From 2838a3c78b7e39c6ad025451e751166568006a1c Mon Sep 17 00:00:00 2001 From: "sgjesse@chromium.org" Date: Fri, 13 May 2011 07:27:46 +0000 Subject: [PATCH] Submit builtins-mips.cc. This code submission will compile, but is not testable until the majority of the mips port is in place. This has been tested externally. BUG= TEST= Review URL: http://codereview.chromium.org//7013031 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@7880 ce2b1a6d-e550-0410-aec6-3dcde31c8c00 --- src/mips/builtins-mips.cc | 1508 ++++++++++++++++++++++++++++++++++++- 1 file changed, 1489 insertions(+), 19 deletions(-) diff --git a/src/mips/builtins-mips.cc b/src/mips/builtins-mips.cc index 5cbeda809..d41b0f13f 100644 --- a/src/mips/builtins-mips.cc +++ b/src/mips/builtins-mips.cc @@ -47,97 +47,1567 @@ namespace internal { void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id, BuiltinExtraArguments extra_args) { - UNIMPLEMENTED_MIPS(); + // ----------- S t a t e ------------- + // -- a0 : number of arguments excluding receiver + // -- a1 : called function (only guaranteed when + // -- extra_args requires it) + // -- cp : context + // -- sp[0] : last argument + // -- ... + // -- sp[4 * (argc - 1)] : first argument + // -- sp[4 * agrc] : receiver + // ----------------------------------- + + // Insert extra arguments. + int num_extra_args = 0; + if (extra_args == NEEDS_CALLED_FUNCTION) { + num_extra_args = 1; + __ push(a1); + } else { + ASSERT(extra_args == NO_EXTRA_ARGUMENTS); + } + + // JumpToExternalReference expects a0 to contain the number of arguments + // including the receiver and the extra arguments. + __ Addu(a0, a0, Operand(num_extra_args + 1)); + __ JumpToExternalReference(ExternalReference(id, masm->isolate())); +} + + +// Load the built-in Array function from the current context. +static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) { + // Load the global context. + + __ lw(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); + __ lw(result, + FieldMemOperand(result, GlobalObject::kGlobalContextOffset)); + // Load the Array function from the global context. + __ lw(result, + MemOperand(result, + Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX))); +} + + +// This constant has the same value as JSArray::kPreallocatedArrayElements and +// if JSArray::kPreallocatedArrayElements is changed handling of loop unfolding +// below should be reconsidered. +static const int kLoopUnfoldLimit = 4; + + +// Allocate an empty JSArray. The allocated array is put into the result +// register. An elements backing store is allocated with size initial_capacity +// and filled with the hole values. +static void AllocateEmptyJSArray(MacroAssembler* masm, + Register array_function, + Register result, + Register scratch1, + Register scratch2, + Register scratch3, + int initial_capacity, + Label* gc_required) { + ASSERT(initial_capacity > 0); + // Load the initial map from the array function. + __ lw(scratch1, FieldMemOperand(array_function, + JSFunction::kPrototypeOrInitialMapOffset)); + + // Allocate the JSArray object together with space for a fixed array with the + // requested elements. + int size = JSArray::kSize + FixedArray::SizeFor(initial_capacity); + __ AllocateInNewSpace(size, + result, + scratch2, + scratch3, + gc_required, + TAG_OBJECT); + // Allocated the JSArray. Now initialize the fields except for the elements + // array. + // result: JSObject + // scratch1: initial map + // scratch2: start of next object + __ sw(scratch1, FieldMemOperand(result, JSObject::kMapOffset)); + __ LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex); + __ sw(scratch1, FieldMemOperand(result, JSArray::kPropertiesOffset)); + // Field JSArray::kElementsOffset is initialized later. + __ mov(scratch3, zero_reg); + __ sw(scratch3, FieldMemOperand(result, JSArray::kLengthOffset)); + + // Calculate the location of the elements array and set elements array member + // of the JSArray. + // result: JSObject + // scratch2: start of next object + __ Addu(scratch1, result, Operand(JSArray::kSize)); + __ sw(scratch1, FieldMemOperand(result, JSArray::kElementsOffset)); + + // Clear the heap tag on the elements array. + __ And(scratch1, scratch1, Operand(~kHeapObjectTagMask)); + + // Initialize the FixedArray and fill it with holes. FixedArray length is + // stored as a smi. + // result: JSObject + // scratch1: elements array (untagged) + // scratch2: start of next object + __ LoadRoot(scratch3, Heap::kFixedArrayMapRootIndex); + ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset); + __ sw(scratch3, MemOperand(scratch1)); + __ Addu(scratch1, scratch1, kPointerSize); + __ li(scratch3, Operand(Smi::FromInt(initial_capacity))); + ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset); + __ sw(scratch3, MemOperand(scratch1)); + __ Addu(scratch1, scratch1, kPointerSize); + + // Fill the FixedArray with the hole value. + ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize); + ASSERT(initial_capacity <= kLoopUnfoldLimit); + __ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex); + for (int i = 0; i < initial_capacity; i++) { + __ sw(scratch3, MemOperand(scratch1)); + __ Addu(scratch1, scratch1, kPointerSize); + } +} + + +// Allocate a JSArray with the number of elements stored in a register. The +// register array_function holds the built-in Array function and the register +// array_size holds the size of the array as a smi. The allocated array is put +// into the result register and beginning and end of the FixedArray elements +// storage is put into registers elements_array_storage and elements_array_end +// (see below for when that is not the case). If the parameter fill_with_holes +// is true the allocated elements backing store is filled with the hole values +// otherwise it is left uninitialized. When the backing store is filled the +// register elements_array_storage is scratched. +static void AllocateJSArray(MacroAssembler* masm, + Register array_function, // Array function. + Register array_size, // As a smi. + Register result, + Register elements_array_storage, + Register elements_array_end, + Register scratch1, + Register scratch2, + bool fill_with_hole, + Label* gc_required) { + Label not_empty, allocated; + + // Load the initial map from the array function. + __ lw(elements_array_storage, + FieldMemOperand(array_function, + JSFunction::kPrototypeOrInitialMapOffset)); + + // Check whether an empty sized array is requested. + __ Branch(¬_empty, ne, array_size, Operand(zero_reg)); + + // If an empty array is requested allocate a small elements array anyway. This + // keeps the code below free of special casing for the empty array. + int size = JSArray::kSize + + FixedArray::SizeFor(JSArray::kPreallocatedArrayElements); + __ AllocateInNewSpace(size, + result, + elements_array_end, + scratch1, + gc_required, + TAG_OBJECT); + __ Branch(&allocated); + + // Allocate the JSArray object together with space for a FixedArray with the + // requested number of elements. + __ bind(¬_empty); + ASSERT(kSmiTagSize == 1 && kSmiTag == 0); + __ li(elements_array_end, + (JSArray::kSize + FixedArray::kHeaderSize) / kPointerSize); + __ sra(scratch1, array_size, kSmiTagSize); + __ Addu(elements_array_end, elements_array_end, scratch1); + __ AllocateInNewSpace( + elements_array_end, + result, + scratch1, + scratch2, + gc_required, + static_cast(TAG_OBJECT | SIZE_IN_WORDS)); + + // Allocated the JSArray. Now initialize the fields except for the elements + // array. + // result: JSObject + // elements_array_storage: initial map + // array_size: size of array (smi) + __ bind(&allocated); + __ sw(elements_array_storage, FieldMemOperand(result, JSObject::kMapOffset)); + __ LoadRoot(elements_array_storage, Heap::kEmptyFixedArrayRootIndex); + __ sw(elements_array_storage, + FieldMemOperand(result, JSArray::kPropertiesOffset)); + // Field JSArray::kElementsOffset is initialized later. + __ sw(array_size, FieldMemOperand(result, JSArray::kLengthOffset)); + + // Calculate the location of the elements array and set elements array member + // of the JSArray. + // result: JSObject + // array_size: size of array (smi) + __ Addu(elements_array_storage, result, Operand(JSArray::kSize)); + __ sw(elements_array_storage, + FieldMemOperand(result, JSArray::kElementsOffset)); + + // Clear the heap tag on the elements array. + __ And(elements_array_storage, + elements_array_storage, + Operand(~kHeapObjectTagMask)); + // Initialize the fixed array and fill it with holes. FixedArray length is + // stored as a smi. + // result: JSObject + // elements_array_storage: elements array (untagged) + // array_size: size of array (smi) + __ LoadRoot(scratch1, Heap::kFixedArrayMapRootIndex); + ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset); + __ sw(scratch1, MemOperand(elements_array_storage)); + __ Addu(elements_array_storage, elements_array_storage, kPointerSize); + + // Length of the FixedArray is the number of pre-allocated elements if + // the actual JSArray has length 0 and the size of the JSArray for non-empty + // JSArrays. The length of a FixedArray is stored as a smi. + ASSERT(kSmiTag == 0); + __ li(at, Operand(Smi::FromInt(JSArray::kPreallocatedArrayElements))); + __ movz(array_size, at, array_size); + + ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset); + __ sw(array_size, MemOperand(elements_array_storage)); + __ Addu(elements_array_storage, elements_array_storage, kPointerSize); + + // Calculate elements array and elements array end. + // result: JSObject + // elements_array_storage: elements array element storage + // array_size: smi-tagged size of elements array + ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2); + __ sll(elements_array_end, array_size, kPointerSizeLog2 - kSmiTagSize); + __ Addu(elements_array_end, elements_array_storage, elements_array_end); + + // Fill the allocated FixedArray with the hole value if requested. + // result: JSObject + // elements_array_storage: elements array element storage + // elements_array_end: start of next object + if (fill_with_hole) { + Label loop, entry; + __ LoadRoot(scratch1, Heap::kTheHoleValueRootIndex); + __ Branch(&entry); + __ bind(&loop); + __ sw(scratch1, MemOperand(elements_array_storage)); + __ Addu(elements_array_storage, elements_array_storage, kPointerSize); + + __ bind(&entry); + __ Branch(&loop, lt, elements_array_storage, Operand(elements_array_end)); + } +} + + +// Create a new array for the built-in Array function. This function allocates +// the JSArray object and the FixedArray elements array and initializes these. +// If the Array cannot be constructed in native code the runtime is called. This +// function assumes the following state: +// a0: argc +// a1: constructor (built-in Array function) +// ra: return address +// sp[0]: last argument +// This function is used for both construct and normal calls of Array. The only +// difference between handling a construct call and a normal call is that for a +// construct call the constructor function in a1 needs to be preserved for +// entering the generic code. In both cases argc in a0 needs to be preserved. +// Both registers are preserved by this code so no need to differentiate between +// construct call and normal call. +static void ArrayNativeCode(MacroAssembler* masm, + Label* call_generic_code) { + Counters* counters = masm->isolate()->counters(); + Label argc_one_or_more, argc_two_or_more; + + // Check for array construction with zero arguments or one. + __ Branch(&argc_one_or_more, ne, a0, Operand(zero_reg)); + // Handle construction of an empty array. + AllocateEmptyJSArray(masm, + a1, + a2, + a3, + t0, + t1, + JSArray::kPreallocatedArrayElements, + call_generic_code); + __ IncrementCounter(counters->array_function_native(), 1, a3, t0); + // Setup return value, remove receiver from stack and return. + __ mov(v0, a2); + __ Addu(sp, sp, Operand(kPointerSize)); + __ Ret(); + + // Check for one argument. Bail out if argument is not smi or if it is + // negative. + __ bind(&argc_one_or_more); + __ Branch(&argc_two_or_more, ne, a0, Operand(1)); + + ASSERT(kSmiTag == 0); + __ lw(a2, MemOperand(sp)); // Get the argument from the stack. + __ And(a3, a2, Operand(kIntptrSignBit | kSmiTagMask)); + __ Branch(call_generic_code, eq, a3, Operand(zero_reg)); + + // Handle construction of an empty array of a certain size. Bail out if size + // is too large to actually allocate an elements array. + ASSERT(kSmiTag == 0); + __ Branch(call_generic_code, ge, a2, + Operand(JSObject::kInitialMaxFastElementArray << kSmiTagSize)); + + // a0: argc + // a1: constructor + // a2: array_size (smi) + // sp[0]: argument + AllocateJSArray(masm, + a1, + a2, + a3, + t0, + t1, + t2, + t3, + true, + call_generic_code); + __ IncrementCounter(counters->array_function_native(), 1, a2, t0); + + // Setup return value, remove receiver and argument from stack and return. + __ mov(v0, a3); + __ Addu(sp, sp, Operand(2 * kPointerSize)); + __ Ret(); + + // Handle construction of an array from a list of arguments. + __ bind(&argc_two_or_more); + __ sll(a2, a0, kSmiTagSize); // Convert argc to a smi. + + // a0: argc + // a1: constructor + // a2: array_size (smi) + // sp[0]: last argument + AllocateJSArray(masm, + a1, + a2, + a3, + t0, + t1, + t2, + t3, + false, + call_generic_code); + __ IncrementCounter(counters->array_function_native(), 1, a2, t2); + + // Fill arguments as array elements. Copy from the top of the stack (last + // element) to the array backing store filling it backwards. Note: + // elements_array_end points after the backing store. + // a0: argc + // a3: JSArray + // t0: elements_array storage