platform/upstream/pytorch.git
5 years agoStep 4: add support for unique with dim=None (#18651)
Xiang Gao [Fri, 19 Apr 2019 01:24:50 +0000 (18:24 -0700)]
Step 4: add support for unique with dim=None (#18651)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18651
ghimport-source-id: e11988130a3f9a73529de0b0d08b4ec25fbc639c

Differential Revision: D15000463

Pulled By: VitalyFedyunin

fbshipit-source-id: 9e258e473dea6a3fc2307da2119b887ba3f7934a

5 years agoallow bools to be used as attributes (#19440)
Michael Suo [Fri, 19 Apr 2019 01:06:21 +0000 (18:06 -0700)]
allow bools to be used as attributes (#19440)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19440
ghimport-source-id: 9c962054d760526bf7da324b114455fcb1038521

Differential Revision: D15005723

Pulled By: suo

fbshipit-source-id: 75fc87ae33894fc34d3b913881defb7e6b8d7af0

5 years agoFix test build (#19444)
David Riazati [Fri, 19 Apr 2019 01:02:14 +0000 (18:02 -0700)]
Fix test build (#19444)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19444
ghimport-source-id: c85db00e8037e7f6f0424eb8bd17f957d20b7247

Reviewed By: eellison

Differential Revision: D15008679

Pulled By: driazati

fbshipit-source-id: 0987035116d9d0069794d96395c8ad458ba7c121

5 years agopow scalar exponent / base autodiff, fusion (#19324)
Thomas Viehmann [Fri, 19 Apr 2019 00:52:33 +0000 (17:52 -0700)]
pow scalar exponent / base autodiff, fusion (#19324)

Summary:
Fixes: #19253

Fixing pow(Tensor, float) is straightforward.
The breakage for pow(float, Tensor) is a bit more subtle to trigger, and fixing needs `torch.log` (`math.log` didn't work) from the newly merged #19115  (Thanks ngimel for pointing out this has landed.)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19324

Differential Revision: D15003531

Pulled By: ailzhang

fbshipit-source-id: 8b22138fa27a43806b82886fb3a7b557bbb5a865

5 years agoImprove unique CPU performance for returning counts (#19352)
Gao, Xiang [Fri, 19 Apr 2019 00:46:43 +0000 (17:46 -0700)]
Improve unique CPU performance for returning counts (#19352)

Summary:
Benchmark on a tensor of shape `torch.Size([15320, 2])`. Benchmark code:

```python
print(torch.__version__)
print()
a = tensor.flatten()
print('cpu, sorted=False:')
%timeit torch._unique2_temporary_will_remove_soon(a, sorted=False)
%timeit torch._unique2_temporary_will_remove_soon(a, sorted=False, return_inverse=True)
%timeit torch._unique2_temporary_will_remove_soon(a, sorted=False, return_counts=True)
%timeit torch._unique2_temporary_will_remove_soon(a, sorted=False, return_inverse=True, return_counts=True)
print()
print('cpu, sorted=True:')
%timeit torch._unique2_temporary_will_remove_soon(a)
%timeit torch._unique2_temporary_will_remove_soon(a, return_inverse=True)
%timeit torch._unique2_temporary_will_remove_soon(a, return_counts=True)
%timeit torch._unique2_temporary_will_remove_soon(a, return_inverse=True, return_counts=True)
print()
```

Before
```
1.1.0a0+36854fe

cpu, sorted=False:
340 µs ± 4.05 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
724 µs ± 6.28 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
54.3 ms ± 469 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
54.6 ms ± 659 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

cpu, sorted=True:
341 µs ± 7.21 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
727 µs ± 7.05 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
54.7 ms ± 795 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
54.3 ms ± 647 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
```

After
```
1.1.0a0+261d9e8

cpu, sorted=False:
350 µs ± 865 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
771 µs ± 598 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.09 ms ± 6.86 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.09 ms ± 4.74 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

cpu, sorted=True:
324 µs ± 4.99 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
705 µs ± 3.18 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.09 ms ± 5.22 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.09 ms ± 5.63 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19352

Differential Revision: D14984717

Pulled By: VitalyFedyunin

fbshipit-source-id: 3c56f85705ab13a92ec7406f4f30be77226a3210

5 years agoRevert D14909203: Remove usages of TypeID
Pieter Noordhuis [Fri, 19 Apr 2019 00:44:37 +0000 (17:44 -0700)]
Revert D14909203: Remove usages of TypeID

Differential Revision:
D14909203

Original commit changeset: d716179c484a

fbshipit-source-id: 992ff1fcd6d35d3f2ae768c7e164b7a0ba871914

5 years agoAdd tests for argument types (#19290)
Sebastian Messmer [Fri, 19 Apr 2019 00:16:58 +0000 (17:16 -0700)]
Add tests for argument types (#19290)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19290

Add test cases for the supported argument types
And TODOs for some unsupported ones that we might want to support.

Reviewed By: dzhulgakov

Differential Revision: D14931920

fbshipit-source-id: c47bbb295a54ac9dc62569bf5c273368c834392c

5 years agoAllow optionals arguments from C++ (#19311)
David Riazati [Fri, 19 Apr 2019 00:06:09 +0000 (17:06 -0700)]
Allow optionals arguments from C++ (#19311)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19311
ghimport-source-id: 699f62eb2bbad53ff2045fb2e217eb1402f2cdc5

Reviewed By: eellison

Differential Revision: D14983059

Pulled By: driazati

fbshipit-source-id: 442f96d6bd2a8ce67807ccad2594b39aae489ca5

5 years agoEnhance front-end to add op (#19433)
Mingzhe Li [Fri, 19 Apr 2019 00:03:56 +0000 (17:03 -0700)]
Enhance front-end to add op (#19433)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19433

For operator benchmark project, we need to cover a lot of operators, so the interface for adding operators needs to be very clean and simple. This diff is implementing a new interface to add op.

Here is the logic to add new operator to the benchmark:
```
long_config = {}
short_config = {}

