platform/upstream/pytorch.git
5 years agoadd dropout during eval (#17549)
Huan Gui [Fri, 1 Mar 2019 07:17:35 +0000 (23:17 -0800)]
add dropout during eval (#17549)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17549

Currently Dropout is only enabled in training, we enable the option of having dropout in Eval.

This is to follow [1]. This functionality would be used for uncertainty estimation in exploration project.

[1] Gal, Yarin, and Zoubin Ghahramani. "Dropout as a bayesian approximation: Representing model uncertainty in deep learning." international conference on machine learning. 2016.

Reviewed By: Wakeupbuddy

Differential Revision: D14216216

fbshipit-source-id: 87c8c9cc522a82df467b685805f0775c86923d8b

5 years agoAdjust launch_bounds annotation for AMD hardware. (#17555)
Johannes M Dieterich [Fri, 1 Mar 2019 06:53:34 +0000 (22:53 -0800)]
Adjust launch_bounds annotation for AMD hardware. (#17555)

Summary:
The max pooling backwards kernel is currently annotated with launch bounds (256,8).

Adjust the number of waves to 4 (4 times 64 is 256) for ROCm. This improves training performance for torchvision models by up to 15% (AlexNet) on a gfx906 GPU.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17555

Differential Revision: D14277744

Pulled By: bddppq

fbshipit-source-id: 2a62088f7b8a87d1e350c432bf655288967c7883

5 years agoFix verbose compiler warning in flat_hash_map (#17562)
Sebastian Messmer [Fri, 1 Mar 2019 00:26:49 +0000 (16:26 -0800)]
Fix verbose compiler warning in flat_hash_map (#17562)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17562

fixes https://github.com/pytorch/pytorch/issues/17332

Reviewed By: ezyang

Differential Revision: D14254499

fbshipit-source-id: 9d5d7408c2ce510ac20cd438c6514dc2bbe3a854

5 years agoFix diagnostic pragmas (#17561)
Sebastian Messmer [Fri, 1 Mar 2019 00:26:49 +0000 (16:26 -0800)]
Fix diagnostic pragmas (#17561)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17561

The push at the top of the file was missing a corresponding pop

Reviewed By: ezyang

Differential Revision: D14254500

fbshipit-source-id: ff20359b563d6d6dcc68273dc754ab31aa8fad12

5 years agoAllow dispatch based on tensor list args (#17522)
Sebastian Messmer [Fri, 1 Mar 2019 00:25:37 +0000 (16:25 -0800)]
Allow dispatch based on tensor list args (#17522)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17522

Dispatch is still based on the first tensor arg, but that first "tensor arg" is now allowed to be a tensor list.
That is, the first argument that is either Tensor or TensorList will be the deciding factor for dispatch.
If it is a TensorList, then that TensorList must not be empty or dispatch will fail.

Reviewed By: ezyang

Differential Revision: D14235840

fbshipit-source-id: 266c18912d56ce77aa84306c5605c4191f3d882b

5 years agoAllow exposing caffe2 operators with variable number of input tensors to c10 (#17491)
Sebastian Messmer [Fri, 1 Mar 2019 00:25:37 +0000 (16:25 -0800)]
Allow exposing caffe2 operators with variable number of input tensors to c10 (#17491)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17491

Before, there was no way to expose a caffe2 operator that had a variable number of inputs.
Now, this is allowed by giving the operator one tensor list input.
Note that the tensor list must be the first input, and that any other tensor inputs will be ignored and inaccessible in this case.

Reviewed By: ezyang

Differential Revision: D14220705

fbshipit-source-id: 7f921bfb581caf46b229888c409bbcc40f7dda80

5 years agoblacklist fft algorithms for strided dgrad (#17016)
Syed Tousif Ahmed [Fri, 1 Mar 2019 00:17:37 +0000 (16:17 -0800)]
blacklist fft algorithms for strided dgrad (#17016)

Summary:
Applies https://github.com/pytorch/pytorch/pull/16626 from v1.0.1
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17016

Differential Revision: D14270100

Pulled By: ezyang

fbshipit-source-id: 1137899dd1551d33d16f39e8dde76cad8192af46

5 years agoRevert D14078519: [codemod][caffe2] [clangr] refactor caffe2 operator constructors...
Sebastian Messmer [Thu, 28 Feb 2019 22:58:12 +0000 (14:58 -0800)]
Revert D14078519: [codemod][caffe2] [clangr] refactor caffe2 operator constructors - 5/9