start (untagged) + // t1: elements_array_end (untagged) + // sp[0]: last argument + + Label loop, entry; + __ Branch(&entry); + __ bind(&loop); + __ pop(a2); + __ Addu(t1, t1, -kPointerSize); + __ sw(a2, MemOperand(t1)); + __ bind(&entry); + __ Branch(&loop, lt, t0, Operand(t1)); + + // Remove caller arguments and receiver from the stack, setup return value and + // return. + // a0: argc + // a3: JSArray + // sp[0]: receiver + __ Addu(sp, sp, Operand(kPointerSize)); + __ mov(v0, a3); + __ Ret(); } void Builtins::Generate_ArrayCode(MacroAssembler* masm) { - UNIMPLEMENTED_MIPS(); + // ----------- S t a t e ------------- + // -- a0 : number of arguments + // -- ra : return address + // -- sp[...]: constructor arguments + // ----------------------------------- + Label generic_array_code; + + // Get the Array function. + GenerateLoadArrayFunction(masm, a1); + + if (FLAG_debug_code) { + // Initial map for the builtin Array functions should be maps. + __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); + __ And(t0, a2, Operand(kSmiTagMask)); + __ Assert(ne, "Unexpected initial map for Array function (1)", + t0, Operand(zero_reg)); + __ GetObjectType(a2, a3, t0); + __ Assert(eq, "Unexpected initial map for Array function (2)", + t0, Operand(MAP_TYPE)); + } + + // Run the native code for the Array function called as a normal function. + ArrayNativeCode(masm, &generic_array_code); + + // Jump to the generic array code if the specialized code cannot handle + // the construction. + __ bind(&generic_array_code); + + Handle array_code = + masm->isolate()->builtins()->ArrayCodeGeneric(); + __ Jump(array_code, RelocInfo::CODE_TARGET); } void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) { - UNIMPLEMENTED_MIPS(); + // ----------- S t a t e ------------- + // -- a0 : number of arguments + // -- a1 : constructor function + // -- ra : return address + // -- sp[...]: constructor arguments + // ----------------------------------- + Label generic_constructor; + + if (FLAG_debug_code) { + // The array construct code is only set for the builtin and internal + // Array functions which always have a map. + // Initial map for the builtin Array function should be a map. + __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); + __ And(t0, a2, Operand(kSmiTagMask)); + __ Assert(ne, "Unexpected initial map for Array function (3)", + t0, Operand(zero_reg)); + __ GetObjectType(a2, a3, t0); + __ Assert(eq, "Unexpected initial map for Array function (4)", + t0, Operand(MAP_TYPE)); + } + + // Run the native code for the Array function called as a constructor. + ArrayNativeCode(masm, &generic_constructor); + + // Jump to the generic construct code in case the specialized code cannot + // handle the construction. + __ bind(&generic_constructor); + + Handle generic_construct_stub = + masm->isolate()->builtins()->JSConstructStubGeneric(); + __ Jump(generic_construct_stub, RelocInfo::CODE_TARGET); } void Builtins::Generate_StringConstructCode(MacroAssembler* masm) { - UNIMPLEMENTED_MIPS(); + // ----------- S t a t e ------------- + // -- a0 : number of arguments + // -- a1 : constructor function + // -- ra : return address + // -- sp[(argc - n - 1) * 4] : arg[n] (zero based) + // -- sp[argc * 4] : receiver + // ----------------------------------- + Counters* counters = masm->isolate()->counters(); + __ IncrementCounter(counters->string_ctor_calls(), 1, a2, a3); + + Register function = a1; + if (FLAG_debug_code) { + __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, a2); + __ Assert(eq, "Unexpected String function", function, Operand(a2)); + } + + // Load the first arguments in a0 and get rid of the rest. + Label no_arguments; + __ Branch(&no_arguments, eq, a0, Operand(zero_reg)); + // First args = sp[(argc - 1) * 4]. + __ Subu(a0, a0, Operand(1)); + __ sll(a0, a0, kPointerSizeLog2); + __ Addu(sp, a0, sp); + __ lw(a0, MemOperand(sp)); + // sp now point to args[0], drop args[0] + receiver. + __ Drop(2); + + Register argument = a2; + Label not_cached, argument_is_string; + NumberToStringStub::GenerateLookupNumberStringCache( + masm, + a0, // Input. + argument, // Result. + a3, // Scratch. + t0, // Scratch. + t1, // Scratch. + false, // Is it a Smi? + ¬_cached); + __ IncrementCounter(counters->string_ctor_cached_number(), 1, a3, t0); + __ bind(&argument_is_string); + + // ----------- S t a t e ------------- + // -- a2 : argument converted to string + // -- a1 : constructor function + // -- ra : return address + // ----------------------------------- + + Label gc_required; + __ AllocateInNewSpace(JSValue::kSize, + v0, // Result. + a3, // Scratch. + t0, // Scratch. + &gc_required, + TAG_OBJECT); + + // Initialising the String Object. + Register map = a3; + __ LoadGlobalFunctionInitialMap(function, map, t0); + if (FLAG_debug_code) { + __ lbu(t0, FieldMemOperand(map, Map::kInstanceSizeOffset)); + __ Assert(eq, "Unexpected string wrapper instance size", + t0, Operand(JSValue::kSize >> kPointerSizeLog2)); + __ lbu(t0, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset)); + __ Assert(eq, "Unexpected unused properties of string wrapper", + t0, Operand(zero_reg)); + } + __ sw(map, FieldMemOperand(v0, HeapObject::kMapOffset)); + + __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex); + __ sw(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset)); + __ sw(a3, FieldMemOperand(v0, JSObject::kElementsOffset)); + + __ sw(argument, FieldMemOperand(v0, JSValue::kValueOffset)); + + // Ensure the object is fully initialized. + STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize); + + __ Ret(); + + // The argument was not found in the number to string cache. Check + // if it's a string already before calling the conversion builtin. + Label convert_argument; + __ bind(¬_cached); + __ JumpIfSmi(a0, &convert_argument); + + // Is it a String? + __ lw(a2, FieldMemOperand(a0, HeapObject::kMapOffset)); + __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset)); + ASSERT(kNotStringTag != 0); + __ And(t0, a3, Operand(kIsNotStringMask)); + __ Branch(&convert_argument, ne, t0, Operand(zero_reg)); + __ mov(argument, a0); + __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, t0); + __ Branch(&argument_is_string); + + // Invoke the conversion builtin and put the result into a2. + __ bind(&convert_argument); + __ push(function); // Preserve the function. + __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, t0); + __ EnterInternalFrame(); + __ push(v0); + __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION); + __ LeaveInternalFrame(); + __ pop(function); + __ mov(argument, v0); + __ Branch(&argument_is_string); + + // Load the empty string into a2, remove the receiver from the + // stack, and jump back to the case where the argument is a string. + __ bind(&no_arguments); + __ LoadRoot(argument, Heap::kEmptyStringRootIndex); + __ Drop(1); + __ Branch(&argument_is_string); + + // At this point the argument is already a string. Call runtime to + // create a string wrapper. + __ bind(&gc_required); + __ IncrementCounter(counters->string_ctor_gc_required(), 1, a3, t0); + __ EnterInternalFrame(); + __ push(argument); + __ CallRuntime(Runtime::kNewStringWrapper, 1); + __ LeaveInternalFrame(); + __ Ret(); } void Builtins::Generate_JSConstructCall(MacroAssembler* masm) { - UNIMPLEMENTED_MIPS(); + // ----------- S t a t e ------------- + // -- a0 : number of arguments + // -- a1 : constructor function + // -- ra : return address + // -- sp[...]: constructor arguments + // ----------------------------------- + + Label non_function_call; + // Check that the function is not a smi. + __ And(t0, a1, Operand(kSmiTagMask)); + __ Branch(&non_function_call, eq, t0, Operand(zero_reg)); + // Check that the function is a JSFunction. + __ GetObjectType(a1, a2, a2); + __ Branch(&non_function_call, ne, a2, Operand(JS_FUNCTION_TYPE)); + + // Jump to the function-specific construct stub. + __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); + __ lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kConstructStubOffset)); + __ Addu(t9, a2, Operand(Code::kHeaderSize - kHeapObjectTag)); + __ Jump(Operand(t9)); + + // a0: number of arguments + // a1: called object + __ bind(&non_function_call); + // CALL_NON_FUNCTION expects the non-function constructor as receiver + // (instead of the original receiver from the call site). The receiver is + // stack element argc. + // Set expected number of arguments to zero (not changing a0). + __ mov(a2, zero_reg); + __ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); + __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), + RelocInfo::CODE_TARGET); +} + + +static void Generate_JSConstructStubHelper(MacroAssembler* masm, + bool is_api_function, + bool count_constructions) { + // Should never count constructions for api objects. + ASSERT(!is_api_function || !count_constructions); + + Isolate* isolate = masm->isolate(); + + // ----------- S t a t e ------------- + // -- a0 : number of arguments + // -- a1 : constructor function + // -- ra : return address + // -- sp[...]: constructor arguments + // ----------------------------------- + + // Enter a construct frame. + __ EnterConstructFrame(); + + // Preserve the two incoming parameters on the stack. + __ sll(a0, a0, kSmiTagSize); // Tag arguments count. + __ MultiPushReversed(a0.bit() | a1.bit()); + + // Use t7 to hold undefined, which is used in several places below. + __ LoadRoot(t7, Heap::kUndefinedValueRootIndex); + + Label rt_call, allocated; + // Try to allocate the object without transitioning into C code. If any of the + // preconditions is not met, the code bails out to the runtime call. + if (FLAG_inline_new) { + Label undo_allocation; +#ifdef ENABLE_DEBUGGER_SUPPORT + ExternalReference debug_step_in_fp = + ExternalReference::debug_step_in_fp_address(isolate); + __ li(a2, Operand(debug_step_in_fp)); + __ lw(a2, MemOperand(a2)); + __ Branch(&rt_call, ne, a2, Operand(zero_reg)); +#endif + + // Load the initial map and verify that it is in fact a map. + // a1: constructor function + __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); + __ And(t0, a2, Operand(kSmiTagMask)); + __ Branch(&rt_call, eq, t0, Operand(zero_reg)); + __ GetObjectType(a2, a3, t4); + __ Branch(&rt_call, ne, t4, Operand(MAP_TYPE)); + + // Check that the constructor is not constructing a JSFunction (see comments + // in Runtime_NewObject in runtime.cc). In which case the initial map's + // instance type would be JS_FUNCTION_TYPE. + // a1: constructor function + // a2: initial map + __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset)); + __ Branch(&rt_call, eq, a3, Operand(JS_FUNCTION_TYPE)); + + if (count_constructions) { + Label allocate; + // Decrease generous allocation count. + __ lw(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); + MemOperand constructor_count = + FieldMemOperand(a3, SharedFunctionInfo::kConstructionCountOffset); + __ lbu(t0, constructor_count); + __ Subu(t0, t0, Operand(1)); + __ sb(t0, constructor_count); + __ Branch(&allocate, ne, t0, Operand(zero_reg)); + + __ Push(a1, a2); + + __ push(a1); // Constructor. + // The call will replace the stub, so the countdown is only done once. + __ CallRuntime(Runtime::kFinalizeInstanceSize, 1); + + __ pop(a2); + __ pop(a1); + + __ bind(&allocate); + } + + // Now allocate the JSObject on the heap. + // a1: constructor function + // a2: initial map + __ lbu(a3, FieldMemOperand(a2, Map::kInstanceSizeOffset)); + __ AllocateInNewSpace(a3, t4, t5, t6, &rt_call, SIZE_IN_WORDS); + + // Allocated the JSObject, now initialize the fields. Map is set to initial + // map and properties and elements are set to empty fixed array. + // a1: constructor function + // a2: initial map + // a3: object size + // t4: JSObject (not tagged) + __ LoadRoot(t6, Heap::kEmptyFixedArrayRootIndex); + __ mov(t5, t4); + __ sw(a2, MemOperand(t5, JSObject::kMapOffset)); + __ sw(t6, MemOperand(t5, JSObject::kPropertiesOffset)); + __ sw(t6, MemOperand(t5, JSObject::kElementsOffset)); + __ Addu(t5, t5, Operand(3*kPointerSize)); + ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset); + ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset); + ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset); + + // Fill all the in-object properties with appropriate filler. + // a1: constructor function + // a2: initial map + // a3: object size (in words) + // t4: JSObject (not tagged) + // t5: First in-object property of JSObject (not tagged) + __ sll(t0, a3, kPointerSizeLog2); + __ addu(t6, t4, t0); // End of object. + ASSERT_EQ(3 * kPointerSize, JSObject::kHeaderSize); + { Label loop, entry; + if (count_constructions) { + // To allow for truncation. + __ LoadRoot(t7, Heap::kOnePointerFillerMapRootIndex); + } else { + __ LoadRoot(t7, Heap::kUndefinedValueRootIndex); + } + __ jmp(&entry); + __ bind(&loop); + __ sw(t7, MemOperand(t5, 0)); + __ addiu(t5, t5, kPointerSize); + __ bind(&entry); + __ Branch(&loop, Uless, t5, Operand(t6)); + } + + // Add the object tag to make the JSObject real, so that we can continue and + // jump into the continuation code at any time from now on. Any failures + // need to undo the allocation, so that the heap is in a consistent state + // and verifiable. + __ Addu(t4, t4, Operand(kHeapObjectTag)); + + // Check if a non-empty properties array is needed. Continue with allocated + // object if not fall through to runtime call if it is. + // a1: constructor function + // t4: JSObject + // t5: start of next object (not tagged) + __ lbu(a3, FieldMemOperand(a2, Map::kUnusedPropertyFieldsOffset)); + // The field instance sizes contains both pre-allocated