map_func

add_test(
  [long_config, short_config],
  map_func,
  [caffe2 op]
  [pt op]
)
```

Reviewed By: zheng-xq

Differential Revision: D14791191

fbshipit-source-id: ac6738507cf1b9d6013dc8e546a2022a9b177f05

5 years agoFix cpp_custom_type_hack variable handling (#19400)
Dmytro Dzhulgakov [Thu, 18 Apr 2019 23:34:20 +0000 (16:34 -0700)]
Fix cpp_custom_type_hack variable handling (#19400)

Summary:
My bad - it might be called in variable and non-variable context. So it's better to just inherit variable-ness from the caller.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19400

Reviewed By: ezyang

Differential Revision: D14994781

Pulled By: dzhulgakov

fbshipit-source-id: cb9d055b44a2e1d7bbf2e937d558e6bc75037f5b

5 years agofix hub doc formatting issues (#19434)
Ailing Zhang [Thu, 18 Apr 2019 22:58:45 +0000 (15:58 -0700)]
fix hub doc formatting issues (#19434)

Summary:
minor fixes for doc
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19434

Differential Revision: D15003903

Pulled By: ailzhang

fbshipit-source-id: 400768d9a5ee24f9183faeec9762b688c48c531b

5 years agoRecursively find tensors in DDP module output (#19360)
Pieter Noordhuis [Thu, 18 Apr 2019 21:51:37 +0000 (14:51 -0700)]
Recursively find tensors in DDP module output (#19360)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19360

We'll return the output object verbatim since it is a freeform object.
We need to find any tensors in this object, though, because we need to
figure out which parameters were used during this forward pass, to
ensure we short circuit reduction for any unused parameters.

Before this commit only lists were handled and the functionality went
untested. This commit adds support for dicts and recursive structures,
and also adds a test case.

Closes #19354.

Reviewed By: mrshenli

Differential Revision: D14978016

fbshipit-source-id: 4bb6999520871fb6a9e4561608afa64d55f4f3a8

5 years agoMoving at::Tensor into caffe2::Tensor without bumping refcount (#19388)
Sebastian Messmer [Thu, 18 Apr 2019 21:07:30 +0000 (14:07 -0700)]
Moving at::Tensor into caffe2::Tensor without bumping refcount (#19388)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19388

The old implementation forced a refcount bump when converting at::Tensor to caffe2::Tensor.
Now, it is possible to move it without a refcount bump.

Reviewed By: dzhulgakov

Differential Revision: D14986815

fbshipit-source-id: 92b4b0a6f323ed38376ffad75f960cad250ecd9b

5 years agoFix pickling torch.float32 (#18045)
Ailing Zhang [Thu, 18 Apr 2019 19:07:17 +0000 (12:07 -0700)]
Fix pickling torch.float32 (#18045)

Summary:
Attempt fix for #14057 . This PR fixes the example script in the issue.
The old behavior is a bit confusing here. What happened to pickling is python2 failed to recognize `torch.float32` is in module `torch`, thus it's looking for `torch.float32` in module `__main__`. Python3 is smart enough to handle it.
According to the doc [here](https://docs.python.org/2/library/pickle.html#object.__reduce__), it seems `__reduce__` should return `float32` instead of the old name `torch.float32`. In this way python2 is able to find `float32` in `torch` module.
> If a string is returned, it names a global variable whose contents are pickled as normal. The string returned by __reduce__() should be the object’s local name relative to its module
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18045

Differential Revision: D14990638

Pulled By: ailzhang

fbshipit-source-id: 816b97d63a934a5dda1a910312ad69f120b0b4de

5 years agoRespect order of Parameters in rnn.py (#18198)
David Riazati [Thu, 18 Apr 2019 18:07:45 +0000 (11:07 -0700)]
Respect order of Parameters in rnn.py (#18198)

Summary:
Previously to get a list of parameters this code was just putting them in the reverse order in which they were defined, which is not always right. This PR allows parameter lists to define the order themselves. To do this parameter lists need to have a corresponding function that provides the names of the parameters.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18198

Differential Revision: D14966270

Pulled By: driazati

fbshipit-source-id: 59331aa59408660069785906304b2088c19534b2

5 years agoRefactor EmitLoopCommon to make it more amenable to future extensions (#19341)
Nikolay Korovaiko [Thu, 18 Apr 2019 16:56:02 +0000 (09:56 -0700)]
Refactor EmitLoopCommon to make it more amenable to future extensions (#19341)

Summary:
This PR paves the way for support more iterator types in for-in loops.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19341

Differential Revision: D14992749

Pulled By: Krovatkin

fbshipit-source-id: e2d4c9465c8ec3fc74fbf23006dcb6783d91795f

5 years agoCleanup init_process_group (#19033)
Kutta Srinivasan [Thu, 18 Apr 2019 16:31:03 +0000 (09:31 -0700)]
Cleanup init_process_group (#19033)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19033

torch.distributed.init_process_group() has had many parameters added, but the contract isn't clear. Adding documentation, asserts, and explicit args should make this clearer to callers and more strictly enforced.

Reviewed By: mrshenli

Differential Revision: D14813070

fbshipit-source-id: 80e4e7123087745bed436eb390887db9d1876042

5 years agoSync FindCUDA/select_computer_arch.cmake from upstream (#19392)
peterjc123 [Thu, 18 Apr 2019 13:57:41 +0000 (06:57 -0700)]
Sync FindCUDA/select_computer_arch.cmake from upstream (#19392)

Summary:
1. Fixes auto detection for Turing cards.
2. Adds Turing Support
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19392

Differential Revision: D14996142

Pulled By: soumith

fbshipit-source-id: 3cd45c58212cf3db96e5fa19b07d9f1b59a1666a

5 years agoUpdate module.py documentation. (#19347)
Alexandros Metsai [Thu, 18 Apr 2019 13:33:18 +0000 (06:33 -0700)]
Update module.py documentation. (#19347)

Summary:
Added the ">>>" python interpreter sign(three greater than symbols), so that the edited lines will appear as code, not comments/output, in the documentation. Normally, the interpreter would display "..." when expecting a block, but I'm not sure how this would work on the pytorch docs website. It seems that in other code examples the ">>>" sign is used as well, therefore I used with too.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19347

Differential Revision: D14986154

Pulled By: soumith

fbshipit-source-id: 8f4d07d71ff7777b46c459837f350eb0a1f17e84

5 years agoAdd device-specific cuFFT plan caches (#19300)
Tongzhou Wang [Thu, 18 Apr 2019 13:33:08 +0000 (06:33 -0700)]
Add device-specific cuFFT plan caches (#19300)

Summary:
Fixes https://github.com/pytorch/pytorch/issues/19224
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19300

Differential Revision: D14986967

Pulled By: soumith

fbshipit-source-id: 8c31237db50d6924bba1472434c10326610d9255

5 years agoImprove bmm() performance on CPU when input tensor is non-contiguous (#19338)
Mingfei Ma [Thu, 18 Apr 2019 13:31:24 +0000 (06:31 -0700)]
Improve bmm() performance on CPU when input tensor is non-contiguous (#19338)

Summary:
This PR aims to improve Transformer performance on CPU, `bmm()` is one of the major bottlenecks now.

Current logic of `bmm()` on CPU only uses MKL batch gemm when the inputs `A` and `B` are contiguous or transposed. So when `A` or `B` is a slice of a larger tensor, it falls to a slower path.

`A` and `B` are both 3D tensors. MKL is able to handle the batch matrix multiplication on occasion that `A.stride(1) == 1 || A.stride(2) == 1` and `B.stride(1) == || B.stride(2) == 1`.

From [fairseq](https://github.com/pytorch/fairseq) implementation of Transformer, multi-head attention has two places to call bmm(), [here](https://github.com/pytorch/fairseq/blob/master/fairseq/modules/multihead_attention.py#L167) and [here](https://github.com/pytorch/fairseq/blob/master/fairseq/modules/multihead_attention.py#L197), `q`, `k`, `v` are all slices from larger tensor. So the `bmm()` falls to slow path at the moment.

Results on Xeon 6148 (20*2 cores 2.5GHz) indicate this PR improves Transformer training performance by **48%** (seconds per iteration reduced from **5.48** to **3.70**), the inference performance should also be boosted.

Before:
```
| epoch 001:   0%| | 27/25337 [02:27<38:31:26,  5.48s/it, loss=16.871, nll_loss=16.862, ppl=119099.70, wps=865, ups=0, wpb=4715.778, bsz=129.481, num_updates=27, lr=4.05e-06, gnorm=9.133,
```
After:
```
| epoch 001:   0%| | 97/25337 [05:58<25:55:49,  3.70s/it, loss=14.736, nll_loss=14.571, ppl=24339.38, wps=1280, ups=0, wpb=4735.299, bsz=131.134, num_updates=97, lr=1.455e-05, gnorm=3.908,
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19338

Differential Revision: D14986346

Pulled By: soumith

fbshipit-source-id: 827106245af908b8a4fda69ed0288d322b028f08

5 years agoOptional inputs and outputs (#19289)
Sebastian Messmer [Thu, 18 Apr 2019 09:00:51 +0000 (02:00 -0700)]
Optional inputs and outputs (#19289)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19289

Allow optional inputs and outputs in native c10 operators

Reviewed By: dzhulgakov

Differential Revision: D14931927

fbshipit-source-id: 48f8bec009c6374345b34d933f148c08bb4f7118

5 years agoAdd some tests (#19288)
Sebastian Messmer [Thu, 18 Apr 2019 09:00:51 +0000 (02:00 -0700)]
Add some tests (#19288)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19288

-

Reviewed By: dzhulgakov

Differential Revision: D14931924

fbshipit-source-id: 6c53b5d1679080939973d33868e58ca4ad70361d

5 years agoUse string based schema for exposing caffe2 ops (#19287)
Sebastian Messmer [Thu, 18 Apr 2019 09:00:49 +0000 (02:00 -0700)]
Use string based schema for exposing caffe2 ops (#19287)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19287

Since we now have a string-schema-based op registration API, we can also use it when exposing caffe2 operators.