Differential Revision:
D14078519

Original commit changeset: b0ca31a52e4a

fbshipit-source-id: 713ae108d3dd6f33abdbf98a5f213e57e2b64642

5 years agoAdd generic list/dict custom op bindings (#17587)
David Riazati [Thu, 28 Feb 2019 22:43:05 +0000 (14:43 -0800)]
Add generic list/dict custom op bindings (#17587)

Summary:
Fixes #17017

Sandcastle refuses to land #17037, so trying fresh here
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17587

Differential Revision: D14265402

Pulled By: driazati

fbshipit-source-id: b942721aa9360ac6b3862f552ac95529eb0cf52c

5 years agorefactor caffe2 operator constructors - 8/9 (#17089)
Sebastian Messmer [Thu, 28 Feb 2019 22:12:37 +0000 (14:12 -0800)]
refactor caffe2 operator constructors - 8/9 (#17089)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17089

clangr codemod

Reviewed By: ezyang

Differential Revision: D14078539

fbshipit-source-id: 9ca196af4af7f26fc82e6cf82b35d478d0597752

5 years agorefactor caffe2 operator constructors - 6/9 (#17087)
Sebastian Messmer [Thu, 28 Feb 2019 22:12:14 +0000 (14:12 -0800)]
refactor caffe2 operator constructors - 6/9 (#17087)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17087

clangr codemod

Reviewed By: ezyang

Differential Revision: D14078525

fbshipit-source-id: 7cc03b30b0d4eb99818e35406be4119b27bdb1bc

5 years agorefactor caffe2 operator constructors - 2/9 (#17083)
Sebastian Messmer [Thu, 28 Feb 2019 22:06:51 +0000 (14:06 -0800)]
refactor caffe2 operator constructors - 2/9 (#17083)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17083

clangr codemod

Reviewed By: ezyang

Differential Revision: D14078504

fbshipit-source-id: 34dddb035eee2fca3150e47c57489614b91b6725

5 years agorefactor caffe2 operator constructors - 7/9 (#17088)
Sebastian Messmer [Thu, 28 Feb 2019 22:04:06 +0000 (14:04 -0800)]
refactor caffe2 operator constructors - 7/9 (#17088)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17088

clangr codemod

also manually moved the constructor of a class from the .cpp file to the .h file.

Reviewed By: ezyang

Differential Revision: D14078531

fbshipit-source-id: 2adb4ac0ce523742da6cce3bc3b6c177b816c299

5 years agorefactor caffe2 operator constructors - 4/9 (#17085)
Sebastian Messmer [Thu, 28 Feb 2019 22:03:34 +0000 (14:03 -0800)]
refactor caffe2 operator constructors - 4/9 (#17085)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17085

clangr codemod

Reviewed By: ezyang

Differential Revision: D14078515

fbshipit-source-id: aaa48ae10892e3f47063f2133e026fea46f3240b

5 years agorefactor caffe2 operator constructors - 3/9 (#17084)
Sebastian Messmer [Thu, 28 Feb 2019 22:01:30 +0000 (14:01 -0800)]
refactor caffe2 operator constructors - 3/9 (#17084)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17084

clangr codemod

Reviewed By: ezyang

Differential Revision: D14078507

fbshipit-source-id: ed02d772890b30196302b6830f541f054b7e95c8

5 years agoMake HIPStream also masquerade as CUDA. (#17469)
Edward Yang [Thu, 28 Feb 2019 21:32:22 +0000 (13:32 -0800)]
Make HIPStream also masquerade as CUDA. (#17469)

Summary:
HIPGuard interfaces that interacted with HIPStream were previously
totally busted (because the streams had the wrong device type).
This fixes it, following along the same lines of MasqueardingAsCUDA.

Along the way I beefed up the explanatory comment.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
cc jithunnair-amd iotamudelta bddppq
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17469

Differential Revision: D14243396

Pulled By: ezyang

fbshipit-source-id: 972455753a62f8584ba9ab194f9c785db7bb9bde

5 years agoFix Python device type property for XLA and MSNPU
Alex Şuhan [Thu, 28 Feb 2019 21:28:17 +0000 (13:28 -0800)]
Fix Python device type property for XLA and MSNPU

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17361

Differential Revision: D14243546

Pulled By: soumith

fbshipit-source-id: b7498968f72e3d97de5bf6e5b44c5a59b6913acb

5 years agoRely on numel() == 1 to check if distribution parameters are scalar. (#17503)
Morgan Funtowicz [Thu, 28 Feb 2019 21:27:27 +0000 (13:27 -0800)]
Rely on numel() == 1 to check if distribution parameters are scalar. (#17503)

Summary:
As discussed here #16952, this PR aims at improving the __repr__ for distribution when the provided parameters are torch.Tensor with only one element.