property fields and + // in-object properties. + __ lw(a0, FieldMemOperand(a2, Map::kInstanceSizesOffset)); + __ And(t6, + a0, + Operand(0x000000FF << Map::kPreAllocatedPropertyFieldsByte * 8)); + __ srl(t0, t6, Map::kPreAllocatedPropertyFieldsByte * 8); + __ Addu(a3, a3, Operand(t0)); + __ And(t6, a0, Operand(0x000000FF << Map::kInObjectPropertiesByte * 8)); + __ srl(t0, t6, Map::kInObjectPropertiesByte * 8); + __ subu(a3, a3, t0); + + // Done if no extra properties are to be allocated. + __ Branch(&allocated, eq, a3, Operand(zero_reg)); + __ Assert(greater_equal, "Property allocation count failed.", + a3, Operand(zero_reg)); + + // Scale the number of elements by pointer size and add the header for + // FixedArrays to the start of the next object calculation from above. + // a1: constructor + // a3: number of elements in properties array + // t4: JSObject + // t5: start of next object + __ Addu(a0, a3, Operand(FixedArray::kHeaderSize / kPointerSize)); + __ AllocateInNewSpace( + a0, + t5, + t6, + a2, + &undo_allocation, + static_cast(RESULT_CONTAINS_TOP | SIZE_IN_WORDS)); + + // Initialize the FixedArray. + // a1: constructor + // a3: number of elements in properties array (un-tagged) + // t4: JSObject + // t5: start of next object + __ LoadRoot(t6, Heap::kFixedArrayMapRootIndex); + __ mov(a2, t5); + __ sw(t6, MemOperand(a2, JSObject::kMapOffset)); + __ sll(a0, a3, kSmiTagSize); + __ sw(a0, MemOperand(a2, FixedArray::kLengthOffset)); + __ Addu(a2, a2, Operand(2 * kPointerSize)); + + ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset); + ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset); + + // Initialize the fields to undefined. + // a1: constructor + // a2: First element of FixedArray (not tagged) + // a3: number of elements in properties array + // t4: JSObject + // t5: FixedArray (not tagged) + __ sll(t3, a3, kPointerSizeLog2); + __ addu(t6, a2, t3); // End of object. + ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize); + { Label loop, entry; + if (count_constructions) { + __ LoadRoot(t7, Heap::kUndefinedValueRootIndex); + } else if (FLAG_debug_code) { + __ LoadRoot(t8, Heap::kUndefinedValueRootIndex); + __ Assert(eq, "Undefined value not loaded.", t7, Operand(t8)); + } + __ jmp(&entry); + __ bind(&loop); + __ sw(t7, MemOperand(a2)); + __ addiu(a2, a2, kPointerSize); + __ bind(&entry); + __ Branch(&loop, less, a2, Operand(t6)); + } + + // Store the initialized FixedArray into the properties field of + // the JSObject. + // a1: constructor function + // t4: JSObject + // t5: FixedArray (not tagged) + __ Addu(t5, t5, Operand(kHeapObjectTag)); // Add the heap tag. + __ sw(t5, FieldMemOperand(t4, JSObject::kPropertiesOffset)); + + // Continue with JSObject being successfully allocated. + // a1: constructor function + // a4: JSObject + __ jmp(&allocated); + + // Undo the setting of the new top so that the heap is verifiable. For + // example, the map's unused properties potentially do not match the + // allocated objects unused properties. + // t4: JSObject (previous new top) + __ bind(&undo_allocation); + __ UndoAllocationInNewSpace(t4, t5); + } + + __ bind(&rt_call); + // Allocate the new receiver object using the runtime call. + // a1: constructor function + __ push(a1); // Argument for Runtime_NewObject. + __ CallRuntime(Runtime::kNewObject, 1); + __ mov(t4, v0); + + // Receiver for constructor call allocated. + // t4: JSObject + __ bind(&allocated); + __ push(t4); + + // Push the function and the allocated receiver from the stack. + // sp[0]: receiver (newly allocated object) + // sp[1]: constructor function + // sp[2]: number of arguments (smi-tagged) + __ lw(a1, MemOperand(sp, kPointerSize)); + __ MultiPushReversed(a1.bit() | t4.bit()); + + // Reload the number of arguments from the stack. + // a1: constructor function + // sp[0]: receiver + // sp[1]: constructor function + // sp[2]: receiver + // sp[3]: constructor function + // sp[4]: number of arguments (smi-tagged) + __ lw(a3, MemOperand(sp, 4 * kPointerSize)); + + // Setup pointer to last argument. + __ Addu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset)); + + // Setup number of arguments for function call below. + __ srl(a0, a3, kSmiTagSize); + + // Copy arguments and receiver to the expression stack. + // a0: number of arguments + // a1: constructor function + // a2: address of last argument (caller sp) + // a3: number of arguments (smi-tagged) + // sp[0]: receiver + // sp[1]: constructor function + // sp[2]: receiver + // sp[3]: constructor function + // sp[4]: number of arguments (smi-tagged) + Label loop, entry; + __ jmp(&entry); + __ bind(&loop); + __ sll(t0, a3, kPointerSizeLog2 - kSmiTagSize); + __ Addu(t0, a2, Operand(t0)); + __ lw(t1, MemOperand(t0)); + __ push(t1); + __ bind(&entry); + __ Addu(a3, a3, Operand(-2)); + __ Branch(&loop, greater_equal, a3, Operand(zero_reg)); + + // Call the function. + // a0: number of arguments + // a1: constructor function + if (is_api_function) { + __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); + Handle code = + masm->isolate()->builtins()->HandleApiCallConstruct(); + ParameterCount expected(0); + __ InvokeCode(code, expected, expected, + RelocInfo::CODE_TARGET, CALL_FUNCTION); + } else { + ParameterCount actual(a0); + __ InvokeFunction(a1, actual, CALL_FUNCTION); + } + + // Pop the function from the stack. + // v0: result + // sp[0]: constructor function + // sp[2]: receiver + // sp[3]: constructor function + // sp[4]: number of arguments (smi-tagged) + __ Pop(); + + // Restore context from the frame. + __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); + + // If the result is an object (in the ECMA sense), we should get rid + // of the receiver and use the result; see ECMA-262 section 13.2.2-7 + // on page 74. + Label use_receiver, exit; + + // If the result is a smi, it is *not* an object in the ECMA sense. + // v0: result + // sp[0]: receiver (newly allocated object) + // sp[1]: constructor function + // sp[2]: number of arguments (smi-tagged) + __ And(t0, v0, Operand(kSmiTagMask)); + __ Branch(&use_receiver, eq, t0, Operand(zero_reg)); + + // If the type of the result (stored in its map) is less than + // FIRST_JS_OBJECT_TYPE, it is not an object in the ECMA sense. + __ GetObjectType(v0, a3, a3); + __ Branch(&exit, greater_equal, a3, Operand(FIRST_JS_OBJECT_TYPE)); + + // Throw away the result of the constructor invocation and use the + // on-stack receiver as the result. + __ bind(&use_receiver); + __ lw(v0, MemOperand(sp)); + + // Remove receiver from the stack, remove caller arguments, and + // return. + __ bind(&exit); + // v0: result + // sp[0]: receiver (newly allocated object) + // sp[1]: constructor function + // sp[2]: number of arguments (smi-tagged) + __ lw(a1, MemOperand(sp, 2 * kPointerSize)); + __ LeaveConstructFrame(); + __ sll(t0, a1, kPointerSizeLog2 - 1); + __ Addu(sp, sp, t0); + __ Addu(sp, sp, kPointerSize); + __ IncrementCounter(isolate->counters()->constructed_objects(), 1, a1, a2); + __ Ret(); } void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) { - UNIMPLEMENTED_MIPS(); + Generate_JSConstructStubHelper(masm, false, true); } void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { - UNIMPLEMENTED_MIPS(); + Generate_JSConstructStubHelper(masm, false, false); } void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { - UNIMPLEMENTED_MIPS(); + Generate_JSConstructStubHelper(masm, true, false); +} + + +static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, + bool is_construct) { + // Called from JSEntryStub::GenerateBody + + // ----------- S t a t e ------------- + // -- a0: code entry + // -- a1: function + // -- a2: reveiver_pointer + // -- a3: argc + // -- s0: argv + // ----------------------------------- + + // Clear the context before we push it when entering the JS frame. + __ mov(cp, zero_reg); + + // Enter an internal frame. + __ EnterInternalFrame(); + + // Set up the context from the function argument. + __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); + + // Set up the roots register. + ExternalReference roots_address = + ExternalReference::roots_address(masm->isolate()); + __ li(s6, Operand(roots_address)); + + // Push the function and the receiver onto the stack. + __ Push(a1, a2); + + // Copy arguments to the stack in a loop. + // a3: argc + // s0: argv, ie points to first arg + Label loop, entry; + __ sll(t0, a3, kPointerSizeLog2); + __ addu(t2, s0, t0); + __ b(&entry); + __ nop(); // Branch delay slot nop. + // t2 points past last arg. + __ bind(&loop); + __ lw(t0, MemOperand(s0)); // Read next parameter. + __ addiu(s0, s0, kPointerSize); + __ lw(t0, MemOperand(t0)); // Dereference handle. + __ push(t0); // Push parameter. + __ bind(&entry); + __ Branch(&loop, ne, s0, Operand(t2)); + + // Initialize all JavaScript callee-saved registers, since they will be seen + // by the garbage collector as part of handlers. + __ LoadRoot(t0, Heap::kUndefinedValueRootIndex); + __ mov(s1, t0); + __ mov(s2, t0); + __ mov(s3, t0); + __ mov(s4, t0); + __ mov(s5, t0); + // s6 holds the root address. Do not clobber. + // s7 is cp. Do not init. + + // Invoke the code and pass argc as a0. + __ mov(a0, a3); + if (is_construct) { + __ Call(masm->isolate()->builtins()->JSConstructCall(), + RelocInfo::CODE_TARGET); + } else { + ParameterCount actual(a0); + __ InvokeFunction(a1, actual, CALL_FUNCTION); + } + + __ LeaveInternalFrame(); + + __ Jump(ra); } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { - UNIMPLEMENTED_MIPS(); + Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { - UNIMPLEMENTED_MIPS(); + Generate_JSEntryTrampolineHelper(masm, true); } void Builtins::Generate_LazyCompile(MacroAssembler* masm) { - UNIMPLEMENTED_MIPS(); + // Enter an internal frame. + __ EnterInternalFrame(); + + // Preserve the function. + __ push(a1); + + // Push the function on the stack as the argument to the runtime function. + __ push(a1); + // Call the runtime function. + __ CallRuntime(Runtime::kLazyCompile, 1); + // Calculate the entry point. + __ addiu(t9, v0, Code::kHeaderSize - kHeapObjectTag); + // Restore saved function. + __ pop(a1); + + // Tear down temporary frame. + __ LeaveInternalFrame(); + + // Do a tail-call of the compiled function. + __ Jump(t9); } void Builtins::Generate_LazyRecompile(MacroAssembler* masm) { - UNIMPLEMENTED_MIPS(); + // Enter an internal frame. + __ EnterInternalFrame(); + + // Preserve the function. + __ push(a1); + + // Push the function on the stack as the argument to the runtime function. + __ push(a1); + __ CallRuntime(Runtime::kLazyRecompile, 1); + // Calculate the entry point. + __ Addu(t9, v0, Operand(Code::kHeaderSize - kHeapObjectTag)); + // Restore saved function. + __ pop(a1); + + // Tear down temporary frame. + __ LeaveInternalFrame(); + + // Do a tail-call of the compiled function. + __ Jump(t9); } +// These functions are called from C++ but cannot be used in live code. void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { - UNIMPLEMENTED_MIPS(); + __ Abort("Call to unimplemented function in builtins-mips.cc"); } void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { - UNIMPLEMENTED_MIPS(); + __ Abort("Call to unimplemented function in builtins-mips.cc"); } void Builtins::Generate_NotifyOSR(MacroAssembler* masm) { - UNIMPLEMENTED_MIPS(); + __ Abort("Call to unimplemented function in builtins-mips.cc"); } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { - UNIMPLEMENTED_MIPS(); + __ Abort("Call to unimplemented function in builtins-mips.cc"); } void Builtins::Generate_FunctionCall(MacroAssembler* masm) { - UNIMPLEMENTED_MIPS(); + // 1. Make sure we have at least one argument. + // a0: actual number of arguments + { Label done; + __ Branch(&done, ne, a0, Operand(zero_reg)); + __ LoadRoot(t2, Heap::kUndefinedValueRootIndex); + __ push(t2); + __ Addu(a0, a0, Operand(1)); + __ bind(&done); + } + + // 2. Get the function to call (passed as receiver) from the stack, check + // if it is a function. + // a0: actual number of arguments + Label non_function; + __ sll(at, a0, kPointerSizeLog2); + __ addu(at, sp, at); + __ lw(a1, MemOperand(at)); + __ And(at, a1, Operand(kSmiTagMask)); + __ Branch(&non_function, eq, at, Operand(zero_reg)); + __ GetObjectType(a1, a2, a2); + __ Branch(&non_function, ne, a2, Operand(JS_FUNCTION_TYPE)); + + // 3a. Patch the first argument if necessary when calling a function. + // a0: actual number of arguments + // a1: function + Label shift_arguments; + { Label convert_to_object, use_global_receiver, patch_receiver; + // Change context eagerly in case we need the global receiver. + __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); + + // Do not transform the receiver for strict mode functions. + __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); + __ lw(a3, FieldMemOperand(a2, SharedFunctionInfo::kCompilerHintsOffset)); + __ And(t0, a3, Operand(1 << (SharedFunctionInfo::kStrictModeFunction + + kSmiTagSize))); + __ Branch(&shift_arguments, ne, t0, Operand(zero_reg)); + + // Do not transform the receiver for native (shared already in r2). + __ lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kScriptOffset)); + __ LoadRoot(a3, Heap::kUndefinedValueRootIndex); + __ Branch(&shift_arguments, eq, a2, Operand(a3)); + __ lw(a2, FieldMemOperand(a2, Script::kTypeOffset)); + __ sra(a2, a2, kSmiTagSize); + __ Branch(&shift_arguments, eq, a2, Operand(Script::TYPE_NATIVE)); + + // Compute the receiver in non-strict mode. + // Load first argument in a2. a2 = -kPointerSize(sp + n_args << 2). + __ sll(at, a0, kPointerSizeLog2); + __ addu(a2, sp, at); + __ lw(a2, MemOperand(a2, -kPointerSize)); + // a0: actual number of arguments + // a1: function + // a2: first argument + __ JumpIfSmi(a2, &convert_to_object, t2); + + // Heap::kUndefinedValueRootIndex is already in a3. + __ Branch(&use_global_receiver, eq, a2, Operand(a3)); + __ LoadRoot(a3, Heap::kNullValueRootIndex); + __ Branch(&use_global_receiver, eq, a2, Operand(a3)); + + __ GetObjectType(a2, a3, a3); + __ Branch(&convert_to_object, lt, a3, Operand(FIRST_JS_OBJECT_TYPE)); + __ Branch(&shift_arguments, le, a3, Operand(LAST_JS_OBJECT_TYPE)); + + __ bind(&convert_to_object); + __ EnterInternalFrame(); // In order to preserve argument count. + __ sll(a0, a0, kSmiTagSize); // Smi tagged. + __ push(a0); + + __ push(a2); + __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); + __ mov(a2, v0); + + __ pop(a0); + __ sra(a0, a0, kSmiTagSize); // Un-tag. + __ LeaveInternalFrame(); + // Restore the function to a1. + __ sll(at, a0, kPointerSizeLog2); + __ addu(at, sp, at); + __ lw(a1, MemOperand(at)); + __ Branch(&patch_receiver); + + // Use the global receiver object from the called function as the + // receiver. + __ bind(&use_global_receiver); + const int kGlobalIndex = + Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; + __ lw(a2, FieldMemOperand(cp, kGlobalIndex)); + __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset)); + __ lw(a2, FieldMemOperand(a2, kGlobalIndex)); + __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalReceiverOffset)); + + __ bind(&patch_receiver); + __ sll(at, a0, kPointerSizeLog2); + __ addu(a3, sp, at); + __ sw(a2, MemOperand(a3, -kPointerSize)); + + __ Branch(&shift_arguments); + } + + // 3b. Patch the first argument when calling a non-function. The + // CALL_NON_FUNCTION builtin expects the non-function callee as + // receiver, so overwrite the first argument which will ultimately + // become the receiver. + // a0: actual number of arguments + // a1: function + __ bind(&non_function); + // Restore the function in case it has been modified. + __ sll(at, a0, kPointerSizeLog2); + __ addu(a2, sp, at); + __ sw(a1, MemOperand(a2, -kPointerSize)); + // Clear a1 to indicate a non-function being called. + __ mov(a1, zero_reg); + + // 4. Shift arguments and return address one slot down on the stack + // (overwriting the original receiver). Adjust argument count to make + // the original first argument the new receiver. + // a0: actual number of arguments + // a1: function + __ bind(&shift_arguments); + { Label loop; + // Calculate the copy start address (destination). Copy end address is sp. + __ sll(at, a0, kPointerSizeLog2); + __ addu(a2, sp, at); + + __ bind(&loop); + __ lw(at, MemOperand(a2, -kPointerSize)); + __ sw(at, MemOperand(a2)); + __ Subu(a2, a2, Operand(kPointerSize)); + __ Branch(&loop, ne, a2, Operand(sp)); + // Adjust the actual number of arguments and remove the top element + // (which is a copy of the last argument). + __ Subu(a0, a0, Operand(1)); + __ Pop(); + } + + // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin. + // a0: actual number of arguments + // a1: function + { Label function; + __ Branch(&function, ne, a1, Operand(zero_reg)); + __ mov(a2, zero_reg); // expected arguments is 0 for CALL_NON_FUNCTION + __ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION); + __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), + RelocInfo::CODE_TARGET); + __ bind(&function); + } + + // 5b. Get the code to call from the function and check that the number of + // expected arguments matches what we're providing. If so, jump + // (tail-call) to the code in register edx without checking arguments. + // a0: actual number of arguments + // a1: function + __ lw(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); + __ lw(a2, + FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset)); + __ sra(a2, a2, kSmiTagSize); + __ lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); + // Check formal and actual parameter counts. + __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), + RelocInfo::CODE_TARGET, ne, a2, Operand(a0)); + + ParameterCount expected(0); + __ InvokeCode(a3, expected, expected, JUMP_FUNCTION); } void Builtins::Generate_FunctionApply(MacroAssembler* masm) { - UNIMPLEMENTED_MIPS(); + const int kIndexOffset = -5 * kPointerSize; + const int kLimitOffset = -4 * kPointerSize; + const int kArgsOffset = 2 * kPointerSize; + const int kRecvOffset = 3 * kPointerSize; + const int kFunctionOffset = 4 * kPointerSize; + + __ EnterInternalFrame(); + + __ lw(a0, MemOperand(fp, kFunctionOffset)); // Get the function. + __ push(a0); + __ lw(a0, MemOperand(fp, kArgsOffset)); // Get the args array. + __ push(a0); + // Returns (in v0) number of arguments to copy to stack as Smi. + __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION); + + // Check the stack for overflow. We are not trying need to catch + // interruptions (e.g. debug break and preemption) here, so the "real stack + // limit" is checked. + Label okay; + __ LoadRoot(a2, Heap::kRealStackLimitRootIndex); + // Make a2 the space we have left. The stack might already be overflowed + // here which will cause a2 to become negative. + __ subu(a2, sp, a2); + // Check if the arguments will overflow the stack. + __ sll(t0, v0, kPointerSizeLog2 - kSmiTagSize); + __ Branch(&okay, gt, a2, Operand(t0)); // Signed comparison. + + // Out of stack space. + __ lw(a1, MemOperand(fp, kFunctionOffset)); + __ push(a1); + __ push(v0); + __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION); + // End of stack check. + + // Push current limit and index. + __ bind(&okay); + __ push(v0); // Limit. + __ mov(a1, zero_reg); // Initial index. + __ push(a1); + + // Change context eagerly to get the right global object if necessary. + __ lw(a0, MemOperand(fp, kFunctionOffset)); + __ lw(cp, FieldMemOperand(a0, JSFunction::kContextOffset)); + // Load the shared function info while the function is still in a0. + __ lw(a1, FieldMemOperand(a0, JSFunction::kSharedFunctionInfoOffset)); + + // Compute the receiver. + Label call_to_object, use_global_receiver, push_receiver; + __ lw(a0, MemOperand(fp, kRecvOffset)); + + // Do not transform the receiver for strict mode functions. + __ lw(a2, FieldMemOperand(a1, SharedFunctionInfo::kCompilerHintsOffset)); + __ And(t0, a2, Operand(1 << (SharedFunctionInfo::kStrictModeFunction + + kSmiTagSize))); + __ Branch(&push_receiver, ne, t0, Operand(zero_reg)); + + // Do not transform the receiver for native (shared already in a1). + __ lw(a1, FieldMemOperand(a1, SharedFunctionInfo::kScriptOffset)); + __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); + __ Branch(&push_receiver, eq, a1, Operand(a2)); + __ lw(a1, FieldMemOperand(a1, Script::kTypeOffset)); + __ sra(a1, a1, kSmiTagSize); + __ Branch(&push_receiver, eq, a1, Operand(Script::TYPE_NATIVE)); + + // Compute the