Reviewed By: dzhulgakov

Differential Revision: D14931925

fbshipit-source-id: ec162469d2d94965e8c99d431c801ae7c43849c8

5 years agoAllow registering ops without specifying the full schema (#19286)
Sebastian Messmer [Thu, 18 Apr 2019 09:00:49 +0000 (02:00 -0700)]
Allow registering ops without specifying the full schema (#19286)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19286

The operator registration API now allows registering an operator by only giving the operator name and not the full operator schema,
as long as the operator schema can be inferred from the kernel function.

Reviewed By: dzhulgakov

Differential Revision: D14931921

fbshipit-source-id: 3776ce43d4ce67bb5a3ea3d07c37de96eebe08ba

5 years agoAdd either type (#19285)
Sebastian Messmer [Thu, 18 Apr 2019 09:00:49 +0000 (02:00 -0700)]
Add either type (#19285)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19285

The either type is a tagged union with two members.
This is going to be used in a diff stacked on top to allow a function to return one of two types.

Also, generally, either<Error, Result> is a great pattern for returning value_or_error from a function without using exceptions and we could use this class for that later.

Reviewed By: dzhulgakov

Differential Revision: D14931923

fbshipit-source-id: 7d1dd77b3e5b655f331444394dcdeab24772ab3a

5 years agoAllow ops without tensor args if only fallback kernel exists (#19284)
Sebastian Messmer [Thu, 18 Apr 2019 09:00:49 +0000 (02:00 -0700)]
Allow ops without tensor args if only fallback kernel exists (#19284)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19284

Instantiating a dispatch table previously only worked when the op had a tensor argument we could dispatch on.
However, the legacy API for custom operators didn't have dispatch and also worked for operators without tensor arguments, so we need to continue supporting that.
It probably generally makes sense to support this as long as there's only a fallback kernel and no dispatched kernel registered.
This diff adds that functionality.

Reviewed By: dzhulgakov

Differential Revision: D14931926

fbshipit-source-id: 38fadcba07e5577a7329466313c89842d50424f9

5 years agoString-based schemas in op registration API (#19283)
Sebastian Messmer [Thu, 18 Apr 2019 07:57:44 +0000 (00:57 -0700)]
String-based schemas in op registration API (#19283)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19283

Now that the function schema parser is available in ATen/core, we can use it from the operator registration API to register ops based on string schemas.

This does not allow registering operators based on only the name yet - the full schema string needs to be defined.
A diff stacked on top will add name based registration.

Reviewed By: dzhulgakov

Differential Revision: D14931919

fbshipit-source-id: 71e490dc65be67d513adc63170dc3f1ce78396cc

5 years agoMove function schema parser to ATen/core build target (#19282)
Sebastian Messmer [Thu, 18 Apr 2019 07:57:44 +0000 (00:57 -0700)]
Move function schema parser to ATen/core build target (#19282)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19282

This is largely a hack because we need to use the function schema parser from ATen/core
but aren't clear yet on how the final software architecture should look like.

- Add function schema parser files from jit to ATen/core build target.
- Also move ATen/core build target one directory up to allow this.

We only change the build targets and don't move the files yet because this is likely
not the final build set up and we want to avoid repeated interruptions
for other developers. cc zdevito

Reviewed By: dzhulgakov

Differential Revision: D14931922

fbshipit-source-id: 26462e2e7aec9e0964706138edd3d87a83b964e3

5 years agoAutomatic update of fbcode/onnx to ad7313470a9119d7e1afda7edf1d654497ee80ab (#19339)
Lu Fang [Thu, 18 Apr 2019 07:33:00 +0000 (00:33 -0700)]
update of fbcode/onnx to ad7313470a9119d7e1afda7edf1d654497ee80ab (#19339)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19339

Previous import was 971311db58f2fa8306d15e1458b5fd47dbc8d11c

Included changes:
- **[ad731347](https://github.com/onnx/onnx/commit/ad731347)**: Fix shape inference for matmul (#1941) <Bowen Bao>
- **[3717dc61](https://github.com/onnx/onnx/commit/3717dc61)**: Shape Inference Tests for QOps (#1929) <Ashwini Khade>
- **[a80c3371](https://github.com/onnx/onnx/commit/a80c3371)**: Prevent unused variables from generating warnings across all platforms.  (#1930) <Pranav Sharma>
- **[be9255c1](https://github.com/onnx/onnx/commit/be9255c1)**: add title (#1919) <Prasanth Pulavarthi>
- **[7a112a6f](https://github.com/onnx/onnx/commit/7a112a6f)**: add quantization ops in onnx (#1908) <Ashwini Khade>
- **[6de42d7d](https://github.com/onnx/onnx/commit/6de42d7d)**: Create working-groups.md (#1916) <Prasanth Pulavarthi>

Reviewed By: yinghai

Differential Revision: D14969962

fbshipit-source-id: 5ec64ef7aee5161666ed0c03e201be0ae20826f9

5 years agoRemove copy and copy_ special case on Type (#18972)
Roy Li [Thu, 18 Apr 2019 07:18:35 +0000 (00:18 -0700)]
Remove copy and copy_ special case on Type (#18972)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18972
ghimport-source-id: b5d3012b00530145fa24ab0cab693a7e80cb5989

Differential Revision: D14816530

Pulled By: li-roy

fbshipit-source-id: 9c7a166abb22d2cd1f81f352e44d9df1541b1774

5 years agoAdd constant folding to ONNX graph during export (Resubmission) (#18698)
Spandan Tiwari [Thu, 18 Apr 2019 07:06:59 +0000 (00:06 -0700)]
Add constant folding to ONNX graph during export (Resubmission) (#18698)

Summary:
Rewritten version of https://github.com/pytorch/pytorch/pull/17771 using graph C++ APIs.

This PR adds the ability to do constant folding on ONNX graphs during PT->ONNX export. This is done mainly to optimize the graph and make it leaner. The two attached snapshots show a multiple-node LSTM model before and after constant folding.
A couple of notes:
1. Constant folding is by default turned off for now. The goal is to turn it on by default once we have validated it through all the tests.
2. Support for folding in nested blocks is not in place, but will be added in the future, if needed.

**Original Model:**
![multiple_lstm_original](https://user-images.githubusercontent.com/23646532/53987630-6ac53980-40d6-11e9-9702-1ccfee124a83.JPG)
**Constant-folded model:**
![multiple_lstm_constant_folded](https://user-images.githubusercontent.com/23646532/53987632-6c8efd00-40d6-11e9-81c5-362c16f68861.JPG)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18698

Differential Revision: D14889768

Pulled By: houseroad

fbshipit-source-id: b6616b1011de9668f7c4317c880cb8ad4c7b631a

5 years agoRemove usages of TypeID (#19183)
Roy Li [Thu, 18 Apr 2019 06:52:44 +0000 (23:52 -0700)]
Remove usages of TypeID (#19183)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19183
ghimport-source-id: 9af190b072523459fa61e5e79419b88ac8586a4d

Differential Revision: D14909203

Pulled By: li-roy

fbshipit-source-id: d716179c484aebfe3ec30087c5ecd4a11848ffc3

5 years agoFixing function schema parser for Android (#19281)
Sebastian Messmer [Thu, 18 Apr 2019 06:41:22 +0000 (23:41 -0700)]
Fixing function schema parser for Android (#19281)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19281

String<->Number conversions aren't available in the STL used in our Android environment.
This diff adds workarounds for that so that the function schema parser can be compiled for android

Reviewed By: dzhulgakov

Differential Revision: D14931649

fbshipit-source-id: d5d386f2c474d3742ed89e52dff751513142efad

5 years agoSplit function schema parser from operator (#19280)
Sebastian Messmer [Thu, 18 Apr 2019 06:41:21 +0000 (23:41 -0700)]
Split function schema parser from operator (#19280)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19280

We want to use the function schema parser from ATen/core, but with as little dependencies as possible.
This diff moves the function schema parser into its own file and removes some of its dependencies.