Currently, __repr__() relies on dim() == 0 leading to the following behaviour :

```
>>> torch.distributions.Normal(torch.tensor([1.0]), torch.tensor([0.1]))
Normal(loc: torch.Size([1]), scale: torch.Size([1]))
```

With this PR, the output looks like the following:
```
>>> torch.distributions.Normal(torch.tensor([1.0]), torch.tensor([0.1]))
Normal(loc: 1.0, scale: 0.10000000149011612)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17503

Differential Revision: D14245439

Pulled By: soumith

fbshipit-source-id: a440998905fd60cf2ac9a94f75706021dd9ce5bf

5 years agofix reordering of inlines (#17557)
Zachary DeVito [Thu, 28 Feb 2019 21:06:10 +0000 (13:06 -0800)]
fix reordering of inlines (#17557)

Summary:
See comment inside of code. This fixes a bug where sometimes we would try to avoid printing long lines but would inadvertently reorder the expressions, which can change the semantics of the program
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17557

Differential Revision: D14250608

Pulled By: zdevito

fbshipit-source-id: d44996af4e90fe9ab9508d13cd04adbfc7bb5d1c

5 years agoCustomize the printing of namedtuple return (#17136)
Xiang Gao [Thu, 28 Feb 2019 20:59:34 +0000 (12:59 -0800)]
Customize the printing of namedtuple return (#17136)

Summary:
Fixes https://github.com/pytorch/pytorch/issues/17112
```python
print("good", torch.randn(5,5,5).max(1))
print("terrible", torch.randn(5,5,10).max(1))
print("not as good", torch.randn(5,5,500).max(1))
print ("old behaviour = gold standard")
print(tuple(torch.randn(5,5,5).max(1)))
print(tuple(torch.randn(5,5,10).max(1)))
print(tuple(torch.randn(5,5,500).max(1)))
```
now gives
```
>>> import torch
>>> print("good", torch.randn(5,5,5).max(1))
good torch.return_types.max(
values=tensor([[ 1.2821,  1.8063,  1.8075,  1.3082, -0.1267],
        [ 0.3437,  0.7353,  1.2619,  0.7557,  1.6662],
        [ 0.8583,  1.8906,  1.0246,  1.7598,  1.1184],
        [ 1.7821,  0.0230,  0.9452,  1.0318,  1.0823],
        [ 0.4116, -0.0379, -0.1843,  1.4129,  1.8796]]),
indices=tensor([[4, 4, 3, 2, 1],
        [1, 2, 4, 1, 1],
        [2, 4, 0, 2, 1],
        [0, 2, 0, 3, 1],
        [0, 4, 4, 4, 4]]))
>>> print("terrible", torch.randn(5,5,10).max(1))
terrible torch.return_types.max(
values=tensor([[ 2.1272,  1.3664,  2.2067,  1.3974, -0.0883,  1.2505,  1.0074,  1.1217,
          0.3849,  0.6936],
        [ 0.6288, -0.4560,  1.2748,  1.5482,  1.2777,  1.6874,  0.7151,  0.6041,
          1.3572,  1.6232],
        [ 1.6703,  1.0075,  1.6480,  2.2839,  1.3390,  0.4938,  1.6449,  1.7628,
          0.8141,  2.5714],
        [ 0.7079,  1.8677,  3.2478,  1.5591,  2.4870,  0.8635, -0.1450,  1.6923,
          1.4924,  1.6298],
        [ 2.4056,  0.8002,  0.9317,  0.7455,  0.7866,  2.1191,  0.3492,  1.2095,
          1.8637,  1.7470]]),
indices=tensor([[1, 1, 0, 0, 0, 0, 3, 4, 4, 4],
        [4, 2, 2, 1, 2, 2, 3, 1, 1, 3],
        [0, 3, 3, 0, 2, 1, 4, 1, 0, 1],
        [4, 1, 3, 0, 3, 2, 0, 1, 4, 3],
        [1, 0, 3, 2, 1, 0, 0, 1, 0, 1]]))
>>> print("not as good", torch.randn(5,5,500).max(1))
not as good torch.return_types.max(
values=tensor([[ 0.3877,  0.7873,  1.8701,  ...,  0.5971,  1.6103, -0.3435],
        [ 1.1300,  2.2418,  1.4239,  ...,  1.3943,  0.3872,  1.6475],
        [ 2.0656,  1.3136,  0.9896,  ...,  2.3918,  0.8226,  1.0517],
        [ 1.1054,  0.9945,  1.0561,  ...,  2.1039,  1.1524,  3.0304],
        [ 1.5041,  2.2809,  1.0883,  ...,  0.8504,  2.4774,  1.1041]]),
indices=tensor([[4, 3, 1,  ..., 1, 4, 0],
        [4, 4, 4,  ..., 3, 0, 3],
        [3, 0, 1,  ..., 2, 2, 4],
        [0, 1, 1,  ..., 4, 2, 2],
        [1, 0, 4,  ..., 2, 0, 2]]))
>>> print ("old behaviour = gold standard")
old behaviour = gold standard
>>> print(tuple(torch.randn(5,5,5).max(1)))
(tensor([[ 1.1908,  1.1807,  1.3151,  1.7184,  0.3556],
        [ 0.3798,  0.9213,  0.3001,  1.3087,  2.2419],
        [ 1.4233,  1.4814,  1.9900,  1.7744,  1.3059],
        [ 1.0026, -0.0330,  1.3061,  1.8730,  2.0685],
        [ 1.3041,  1.6458,  1.3449,  1.8948,  3.6206]]), tensor([[0, 4, 3, 4, 0],
        [1, 1, 4, 0, 4],
        [4, 1, 0, 3, 3],
        [1, 2, 1, 4, 0],
        [3, 3, 0, 3, 3]]))
>>> print(tuple(torch.randn(5,5,10).max(1)))
(tensor([[-0.1232,  0.8275,  0.6732,  1.1223,  0.8247,  1.2851,  1.6009,  1.9979,
          1.9109,  0.7313],
        [ 0.2260,  0.5922,  1.6928,  0.6024,  2.1158,  3.0619,  0.5653,  0.7426,
          0.8316,  0.6346],
        [ 0.4319,  0.2231,  0.5255,  1.7620,  1.1657,  0.8875,  0.5782,  0.6506,
          0.5032,  1.7097],
        [ 0.4137,  1.7265,  1.4260,  2.0301,  1.2244,  0.7128,  2.6345,  0.7230,
          1.3553,  1.6508],
        [ 1.0684,  1.7195,  1.4068,  0.7076, -0.0242,  0.8474,  0.8754,  1.7108,
          0.2188,  1.1584]]), tensor([[0, 1, 3, 4, 2, 3, 4, 2, 1, 0],
        [1, 4, 0, 0, 3, 2, 0, 0, 3, 3],
        [2, 3, 1, 1, 4, 0, 1, 4, 4, 4],
        [0, 4, 1, 3, 2, 0, 2, 0, 3, 1],
        [1, 0, 0, 0, 0, 3, 3, 3, 2, 0]]))
>>> print(tuple(torch.randn(5,5,500).max(1)))
(tensor([[0.9395, 1.5572, 1.8797,  ..., 2.0494, 0.8202, 0.9623],
        [1.7937, 0.7225, 1.8836,  ..., 0.7927, 1.4976, 1.1813],
        [0.8558, 1.6943, 1.4192,  ..., 0.8327, 1.9661, 0.4197],
        [1.2993, 1.4995, 0.9357,  ..., 0.7810, 1.3030, 2.6216],
        [1.4206, 1.8315, 1.0338,  ..., 1.4312, 1.3198, 1.5233]]), tensor([[0, 4, 3,  ..., 3, 0, 2],
        [0, 1, 0,  ..., 0, 4, 3],
        [3, 4, 3,  ..., 3, 0, 0],
        [3, 2, 3,  ..., 1, 2, 1],
        [1, 2, 4,  ..., 3, 1, 3]]))
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17136