receiver in non-strict mode. + __ And(t0, a0, Operand(kSmiTagMask)); + __ Branch(&call_to_object, eq, t0, Operand(zero_reg)); + __ LoadRoot(a1, Heap::kNullValueRootIndex); + __ Branch(&use_global_receiver, eq, a0, Operand(a1)); + // Heap::kUndefinedValueRootIndex is already in a2. + __ Branch(&use_global_receiver, eq, a0, Operand(a2)); + + // Check if the receiver is already a JavaScript object. + // a0: receiver + __ GetObjectType(a0, a1, a1); + __ Branch(&call_to_object, lt, a1, Operand(FIRST_JS_OBJECT_TYPE)); + __ Branch(&push_receiver, le, a1, Operand(LAST_JS_OBJECT_TYPE)); + + // Convert the receiver to a regular object. + // a0: receiver + __ bind(&call_to_object); + __ push(a0); + __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); + __ mov(a0, v0); // Put object in a0 to match other paths to push_receiver. + __ Branch(&push_receiver); + + // Use the current global receiver object as the receiver. + __ bind(&use_global_receiver); + const int kGlobalOffset = + Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; + __ lw(a0, FieldMemOperand(cp, kGlobalOffset)); + __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalContextOffset)); + __ lw(a0, FieldMemOperand(a0, kGlobalOffset)); + __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalReceiverOffset)); + + // Push the receiver. + // a0: receiver + __ bind(&push_receiver); + __ push(a0); + + // Copy all arguments from the array to the stack. + Label entry, loop; + __ lw(a0, MemOperand(fp, kIndexOffset)); + __ Branch(&entry); + + // Load the current argument from the arguments array and push it to the + // stack. + // a0: current argument index + __ bind(&loop); + __ lw(a1, MemOperand(fp, kArgsOffset)); + __ push(a1); + __ push(a0); + + // Call the runtime to access the property in the arguments array. + __ CallRuntime(Runtime::kGetProperty, 2); + __ push(v0); + + // Use inline caching to access the arguments. + __ lw(a0, MemOperand(fp, kIndexOffset)); + __ Addu(a0, a0, Operand(1 << kSmiTagSize)); + __ sw(a0, MemOperand(fp, kIndexOffset)); + + // Test if the copy loop has finished copying all the elements from the + // arguments object. + __ bind(&entry); + __ lw(a1, MemOperand(fp, kLimitOffset)); + __ Branch(&loop, ne, a0, Operand(a1)); + // Invoke the function. + ParameterCount actual(a0); + __ sra(a0, a0, kSmiTagSize); + __ lw(a1, MemOperand(fp, kFunctionOffset)); + __ InvokeFunction(a1, actual, CALL_FUNCTION); + + // Tear down the internal frame and remove function, receiver and args. + __ LeaveInternalFrame(); + __ Addu(sp, sp, Operand(3 * kPointerSize)); + __ Ret(); +} + + +static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { + __ sll(a0, a0, kSmiTagSize); + __ li(t0, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); + __ MultiPush(a0.bit() | a1.bit() | t0.bit() | fp.bit() | ra.bit()); + __ Addu(fp, sp, Operand(3 * kPointerSize)); +} + + +static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { + // ----------- S t a t e ------------- + // -- v0 : result being passed through + // ----------------------------------- + // Get the number of arguments passed (as a smi), tear down the frame and + // then tear down the parameters. + __ lw(a1, MemOperand(fp, -3 * kPointerSize)); + __ mov(sp, fp); + __ MultiPop(fp.bit() | ra.bit()); + __ sll(t0, a1, kPointerSizeLog2 - kSmiTagSize); + __ Addu(sp, sp, t0); + // Adjust for the receiver. + __ Addu(sp, sp, Operand(kPointerSize)); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { - UNIMPLEMENTED_MIPS(); + // State setup as expected by MacroAssembler::InvokePrologue. + // ----------- S t a t e ------------- + // -- a0: actual arguments count + // -- a1: function (passed through to callee) + // -- a2: expected arguments count + // -- a3: callee code entry + // ----------------------------------- + + Label invoke, dont_adapt_arguments; + + Label enough, too_few; + __ Branch(&dont_adapt_arguments, eq, + a2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); + // We use Uless as the number of argument should always be greater than 0. + __ Branch(&too_few, Uless, a0, Operand(a2)); + + { // Enough parameters: actual >= expected. + // a0: actual number of arguments as a smi + // a1: function + // a2: expected number of arguments + // a3: code entry to call + __ bind(&enough); + EnterArgumentsAdaptorFrame(masm); + + // Calculate copy start address into a0 and copy end address into a2. + __ sll(a0, a0, kPointerSizeLog2 - kSmiTagSize); + __ Addu(a0, fp, a0); + // Adjust for return address and receiver. + __ Addu(a0, a0, Operand(2 * kPointerSize)); + // Compute copy end address. + __ sll(a2, a2, kPointerSizeLog2); + __ subu(a2, a0, a2); + + // Copy the arguments (including the receiver) to the new stack frame. + // a0: copy start address + // a1: function + // a2: copy end address + // a3: code entry to call + + Label copy; + __ bind(©); + __ lw(t0, MemOperand(a0)); + __ push(t0); + __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(a2)); + __ addiu(a0, a0, -kPointerSize); // In delay slot. + + __ jmp(&invoke); + } + + { // Too few parameters: Actual < expected. + __ bind(&too_few); + EnterArgumentsAdaptorFrame(masm); + + // TODO(MIPS): Optimize these loops. + + // Calculate copy start address into a0 and copy end address is fp. + // a0: actual number of arguments as a smi + // a1: function + // a2: expected number of arguments + // a3: code entry to call + __ sll(a0, a0, kPointerSizeLog2 - kSmiTagSize); + __ Addu(a0, fp, a0); + // Adjust for return address and receiver. + __ Addu(a0, a0, Operand(2 * kPointerSize)); + // Compute copy end address. Also adjust for return address. + __ Addu(t1, fp, kPointerSize); + + // Copy the arguments (including the receiver) to the new stack frame. + // a0: copy start address + // a1: function + // a2: expected number of arguments + // a3: code entry to call + // t1: copy end address + Label copy; + __ bind(©); + __ lw(t0, MemOperand(a0)); // Adjusted above for return addr and receiver. + __ push(t0); + __ Subu(a0, a0, kPointerSize); + __ Branch(©, ne, a0, Operand(t1)); + + // Fill the remaining expected arguments with undefined. + // a1: function + // a2: expected number of arguments + // a3: code entry to call + __ LoadRoot(t0, Heap::kUndefinedValueRootIndex); + __ sll(t2, a2, kPointerSizeLog2); + __ Subu(a2, fp, Operand(t2)); + __ Addu(a2, a2, Operand(-4 * kPointerSize)); // Adjust for frame. + + Label fill; + __ bind(&fill); + __ push(t0); + __ Branch(&fill, ne, sp, Operand(a2)); + } + + // Call the entry point. + __ bind(&invoke); + + __ Call(a3); + + // Exit frame and return. + LeaveArgumentsAdaptorFrame(masm); + __ Ret(); + + + // ------------------------------------------- + // Don't adapt arguments. + // ------------------------------------------- + __ bind(&dont_adapt_arguments); + __ Jump(a3); } -- 2.34.1