Reviewed By: dzhulgakov

Differential Revision: D14931651

fbshipit-source-id: c2d787202795ff034da8cba255b9f007e69b4aea

5 years agofix hub doc format
Ailing Zhang [Thu, 18 Apr 2019 06:38:26 +0000 (23:38 -0700)]
fix hub doc format

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/19396

Differential Revision: D14993859

Pulled By: ailzhang

fbshipit-source-id: bdf94e54ec35477cfc34019752233452d84b6288

5 years agoClang-format torch/csrc/jit/passes/quantization.cpp. (#19385)
Mikhail Zolotukhin [Thu, 18 Apr 2019 05:05:49 +0000 (22:05 -0700)]
Clang-format torch/csrc/jit/passes/quantization.cpp. (#19385)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19385
ghimport-source-id: 67f808db7dcbcb6980eac79a58416697278999b0

Differential Revision: D14991917

Pulled By: ZolotukhinM

fbshipit-source-id: 6c2e57265cc9f0711752582a04d5a070482ed1e6

5 years agoAllow DDP to wrap multi-GPU modules (#19271)
Shen Li [Thu, 18 Apr 2019 04:18:49 +0000 (21:18 -0700)]
Allow DDP to wrap multi-GPU modules (#19271)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19271

allow DDP to take multi-gpu models

Reviewed By: pietern

Differential Revision: D14822375

fbshipit-source-id: 1eebfaa33371766d3129f0ac6f63a573332b2f1c

5 years agoAdd validator for optimizers when parameters are shared
Jiyan Yang [Thu, 18 Apr 2019 04:07:42 +0000 (21:07 -0700)]
Add validator for optimizers when parameters are shared

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/18497

Reviewed By: kennyhorror

Differential Revision: D14614738

fbshipit-source-id: beddd8349827dcc8ccae36f21e5d29627056afcd

5 years agohub minor fixes (#19247)
Ailing Zhang [Thu, 18 Apr 2019 04:01:36 +0000 (21:01 -0700)]
hub minor fixes (#19247)

Summary:
A few improvements while doing bert model
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19247

Differential Revision: D14989345

Pulled By: ailzhang

fbshipit-source-id: f4846813f62b6d497fbe74e8552c9714bd8dc3c7

5 years agofix wrong schema (#19370)
Elias Ellison [Thu, 18 Apr 2019 02:52:16 +0000 (19:52 -0700)]
fix wrong schema (#19370)

Summary:
Op was improperly schematized previously.  Evidently checkScript does not test if the outputs are the same type.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19370

Differential Revision: D14985159

Pulled By: eellison

fbshipit-source-id: feb60552afa2a6956d71f64801f15e5fe19c3a91

5 years agoFix printing format in examples in jit/README.md. (#19323)
Mikhail Zolotukhin [Thu, 18 Apr 2019 01:34:50 +0000 (18:34 -0700)]
Fix printing format in examples in jit/README.md. (#19323)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19323
ghimport-source-id: 74a01917de70c9d59099cf601b24f3cb484ab7be

Differential Revision: D14990100

Pulled By: ZolotukhinM

fbshipit-source-id: 87ede08c8ca8f3027b03501fbce8598379e8b96c

5 years agoAllow for single-line deletions in clang_tidy.py (#19082)
Eric Faust [Wed, 17 Apr 2019 23:59:34 +0000 (16:59 -0700)]
Allow for single-line deletions in clang_tidy.py (#19082)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19082

When you have just one line of deletions, just as with additions, there is no count printed.
Without this fix, we ignore all globs with single-line deletions when selecting which lines were changed.
When all the changes in the file were single-line, this meant no line-filtering at all!

Differential Revision: D14860426

fbshipit-source-id: c60e9d84f9520871fc0c08fa8c772c227d06fa27

5 years agoRevert D14901379: [jit] Add options to Operator to enable registration of alias analy...
Michael Suo [Wed, 17 Apr 2019 23:48:28 +0000 (16:48 -0700)]
Revert D14901379: [jit] Add options to Operator to enable registration of alias analysis passes

Differential Revision:
D14901379

Original commit changeset: d92a497e280f

fbshipit-source-id: 51d31491ab90907a6c95af5d8a59dff5e5ed36a4

5 years agoRevert D14901485: [jit] Only require python print on certain namespaces
Michael Suo [Wed, 17 Apr 2019 23:48:28 +0000 (16:48 -0700)]
Revert D14901485: [jit] Only require python print on certain namespaces

Differential Revision:
D14901485

Original commit changeset: 4b02a66d325b

fbshipit-source-id: 93348056c00f43c403cbf0d34f8c565680ceda11

5 years agoRemove unused template parameter in OnnxifiOp (#19362)
Yinghai Lu [Wed, 17 Apr 2019 23:40:58 +0000 (16:40 -0700)]
Remove unused template parameter in OnnxifiOp (#19362)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19362

`float` type is never used in OnnxifiOp....

Reviewed By: bddppq

Differential Revision: D14977970

fbshipit-source-id: 8fee02659dbe408e5a3e0ff95d74c04836c5c281

5 years agoAdd empty_quantized (#18960)
Jerry Zhang [Wed, 17 Apr 2019 23:10:05 +0000 (16:10 -0700)]
Add empty_quantized (#18960)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18960

empty_affine_quantized creates an empty affine quantized Tensor from scratch.
We might need this when we implement quantized operators.

Differential Revision: D14810261

fbshipit-source-id: f07d8bf89822d02a202ee81c78a17aa4b3e571cc

5 years agoCast not expressions to bool (#19361)
Elias Ellison [Wed, 17 Apr 2019 23:01:41 +0000 (16:01 -0700)]
Cast not expressions to bool (#19361)

Summary:
As part of implicitly casting condition statements, we should be casting not expressions as well.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19361

Differential Revision: D14984275

Pulled By: eellison

fbshipit-source-id: f8dae64f74777154c25f7a6bcdac03cf44cbb60b

5 years agoEliminate type dispatch from copy_kernel, and use memcpy directly rather than impleme...
Owen Anderson [Wed, 17 Apr 2019 22:33:07 +0000 (15:33 -0700)]
Eliminate type dispatch from copy_kernel, and use memcpy directly rather than implementing our own copy. (#19198)

Summary:
It turns out that copying bytes is the same no matter what type
they're interpreted as, and memcpy is already vectorized on every
platform of note.  Paring this down to the simplest implementation
saves just over 4KB off libtorch.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19198

Differential Revision: D14922656

Pulled By: resistor

fbshipit-source-id: bb03899dd8f6b857847b822061e7aeb18c19e7b4

5 years agoOnly require python print on certain namespaces (#18846)
Bram Wasti [Wed, 17 Apr 2019 21:17:01 +0000 (14:17 -0700)]
Only require python print on certain namespaces (#18846)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18846
ghimport-source-id: b211e15d24c88fdc32d79222d9fce2fa9c291541