Differential Revision: D14250021

Pulled By: VitalyFedyunin

fbshipit-source-id: aae72f03b35980063b1ac1f07b8353eddb0c8b93

5 years agoRevert D14231251: [jit] alias_analysis refactor
Michael Suo [Thu, 28 Feb 2019 20:49:31 +0000 (12:49 -0800)]
Revert D14231251: [jit] alias_analysis refactor

Differential Revision:
D14231251

Original commit changeset: 6cd98ae6fced

fbshipit-source-id: 96189f47daf7cc4cf4ef5cd343022d56a2296b39

5 years agorefactor caffe2 operator constructors - 5/9 (#17086)
Sebastian Messmer [Thu, 28 Feb 2019 19:43:29 +0000 (11:43 -0800)]
refactor caffe2 operator constructors - 5/9 (#17086)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17086

clangr codemod

Reviewed By: ezyang

Differential Revision: D14078519

fbshipit-source-id: b0ca31a52e4ab97b145a1490461d59f8fa93874a

5 years agoalias_analysis refactor (#17511)
Michael Suo [Thu, 28 Feb 2019 19:28:16 +0000 (11:28 -0800)]
alias_analysis refactor (#17511)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17511

AliasTracker was doing bookkeeping for three concepts: the points-to graph,
writes, and wildcards.

