).astype(np.float32) # Make y values on the simplex with a wide range. y_0 = np.ones(5).astype(np.float32) diff --git a/tensorflow/contrib/distributions/python/kernel_tests/transformed_distribution_test.py b/tensorflow/contrib/distributions/python/kernel_tests/transformed_distribution_test.py index af13553..f0ba1ec 100644 --- a/tensorflow/contrib/distributions/python/kernel_tests/transformed_distribution_test.py +++ b/tensorflow/contrib/distributions/python/kernel_tests/transformed_distribution_test.py @@ -186,12 +186,14 @@ class TransformedDistributionTest(test.TestCase): standard_normal = ds.Normal(loc=0., scale=1.) multi_logit_normal = self._cls()( distribution=standard_normal, - bijector=softmax) - x = [[-np.log(3.), 0.], - [np.log(3), np.log(5)]] + bijector=softmax, + event_shape=[1]) + x = [[[-np.log(3.)], [0.]], + [[np.log(3)], [np.log(5)]]] y = softmax.forward(x).eval() - expected_log_pdf = (stats.norm(loc=0., scale=1.).logpdf(x) - - np.sum(np.log(y), axis=-1)) + expected_log_pdf = ( + np.squeeze(stats.norm(loc=0., scale=1.).logpdf(x)) - + np.sum(np.log(y), axis=-1)) self.assertAllClose(expected_log_pdf, multi_logit_normal.log_prob(y).eval()) self.assertAllClose( diff --git a/tensorflow/contrib/distributions/python/ops/bijectors/__init__.py b/tensorflow/contrib/distributions/python/ops/bijectors/__init__.py index 452f1ca..bc6b025 100644 --- a/tensorflow/contrib/distributions/python/ops/bijectors/__init__.py +++ b/tensorflow/contrib/distributions/python/ops/bijectors/__init__.py @@ -35,7 +35,6 @@ @@RealNVP @@Reshape @@Sigmoid -@@SigmoidCentered @@SinhArcsinh @@SoftmaxCentered @@Softplus @@ -72,7 +71,6 @@ from tensorflow.contrib.distributions.python.ops.bijectors.power_transform impor from tensorflow.contrib.distributions.python.ops.bijectors.real_nvp import * from tensorflow.contrib.distributions.python.ops.bijectors.reshape import * from tensorflow.contrib.distributions.python.ops.bijectors.sigmoid import * -from tensorflow.contrib.distributions.python.ops.bijectors.sigmoid_centered import * from tensorflow.contrib.distributions.python.ops.bijectors.sinh_arcsinh import * from tensorflow.contrib.distributions.python.ops.bijectors.softmax_centered import * from tensorflow.contrib.distributions.python.ops.bijectors.softplus import * diff --git a/tensorflow/contrib/distributions/python/ops/bijectors/sigmoid_centered.py b/tensorflow/contrib/distributions/python/ops/bijectors/sigmoid_centered.py deleted file mode 100644 index 223bc9d..0000000 --- a/tensorflow/contrib/distributions/python/ops/bijectors/sigmoid_centered.py +++ /dev/null @@ -1,39 +0,0 @@ -# Copyright 2016 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""SigmoidCentered bijector.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from tensorflow.contrib.distributions.python.ops.bijectors import softmax_centered - - -__all__ = [ - "SigmoidCentered", -] - - -class SigmoidCentered(softmax_centered.SoftmaxCentered): - """Bijector which computes Y = g(X) = exp([X 0]) / (1 + exp(-X)). - - Equivalent to: `bijector.SoftmaxCentered(event_ndims=0)`. - - See `bijector.SoftmaxCentered` for more details. - """ - - def __init__(self, validate_args=False, name="sigmoid_centered"): - super(SigmoidCentered, self).__init__( - event_ndims=0, validate_args=validate_args, name=name) diff --git a/tensorflow/contrib/distributions/python/ops/bijectors/softmax_centered.py b/tensorflow/contrib/distributions/python/ops/bijectors/softmax_centered.py index 24add40..dc94fd0 100644 --- a/tensorflow/contrib/distributions/python/ops/bijectors/softmax_centered.py +++ b/tensorflow/contrib/distributions/python/ops/bijectors/softmax_centered.py @@ -19,10 +19,7 @@ from __future__ import division from __future__ import print_function from tensorflow.contrib.distributions.python.ops import distribution_util -from tensorflow.python.framework import dtypes -from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape -from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops @@ -45,17 +42,14 @@ class SoftmaxCentered(bijector.Bijector): e.g., `softmax(x) = exp(x-c) / sum(exp(x-c))` where `c` is the implicit last coordinate. - Because we append a coordinate, this bijector only supports `event_ndim in [0, - 1]`, i.e., scalars and vectors. - Example Use: ```python - bijector.SoftmaxCentered(event_ndims=1).forward(tf.log([2, 3, 4])) + bijector.SoftmaxCentered().forward(tf.log([2, 3, 4])) # Result: [0.2, 0.3, 0.4, 0.1] # Extra result: 0.1 - bijector.SoftmaxCentered(event_ndims=1).inverse([0.2, 0.3, 0.4, 0.1]) + bijector.SoftmaxCentered().inverse([0.2, 0.3, 0.4, 0.1]) # Result: tf.log([2, 3, 4]) # Extra coordinate removed. ``` @@ -67,82 +61,47 @@ class SoftmaxCentered(bijector.Bijector): """ def __init__(self, - event_ndims=0, validate_args=False, name="softmax_centered"): self._graph_parents = [] self._name = name - with self._name_scope("init", values=[event_ndims]): - event_ndims = ops.convert_to_tensor(event_ndims, name="event_ndims") - event_ndims = tensor_util.constant_value(event_ndims) - if event_ndims is None or event_ndims not in [0, 1]: - raise ValueError("`event_ndims` must be a TF constant which is 0 or 1") - self._static_event_ndims = event_ndims super(SoftmaxCentered, self).__init__( - event_ndims=event_ndims, + event_ndims=1, validate_args=validate_args, name=name) def _forward_event_shape(self, input_shape): - if input_shape.ndims is None: + if input_shape.ndims is None or input_shape[-1] is None: return input_shape - if input_shape.ndims != self._static_event_ndims: - raise ValueError("input_shape.dims = %d != %d" % - (input_shape.ndims, self._static_event_ndims)) - if input_shape.ndims == 0: - return tensor_shape.TensorShape([2]) - if input_shape.ndims == 1: - return tensor_shape.TensorShape(input_shape[0] + 1) - # Unreachable code: - raise ValueError("event_ndims = %d must be 0 or 1" % input_shape.ndims) + return tensor_shape.TensorShape([input_shape[-1] + 1]) def _forward_event_shape_tensor(self, input_shape): - ndims = array_ops.shape(input_shape) - if self.validate_args: - # It is not possible for a negative shape so we need only check <= 1. - is_zero_or_one = check_ops.assert_equal( - ndims, 0 if self._static_event_ndims == 0 else 1, - message="event_ndims must be 0 or 1") - ndims = control_flow_ops.with_dependencies([is_zero_or_one], ndims) - if self._static_event_ndims == 0: - return ops.convert_to_tensor( - [2], dtype=dtypes.int32, name="output_shape") - return input_shape + 1 + return (input_shape[-1] + 1)[..., array_ops.newaxis] def _inverse_event_shape(self, output_shape): - if output_shape.ndims is None: + if output_shape.ndims is None or output_shape[-1] is None: return output_shape - if output_shape.ndims != 1: - raise ValueError("output_shape.ndims = %d != 1" % output_shape.ndims) - if self._static_event_ndims == 0: - return tensor_shape.TensorShape([]) - return tensor_shape.TensorShape(output_shape[0] - 1) + if output_shape[-1] <= 1: + raise ValueError("output_shape[-1] = %d <= 1" % output_shape[-1]) + return tensor_shape.TensorShape([output_shape[-1] - 1]) def _inverse_event_shape_tensor(self, output_shape): - ndims = array_ops.shape(output_shape)[0] if self.validate_args: # It is not possible for a negative shape so we need only check <= 1. - is_one = check_ops.assert_equal( - ndims, 1, message="event_ndims must be 1") - ndims = control_flow_ops.with_dependencies([is_one], ndims) - if self._static_event_ndims == 0: - return ops.convert_to_tensor([], dtype=dtypes.int32, name="output_shape") - return array_ops.expand_dims(output_shape[0] - 1, dim=0) + is_greater_one = check_ops.assert_greater( + output_shape[-1], 1, message="Need last dimension greater than 1.") + output_shape = control_flow_ops.with_dependencies( + [is_greater_one], output_shape) + return (output_shape[-1] - 1)[..., array_ops.newaxis] def _forward(self, x): # Pad the last dim with a zeros vector. We need this because it lets us # infer the scale in the inverse function. - y = array_ops.expand_dims(x, dim=-1) if self._static_event_ndims == 0 else x - y = distribution_util.pad(y, axis=-1, back=True) + y = distribution_util.pad(x, axis=-1, back=True) # Set shape hints. if x.shape.ndims is not None: - shape = x.shape.as_list() - if self._static_event_ndims == 0: - shape += [2] - elif shape[-1] is not None: - shape[-1] += 1 - shape = tensor_shape.TensorShape(shape) + shape = x.shape[:-1].concatenate(x.shape[-1] + 1) y.shape.assert_is_compatible_with(shape) y.set_shape(shape) @@ -167,17 +126,9 @@ class SoftmaxCentered(bijector.Bijector): log_normalization = (-x[..., -1])[..., array_ops.newaxis] x = x[..., :-1] + log_normalization - if self._static_event_ndims == 0: - x = array_ops.squeeze(x, squeeze_dims=-1) - # Set shape hints. if y.shape.ndims is not None: - shape = y.shape.as_list() - if self._static_event_ndims == 0: - shape = shape[:-1] - elif shape[-1] is not None: - shape[-1] -= 1 - shape = tensor_shape.TensorShape(shape) + shape = y.shape[:-1].concatenate(y.shape[-1] - 1) x.shape.assert_is_compatible_with(shape) x.set_shape(shape) @@ -203,19 +154,16 @@ class SoftmaxCentered(bijector.Bijector): return -math_ops.reduce_sum(math_ops.log(y), axis=-1) def _forward_log_det_jacobian(self, x): - if self._static_event_ndims == 0: - return x - 2. * nn_ops.softplus(x) - else: - # This code is similar to nn_ops.log_softmax but different because we have - # an implicit zero column to handle. I.e., instead of: - # reduce_sum(logits - reduce_sum(exp(logits), dim)) - # we must do: - # log_normalization = 1 + reduce_sum(exp(logits)) - # -log_normalization + reduce_sum(logits - log_normalization) - log_normalization = nn_ops.softplus( - math_ops.reduce_logsumexp(x, axis=-1, keep_dims=True)) - fldj = (-log_normalization + - math_ops.reduce_sum(x - log_normalization, - axis=-1, - keep_dims=True)) - return array_ops.squeeze(fldj, squeeze_dims=-1) + # This code is similar to nn_ops.log_softmax but different because we have + # an implicit zero column to handle. I.e., instead of: + # reduce_sum(logits - reduce_sum(exp(logits), dim)) + # we must do: + # log_normalization = 1 + reduce_sum(exp(logits)) + # -log_normalization + reduce_sum(logits - log_normalization) + log_normalization = nn_ops.softplus( + math_ops.reduce_logsumexp(x, axis=-1, keep_dims=True)) + fldj = (-log_normalization + + math_ops.reduce_sum(x - log_normalization, + axis=-1, + keep_dims=True)) + return array_ops.squeeze(fldj, squeeze_dims=-1) diff --git a/tensorflow/contrib/distributions/python/ops/vector_diffeomixture.py b/tensorflow/contrib/distributions/python/ops/vector_diffeomixture.py index 0c747f8..3208ecd 100644 --- a/tensorflow/contrib/distributions/python/ops/vector_diffeomixture.py +++ b/tensorflow/contrib/distributions/python/ops/vector_diffeomixture.py @@ -181,7 +181,7 @@ def quadrature_scheme_softmaxnormal_quantiles( edges = array_ops.reshape(edges, shape=array_ops.concat([ [-1], array_ops.ones([batch_ndims], dtype=dtypes.int32)], axis=0)) quantiles = dist.quantile(edges) - quantiles = SoftmaxCentered(event_ndims=1).forward(quantiles) + quantiles = SoftmaxCentered().forward(quantiles) # Cyclically permute left by one. perm = array_ops.concat([ math_ops.range(1, 1 + batch_ndims), [0]], axis=0) diff --git a/tensorflow/docs_src/api_guides/python/contrib.distributions.bijectors.md b/tensorflow/docs_src/api_guides/python/contrib.distributions.bijectors.md index 0ce187b..e169897 100644 --- a/tensorflow/docs_src/api_guides/python/contrib.distributions.bijectors.md +++ b/tensorflow/docs_src/api_guides/python/contrib.distributions.bijectors.md @@ -28,6 +28,5 @@ To apply a `Bijector`, use `distributions.TransformedDistribution`. * @{tf.contrib.distributions.bijectors.Inline} * @{tf.contrib.distributions.bijectors.Invert} * @{tf.contrib.distributions.bijectors.PowerTransform} -* @{tf.contrib.distributions.bijectors.SigmoidCentered} * @{tf.contrib.distributions.bijectors.SoftmaxCentered} * @{tf.contrib.distributions.bijectors.Softplus} -- 2.7.4