Differential Revision: D14901485

Pulled By: bwasti

fbshipit-source-id: 4b02a66d325ba5391d1f838055aea13b5e4f6485

5 years agoAdd options to Operator to enable registration of alias analysis passes (#18589)
Bram Wasti [Wed, 17 Apr 2019 20:07:12 +0000 (13:07 -0700)]
Add options to Operator to enable registration of alias analysis passes (#18589)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18589
ghimport-source-id: dab203f6be13bf41963848f5315235b6bbe45c08

Differential Revision: D14901379

Pulled By: bwasti

fbshipit-source-id: d92a497e280f1b0a63b11a9fd8ae9b48bf52e6bf

5 years agoError out on in-place binops on tensors with internal overlap (#19317)
Richard Zou [Wed, 17 Apr 2019 19:58:04 +0000 (12:58 -0700)]
Error out on in-place binops on tensors with internal overlap (#19317)

Summary:
This adds checks for `mul_`, `add_`, `sub_`, `div_`, the most common
binops. See #17935 for more details.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19317

Differential Revision: D14972399

Pulled By: zou3519

fbshipit-source-id: b9de331dbdb2544ee859ded725a5b5659bfd11d2

5 years agoUpdate for #19326
Vitaly Fedyunin [Wed, 17 Apr 2019 19:49:37 +0000 (12:49 -0700)]
Update for #19326

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/19367

Differential Revision: D14981835

Pulled By: VitalyFedyunin

fbshipit-source-id: e8a97986d9669ed7f465a7ba771801bdd043b606

5 years agoDecorator to make sure we can import `core` from caffe2 (#19273)
Zafar Takhirov [Wed, 17 Apr 2019 18:19:19 +0000 (11:19 -0700)]
Decorator to make sure we can import `core` from caffe2 (#19273)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19273

Some of the CIs are failing if the protobuf is not installed. Protobuf is imported as part of the `caffe2.python.core`, and this adds a skip decorator to avoid running tests that depend on `caffe2.python.core`

Reviewed By: jianyuh

Differential Revision: D14936387

fbshipit-source-id: e508a1858727bbd52c951d3018e2328e14f126be

5 years agoEliminate AdjustBatch ops (#19083)
Yinghai Lu [Wed, 17 Apr 2019 16:37:37 +0000 (09:37 -0700)]
Eliminate AdjustBatch ops (#19083)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19083

As we have discussed, there are too many of AdjustBatch ops and they incur reallocation overhead and affects the performance. We will eliminate these ops by
- inling the input adjust batch op into Glow
- inling the output adjust batch op into OnnxifiOp and do that only conditionally.

This is the C2 part of the change and requires change from Glow side to work e2e.

Reviewed By: rdzhabarov

Differential Revision: D14860582

fbshipit-source-id: ac2588b894bac25735babb62b1924acc559face6

5 years agoAdd rst entry for nn.MultiheadAttention (#19346)
Bharat123rox [Wed, 17 Apr 2019 11:31:46 +0000 (04:31 -0700)]
Add rst entry for nn.MultiheadAttention (#19346)

Summary:
Fix #19259 by adding the missing `autoclass` entry for `nn.MultiheadAttention` from [here](https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/activation.py#L676)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19346

Differential Revision: D14971426

Pulled By: soumith

fbshipit-source-id: ceaaa8ea4618c38fa2bff139e7fa0d6c9ea193ea

5 years agoDelete C10Tensor (#19328)
Sebastian Messmer [Wed, 17 Apr 2019 06:59:02 +0000 (23:59 -0700)]
Delete C10Tensor (#19328)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19328

Plans changed and we don't want this class anymore.

Reviewed By: dzhulgakov

Differential Revision: D14966746

fbshipit-source-id: 09ea4c95b352bc1a250834d32f35a94e401f2347

5 years agoFix python lint (#19331)
Junjie Bai [Wed, 17 Apr 2019 04:44:22 +0000 (21:44 -0700)]
Fix python lint (#19331)

Summary:
VitalyFedyunin jerryzh168
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19331

Differential Revision: D14969435

Pulled By: bddppq

fbshipit-source-id: c1555c52064758ecbe668f92b837f2d7524f6118

5 years agoProfiling pipeline part1
Nikolay Korovaiko [Wed, 17 Apr 2019 04:08:38 +0000 (21:08 -0700)]
Profiling pipeline part1

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/18772

Differential Revision: D14952781

Pulled By: Krovatkin

fbshipit-source-id: 1e99fc9053c377291167f0b04b0f0829b452dbc4

5 years agoFix lint
Tongzhou Wang [Wed, 17 Apr 2019 03:25:11 +0000 (20:25 -0700)]
Fix lint

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/19310

Differential Revision: D14952046

Pulled By: soumith

fbshipit-source-id: 1bbaaad6f932a832ea8e5e804d0d9cd9140a5071

5 years agoAdd slicing and int_repr() to QTensor (#19296)
Jerry Zhang [Wed, 17 Apr 2019 03:02:04 +0000 (20:02 -0700)]
Add slicing and int_repr() to QTensor (#19296)

Summary:
Stack:
&nbsp;&nbsp;&nbsp;&nbsp;:black_circle:&nbsp; **#19296 [pt1][quant] Add slicing and int_repr() to QTensor**&nbsp;&nbsp;[:yellow_heart:](https://our.intern.facebook.com/intern/diff/D14756833/)
&nbsp;&nbsp;&nbsp;&nbsp;:white_circle:&nbsp; #18960 [pt1][quant] Add empty_quantized&nbsp;&nbsp;[:yellow_heart:](https://our.intern.facebook.com/intern/diff/D14810261/)
&nbsp;&nbsp;&nbsp;&nbsp;:white_circle:&nbsp; #19312 Use the QTensor with QReLU&nbsp;&nbsp;[:yellow_heart:](https://our.intern.facebook.com/intern/diff/D14819460/)
&nbsp;&nbsp;&nbsp;&nbsp;:white_circle:&nbsp; #19319 [RFC] Quantized SumRelu&nbsp;&nbsp;[:yellow_heart:](https://our.intern.facebook.com/intern/diff/D14866442/)

Methods added to pytorch python frontend:
- int_repr() returns a CPUByte Tensor which copies the data of QTensor.
- Added as_strided for QTensorImpl which provides support for slicing a QTensor(see test_torch.py)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19296

Differential Revision: D14756833

Pulled By: jerryzh168

fbshipit-source-id: 6f4c92393330e725c4351d6ff5f5fe9ac7c768bf

5 years agomove const defs of DeviceType to DeviceType.h (#19185)
Jerry Zhang [Wed, 17 Apr 2019 02:55:48 +0000 (19:55 -0700)]
move const defs of DeviceType to DeviceType.h (#19185)

Summary:
Stack:
&nbsp;&nbsp;&nbsp;&nbsp;:black_circle:&nbsp; **#19185 [c10][core][ez] move const defs of DeviceType to DeviceType.h**&nbsp;&nbsp;[:yellow_heart:](https://our.intern.facebook.com/intern/diff/D14909415/)

att
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19185

Differential Revision: D14909415

Pulled By: jerryzh168

fbshipit-source-id: 876cf999424d8394f5ff20e6750133a4e43466d4

5 years agoAdd a fast path for batch-norm CPU inference. (#19152)
Xiaoqiang Zheng [Wed, 17 Apr 2019 02:22:13 +0000 (19:22 -0700)]
Add a fast path for batch-norm CPU inference. (#19152)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19152

Adding a fast path for batch-norm CPU inference when all tensors are contiguous.
* Leverage vectorization through smiple loops.
* Folding linear terms before computation.
* For resnext-101, this version gets 18.95 times faster.
* Add a microbenchmark:
* (buck build mode/opt -c python.package_style=inplace --show-output //caffe2/benchmarks/operator_benchmark:batchnorm_benchmark) && \
(OMP_NUM_THREADS=1 MKL_NUM_THREADS=1 buck-out/gen/caffe2/benchmarks/operator_benchmark/batchnorm_benchmark#binary.par)
* batch_norm: data shape: [1, 256, 3136], bandwidth: 22.26 GB/s
* batch_norm: data shape: [1, 65536, 1], bandwidth: 5.57 GB/s
* batch_norm: data shape: [128, 2048, 1], bandwidth: 18.21 GB/s

Reviewed By: soumith, BIT-silence

Differential Revision: D14889728

fbshipit-source-id: 20c9e567e38ff7dbb9097873b85160eca2b0a795

5 years agoTesting for folded conv_bn_relu (#19298)
Jerry Zhang [Wed, 17 Apr 2019 01:57:13 +0000 (18:57 -0700)]
Testing for folded conv_bn_relu (#19298)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19298

Proper testing for conv_bn_relu folding

Differential Revision: D13998891

fbshipit-source-id: ceb58ccec19885cbbf38964ee0d0db070e098b4a

5 years agoInitialize intra-op threads in JIT thread pool (#19058)
Ilia Cherniavskii [Wed, 17 Apr 2019 01:21:36 +0000 (18:21 -0700)]
Initialize intra-op threads in JIT thread pool (#19058)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19058
ghimport-source-id: 53e87df8d93459259854a17d4de3348e463622dc

Differential Revision: D14849624

Pulled By: ilia-cher

fbshipit-source-id: 5043a1d4330e38857c8e04c547526a3ba5b30fa9

5 years agoFix ASSERT_ANY_THROW. (#19321)
Mikhail Zolotukhin [Tue, 16 Apr 2019 22:38:08 +0000 (15:38 -0700)]
Fix ASSERT_ANY_THROW. (#19321)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19321
ghimport-source-id: 9efffc36950152105bd0dc13f450161367101410

Differential Revision: D14962184

Pulled By: ZolotukhinM

fbshipit-source-id: 22d602f50eb5e17a3e3f59cc7feb59a8d88df00d

5 years agoAdd len() for strings (#19320)
David Riazati [Tue, 16 Apr 2019 22:03:47 +0000 (15:03 -0700)]
Add len() for strings (#19320)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19320
ghimport-source-id: 62131cb24e9bf65f0ef3e60001cb36509a1f4163

Reviewed By: bethebunny

Differential Revision: D14961078

Pulled By: driazati

fbshipit-source-id: 08b9a4b10e4a47ea09ebf55a4743defa40c74698

5 years agoStep 3: Add support for return_counts to torch.unique for dim not None (#18650)
Xiang Gao [Tue, 16 Apr 2019 20:55:37 +0000 (13:55 -0700)]
Step 3: Add support for return_counts to torch.unique for dim not None (#18650)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18650
ghimport-source-id: 75759c95e6c48e27c172b919097dbc40c6bfb5e6

Differential Revision: D14892319

Pulled By: VitalyFedyunin

fbshipit-source-id: ec5d1b80fc879d273ac5a534434fd648468dda1e

5 years agoinvoke NN smoketests from a python loop instead of a batch file (#18756)
Karl Ostmo [Tue, 16 Apr 2019 19:59:27 +0000 (12:59 -0700)]
invoke NN smoketests from a python loop instead of a batch file (#18756)

Summary:
I tried first to convert the `.bat` script to a Bash `.sh` script, but I got this error:
```
[...]/build/win_tmp/ci_scripts/test_python_nn.sh: line 3: fg: no job control
```
Line 3 was where `%TMP_DIR%/ci_scripts/setup_pytorch_env.bat` was invoked.

I found a potential workaround on stack overflow of adding the `monitor` (`-m`) flag to the script, but hat didn't work either:

```
00:58:00 /bin/bash: cannot set terminal process group (3568): Inappropriate ioctl for device
00:58:00 /bin/bash: no job control in this shell
00:58:00 + %TMP_DIR%/ci_scripts/setup_pytorch_env.bat
00:58:00 /c/Jenkins/workspace/pytorch-builds/pytorch-win-ws2016-cuda9-cudnn7-py3-test1/build/win_tmp/ci_scripts/test_python_nn.sh: line 3: fg: no job control
```

So instead I decided to use Python to replace the `.bat` script.  I believe this is an improvement in that it's both "table-driven" now and cross-platform.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18756

Differential Revision: D14957570

Pulled By: kostmo

fbshipit-source-id: 87794e64b56ffacbde4fd44938045f9f68f7bc2a

5 years agoAdding pin_memory kwarg to zeros, ones, empty, ... tensor constructors (#18952)
Vitaly Fedyunin [Tue, 16 Apr 2019 17:50:48 +0000 (10:50 -0700)]
Adding pin_memory kwarg to zeros, ones, empty, ... tensor constructors (#18952)

Summary:
Make it possible to construct a pinned memory tensor without creating a storage first and without calling pin_memory() function. It is also faster, as copy operation is unnecessary.

Supported functions:
```python
torch.rand_like(t, pin_memory=True)
torch.randn_like(t, pin_memory=True)
torch.empty_like(t, pin_memory=True)
torch.full_like(t, 4, pin_memory=True)
torch.zeros_like(t, pin_memory=True)
torch.ones_like(t, pin_memory=True)
torch.tensor([10,11], pin_memory=True)
torch.randn(3, 5, pin_memory=True)
torch.rand(3, pin_memory=True)
torch.zeros(3, pin_memory=True)
torch.randperm(3, pin_memory=True)
torch.empty(6, pin_memory=True)
torch.ones(6, pin_memory=True)
torch.eye(6, pin_memory=True)
torch.arange(3, 5, pin_memory=True)
```

Part of the bigger: `Remove Storage` plan.

Now compatible with both torch scripts:
 `  _1 = torch.zeros([10], dtype=6, layout=0, device=torch.device("cpu"), pin_memory=False)`
and
`  _1 = torch.zeros([10], dtype=6, layout=0, device=torch.device("cpu"))`

Same checked for all similar functions `rand_like`, `empty_like` and others

It is fixed version of #18455
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18952

Differential Revision: D14801792

Pulled By: VitalyFedyunin

fbshipit-source-id: 8dbc61078ff7a637d0ecdb95d4e98f704d5450ba

5 years agoEnable unit tests for ROCm 2.3 (#19307)
J M Dieterich [Tue, 16 Apr 2019 17:50:28 +0000 (10:50 -0700)]
Enable unit tests for ROCm 2.3 (#19307)

Summary:
Unit tests that hang on clock64() calls are now fixed.

test_gamma_gpu_sample is now fixed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19307

Differential Revision: D14953420

Pulled By: bddppq

fbshipit-source-id: efe807b54e047578415eb1b1e03f8ad44ea27c13

5 years agoFix type conversion in dequant and add a test (#19226)
Jerry Zhang [Tue, 16 Apr 2019 17:41:03 +0000 (10:41 -0700)]
Fix type conversion in dequant and add a test (#19226)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19226

Type conversoin was wrong previously. Thanks zafartahirov for finding it!

Differential Revision: D14926610

fbshipit-source-id: 6824f9813137a3d171694d743fbb437a663b1f88

5 years agomath module support (#19115)
Alexandr Morev [Tue, 16 Apr 2019 17:19:04 +0000 (10:19 -0700)]
math module support (#19115)

Summary:
This PR refer to issue [#19026](https://github.com/pytorch/pytorch/issues/19026)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19115

Differential Revision: D14936053

Pulled By: driazati

fbshipit-source-id: 68d5f33ced085fcb8c10ff953bc7e99df055eccc

5 years agoRevert replicate.py to disallow replicating multi-device modules (#19278)
Shen Li [Tue, 16 Apr 2019 16:35:36 +0000 (09:35 -0700)]
Revert replicate.py to disallow replicating multi-device modules (#19278)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19278

Based on discussion in https://github.com/pytorch/pytorch/pull/19278 and https://github.com/pytorch/pytorch/pull/18687, changes to replicate.py will be reverted to disallow replicating multi-device modules.

Reviewed By: pietern

Differential Revision: D14940018

fbshipit-source-id: 7504c0f4325c2639264c52dcbb499e61c9ad2c26

5 years agograph_for based on last_optimized_executed_graph (#19142)
Zachary DeVito [Tue, 16 Apr 2019 16:01:03 +0000 (09:01 -0700)]
graph_for based on last_optimized_executed_graph (#19142)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19142
ghimport-source-id: 822013fb7e93032c74867fc77c6774c680aef6d1

Differential Revision: D14888703

Pulled By: zdevito

fbshipit-source-id: a2ad65a042d08b1adef965c2cceef37bb5d26ba9

5 years agoEnable half for CUDA dense EmbeddingBag backward. (#19293)
Richard Zou [Tue, 16 Apr 2019 15:51:01 +0000 (08:51 -0700)]
Enable half for CUDA dense EmbeddingBag backward. (#19293)

Summary:
I audited the relevant kernel and saw it accumulates a good deal into float
so it should be fine.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19293

Differential Revision: D14942274

Pulled By: zou3519

fbshipit-source-id: 36996ba0fbb29fbfb12b27bfe9c0ad1eb012ba3c

5 years agocalculate execution time based on final iterations (#19299)
Mingzhe Li [Tue, 16 Apr 2019 15:47:25 +0000 (08:47 -0700)]
calculate execution time based on final iterations (#19299)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19299

I saw larger than 5% performance variation with small operators, this diff aims to reduce the variation by avoiding python overhead. Previously, in the benchmark, we run the main loop for 100 iterations then look at the time. If it's not significant, we will double the number of iterations to rerun and look at the result. We continue this process until it becomes significant. We calculate the time by total_time / number of iterations. The issue is that we are including multiple python trigger overhead.

Now, I change the logic to calculate execution time based on the last run instead of all runs, the equation is time_in_last_run/number of iterations.

Reviewed By: hl475

Differential Revision: D14925287

fbshipit-source-id: cb646298c08a651e27b99a5547350da367ffff47

5 years agoMove OMP/MKL thread initialization into ATen/Parallel (#19011)
Ilia Cherniavskii [Tue, 16 Apr 2019 07:13:50 +0000 (00:13 -0700)]
Move OMP/MKL thread initialization into ATen/Parallel (#19011)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19011
ghimport-source-id: 432e31eccfd0e59fa21a790f861e6b2ff4fdbac6

Differential Revision: D14846034

Pulled By: ilia-cher

fbshipit-source-id: d9d03c761d34bac80e09ce776e41c20fd3b04389

5 years agoAvoid undefined symbol error when building AdIndexer LTO (#19009)
Mark Santaniello [Tue, 16 Apr 2019 06:40:21 +0000 (23:40 -0700)]
Avoid undefined symbol error when building AdIndexer LTO (#19009)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19009

Move the definition of `MulFunctor<>::Backward()` into a header file.

Reviewed By: BIT-silence

Differential Revision: D14823230

fbshipit-source-id: 1efaec01863fcc02dcbe7e788d376e72f8564501

5 years agoEllipsis in subscript
Nikolay Korovaiko [Tue, 16 Apr 2019 05:05:20 +0000 (22:05 -0700)]
Ellipsis in subscript

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17763

Differential Revision: D14893533

Pulled By: Krovatkin

fbshipit-source-id: c46b4e386d3aa30e6dc03e3052d2e5ff097fa74b

5 years agoAdd input information in RecordFunction calls (#18717)
Ilia Cherniavskii [Tue, 16 Apr 2019 03:24:10 +0000 (20:24 -0700)]
Add input information in RecordFunction calls (#18717)

Summary:
Add input information into generated RecordFunction calls in
VariableType wrappers, JIT operators and a few more locations
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18717

Differential Revision: D14729156

Pulled By: ilia-cher

fbshipit-source-id: 811ac4cbfd85af5c389ef030a7e82ef454afadec

5 years agoAdd NHWC order support in the cost inference function of 3d conv (#19170)
Summer Deng [Mon, 15 Apr 2019 23:43:58 +0000 (16:43 -0700)]
Add NHWC order support in the cost inference function of 3d conv (#19170)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19170

As title
The quantized resnext3d model in production got the following failures without the fix:

```
 Caffe2 operator Int8ConvRelu logging error: [enforce fail at conv_pool_op_base.h:463] order == StorageOrder::NCHW. 1 vs 2. Conv3D only supports NCHW on the production quantized model
```

Reviewed By: jspark1105

Differential Revision: D14894276

fbshipit-source-id: ef97772277f322ed45215e382c3b4a3702e47e59

5 years agounit test with multiple op invocations (#19118)
Jongsoo Park [Mon, 15 Apr 2019 21:35:25 +0000 (14:35 -0700)]
unit test with multiple op invocations (#19118)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19118

A bug introduced by D14700576 reported by Yufei (fixed by D14778810 and D14785256) was not detected by our units tests.
This diff improves unit tests to catch such errors (with this diff and without D14778810, we can reproduce the bug Yufei reported).
This improvement also revealed a bug that affects the accuracy when we pre-pack weight and bias together and the pre-packed weight/bias are used by multiple nets. We were modifying the pre-packed bias in-place which was supposed to be constants.

Reviewed By: csummersea

Differential Revision: D14806077

fbshipit-source-id: aa9049c74b6ea98d21fbd097de306447a662a46d

5 years agoRun shellcheck on Jenkins scripts (#18874)
Karl Ostmo [Mon, 15 Apr 2019 19:26:50 +0000 (12:26 -0700)]
Run shellcheck on Jenkins scripts (#18874)

Summary:
closes #18873

Doesn't fail the build on warnings yet.
Also fix most severe shellcheck warnings
Limited to `.jenkins/pytorch/` at this time
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18874

Differential Revision: D14936165

Pulled By: kostmo

fbshipit-source-id: 1ee335695e54fe6c387ef0f6606ea7011dad0fd4

5 years agoMake DistributedDataParallel use new reducer (#18953)
Pieter Noordhuis [Mon, 15 Apr 2019 19:24:43 +0000 (12:24 -0700)]
Make DistributedDataParallel use new reducer (#18953)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18953

This removes Python side bucketing code from DistributedDataParallel
and replaces it with calls to the new C++ based bucketing and reducing
code. To confirm this is working well, we ran a test with both the
previous implementation and the new implementation, and confirmed they
are numerically equivalent.

Performance is improved by a couple percent or more, including the
single machine multiple GPU runs.

Closes #13273.

Reviewed By: mrshenli

Differential Revision: D14580911

fbshipit-source-id: 44e76f8b0b7e58dd6c91644e3df4660ca2ee4ae2

5 years agoFix the return value of ParseFromString (#19262)
Gemfield [Mon, 15 Apr 2019 19:23:36 +0000 (12:23 -0700)]
Fix the return value of ParseFromString (#19262)

Summary:
Fix the return value of ParseFromString.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19262

Differential Revision: D14937605

Pulled By: ezyang

fbshipit-source-id: 3f441086517186a075efb3d74f09160463b696b3

5 years agoModify Cholesky derivative (#19116)
vishwakftw [Mon, 15 Apr 2019 18:53:44 +0000 (11:53 -0700)]
Modify Cholesky derivative (#19116)

Summary:
The derivative of the Cholesky decomposition was previously a triangular matrix.

Changelog:
- Modify the derivative of Cholesky from a triangular matrix to symmetric matrix
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19116

Differential Revision: D14935470

Pulled By: ezyang

fbshipit-source-id: 1c1c76b478c6b99e4e16624682842cb632e8e8b9

5 years agoproduce diagram for caffe2 build matrix (#18517)
Karl Ostmo [Mon, 15 Apr 2019 18:38:44 +0000 (11:38 -0700)]
produce diagram for caffe2 build matrix (#18517)

Summary:
This PR splits the configuration tree data from the logic used to construct the tree, for both `pytorch` and `caffe2` build configs.

Caffe2 configs are also now illustrated in a diagram.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18517

Differential Revision: D14936170

Pulled By: kostmo

fbshipit-source-id: 7b40a88512627377c5ea0f24765dabfef76ca279

5 years agoFree all blocks with outstanding events on OOM-retry (#19222)
Sam Gross [Mon, 15 Apr 2019 18:13:33 +0000 (11:13 -0700)]
Free all blocks with outstanding events on OOM-retry (#19222)

Summary:
The caching allocator tries to free all blocks on an out-of-memory
error. Previously, it did not free blocks that still had outstanding
stream uses. This change synchronizes on the outstanding events and
frees those blocks.

See #19219
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19222

Differential Revision: D14925071

Pulled By: colesbury

fbshipit-source-id: a2e9fe957ec11b00ea8e6c0468436c519667c558

5 years agoMake sure that any of the future versions can load and execute older models. (#19174)
Vitaly Fedyunin [Mon, 15 Apr 2019 16:13:49 +0000 (09:13 -0700)]
Make sure that any of the future versions can load and execute older models. (#19174)

Summary:
Helps to test #18952
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19174

Differential Revision: D14899474

Pulled By: VitalyFedyunin

fbshipit-source-id: a4854ad44da28bd0f5115ca316e6078cbfe29d0d

5 years agoSync fbcode/caffe2 and xplat/caffe2 (1) (#19218)
Sebastian Messmer [Sun, 14 Apr 2019 04:42:28 +0000 (21:42 -0700)]
Sync fbcode/caffe2 and xplat/caffe2 (1) (#19218)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19218

Sync some contents between fbcode/caffe2 and xplat/caffe2 to move closer towards a world where they are identical.

Reviewed By: dzhulgakov

Differential Revision: D14919916

fbshipit-source-id: 29c6b6d89ac556d58ae3cd02619aca88c79591c1

5 years agoupgrade bazel version in CI [xla ci] (#19246)
Ailing Zhang [Sun, 14 Apr 2019 03:13:52 +0000 (20:13 -0700)]
upgrade bazel version in CI [xla ci] (#19246)

Summary:
The latest TF requires upgrading bazel version.
This PR should fix xla tests in CI.
[xla ci]
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19246

Differential Revision: D14929533

Pulled By: ailzhang

fbshipit-source-id: f6deb31428ed39f267d96bb9814d06f76641e73b

5 years agoUpdate docker images to use ROCm 2.3 (#19231)
Junjie Bai [Sat, 13 Apr 2019 20:05:12 +0000 (13:05 -0700)]
Update docker images to use ROCm 2.3 (#19231)

Summary:
xw285cornell petrex iotamudelta

https://ci.pytorch.org/jenkins/job/caffe2-builds/job/py2-clang7-rocmdeb-ubuntu16.04-trigger-test/24676/
https://ci.pytorch.org/jenkins/job/caffe2-builds/job/py2-devtoolset7-rocmrpm-centos7.5-trigger-test/17679/
https://ci.pytorch.org/jenkins/job/pytorch-builds/job/py2-clang7-rocmdeb-ubuntu16.04-trigger/24652/
https://ci.pytorch.org/jenkins/job/pytorch-builds/job/py2-devtoolset7-rocmrpm-centos7.5-trigger/9943/
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19231

Differential Revision: D14928580

Pulled By: bddppq

fbshipit-source-id: 025b0affa6bcda6ee9f823dfc6c2cf8b92e71027

5 years agofix flake8 (#19243)
Zachary DeVito [Sat, 13 Apr 2019 17:01:34 +0000 (10:01 -0700)]
fix flake8 (#19243)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19243
ghimport-source-id: ae80aed3a5742df21afb6e55979686220a27cce7

Differential Revision: D14928670

Pulled By: zdevito

fbshipit-source-id: 20ec0d5c8d6f1c515beb55e2e63eddf3b2fc12dd

5 years agoRemove GraphExecutor's python bindings (#19141)
Zachary DeVito [Sat, 13 Apr 2019 15:28:13 +0000 (08:28 -0700)]
Remove GraphExecutor's python bindings (#19141)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19141
ghimport-source-id: 796a41f5514d29959af052fcf5391a2834850a80

Reviewed By: jamesr66a

Differential Revision: D14888702

Pulled By: zdevito

fbshipit-source-id: c280145f08e7bc210434d1c99396a3257b626cf9

5 years agoCleanup ScriptModule bindings (#19138)
Zachary DeVito [Sat, 13 Apr 2019 15:28:11 +0000 (08:28 -0700)]
Cleanup ScriptModule bindings (#19138)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19138
ghimport-source-id: 10f810f5e7551c1cb65fc4799744083bd7ffd1ee

Reviewed By: jamesr66a

Differential Revision: D14886945

Pulled By: zdevito

fbshipit-source-id: a5e5bb08694d03166a7516ec038656c2a02e7896

5 years agoget propagate_shape logic out of module.h (#19137)
Zachary DeVito [Sat, 13 Apr 2019 15:28:11 +0000 (08:28 -0700)]
get propagate_shape logic out of module.h (#19137)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19137
ghimport-source-id: 2394765f2d401e68ffdfa4c985bfab4cca2517f8

Reviewed By: jamesr66a

Differential Revision: D14885946

Pulled By: zdevito

fbshipit-source-id: daa2894ed9761107e9d273bb172840dc23ace072

5 years agoMake debug subgraph inlining thread local (#19136)
Zachary DeVito [Sat, 13 Apr 2019 15:28:11 +0000 (08:28 -0700)]
Make debug subgraph inlining thread local (#19136)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19136
ghimport-source-id: 3a24ab36aa753ce5cce7bba3467bdbe88e5c7f60

Reviewed By: jamesr66a

Differential Revision: D14885051

Pulled By: zdevito

fbshipit-source-id: b39c6ceef73ad9caefcbf8f40dd1b9132bba03c2

5 years agoSupport Kwargs in C++ Function/Method calls (#19086)
Zachary DeVito [Sat, 13 Apr 2019 15:28:10 +0000 (08:28 -0700)]
Support Kwargs in C++ Function/Method calls (#19086)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19086
ghimport-source-id: 7790a5cc6e32f6f72e92add0b9f76dfa49ad9859

Reviewed By: jamesr66a

Differential Revision: D14875729

Pulled By: zdevito

fbshipit-source-id: ad1e4542381d9c33722155459e794f1ba4660dbb

5 years agoEnable working ROCm tests (#19169)
Johannes M Dieterich [Sat, 13 Apr 2019 04:42:10 +0000 (21:42 -0700)]
Enable working ROCm tests (#19169)

Summary:
Enable multi-GPU tests that work with ROCm 2.2. Have been run three times on CI to ensure stability.

While there, remove skipIfRocm annotations for tests that depend on MAGMA. They still skip but now for the correct reason (no MAGMA) to improve our diagnostics.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19169

Differential Revision: D14924812

Pulled By: bddppq

fbshipit-source-id: 8b88f58bba58a08ddcd439e899a0abc6198fef64