This PR makes AliasTracker's job clearer: it keeps track of the points-to
graph. Thus it has been renamed MemoryDAG. Write and wildcard information were
pulled back into AliasDb as part of this—I may decide to pull them into their
own little modules since I don't want the alias analysis stuff to get too
bloated.

This refactor is necessary because we want to start tracking information for
aliasing elements that _aren't_ first-class IR Values (e.g. the "stuff" inside
a list). So MemoryDAG can't know too much about Values

Reviewed By: houseroad

Differential Revision: D14231251

fbshipit-source-id: 6cd98ae6fced8d6c1522c2454da77c3c1b2b0504

5 years agoallow "before" and "after" alias annotations (#17480)
Michael Suo [Thu, 28 Feb 2019 19:28:16 +0000 (11:28 -0800)]
allow "before" and "after" alias annotations (#17480)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17480

This was always part of our "spec" but not implemented

Reviewed By: houseroad

Differential Revision: D14214301

fbshipit-source-id: 118db320b43ec099dc3e730c67d39487474c23ea

5 years agoONNXIFI extension & e2e tests. (#17478)
Rui Zhu [Thu, 28 Feb 2019 19:22:20 +0000 (11:22 -0800)]
ONNXIFI extension & e2e tests. (#17478)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17478

Enable onnxifi_ext in glow and build an e2e test in caffe2.

Reviewed By: yinghai

Differential Revision: D14190136

fbshipit-source-id: 26245278b487b551623109b14432f675279b17b5

5 years agoupdate slack invite instructions
Soumith Chintala [Thu, 28 Feb 2019 19:21:23 +0000 (11:21 -0800)]
update slack invite instructions

Summary: update slack invite instructions

Reviewed By: pjh5

Differential Revision: D14255348

fbshipit-source-id: 564fed0d44a6a68f80d1894fed40c3ddb360aa52

5 years agoFix errors in the description for installation on Windows (#17475)
Evgeny Mankov [Thu, 28 Feb 2019 18:31:46 +0000 (10:31 -0800)]
Fix errors in the description for installation on Windows (#17475)

Summary:
+ All quotes for ENV VARS are erroneous;
+ Toolset hasn't be specified;
+ Provide paths for all 3 Visual Studio 2017 products: Community/Professional/Enterprise.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17475

Differential Revision: D14262968

Pulled By: soumith

fbshipit-source-id: c0504e0a6be9c697ead83b06b0c5cf569b5c8625

5 years agorefactor caffe2 operator constructors - 9/9 (#17090)
Sebastian Messmer [Thu, 28 Feb 2019 17:50:19 +0000 (09:50 -0800)]
refactor caffe2 operator constructors - 9/9 (#17090)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17090

clangr codemod

Reviewed By: ezyang

Differential Revision: D14078550

fbshipit-source-id: 68e6de4298e55ce83039b7806c1a275c4d6593c8

5 years agoFix the false generated_comment (#17563)
Gemfield [Thu, 28 Feb 2019 17:37:48 +0000 (09:37 -0800)]
Fix the false generated_comment (#17563)

Summary:
The generated_comments are wrong to below generated files:
```bash
./torch/csrc/autograd/generated/VariableType_0.cpp:3:// generated from tools/autograd/templates/VariableType_0.cpp
./torch/csrc/autograd/generated/VariableType_1.cpp:3:// generated from tools/autograd/templates/VariableType_1.cpp
./torch/csrc/autograd/generated/VariableType_2.cpp:3:// generated from tools/autograd/templates/VariableType_2.cpp
./torch/csrc/autograd/generated/VariableType_3.cpp:3:// generated from tools/autograd/templates/VariableType_3.cpp
./torch/csrc/autograd/generated/VariableType_4.cpp:3:// generated from tools/autograd/templates/VariableType_4.cpp
./torch/csrc/autograd/generated/VariableTypeEverything.cpp:3:// generated from tools/autograd/templates/VariableTypeEverything.cpp

./torch/csrc/jit/generated/register_aten_ops_0.cpp:23:// generated from tools/autograd/templates/register_aten_ops_0.cpp
./torch/csrc/jit/generated/register_aten_ops_1.cpp:23:// generated from tools/autograd/templates/register_aten_ops_1.cpp
./torch/csrc/jit/generated/register_aten_ops_2.cpp:23:// generated from tools/autograd/templates/register_aten_ops_2.cpp
```

These generated files were split to speed the compile, however, the template files are not.
After this fix, the comments will look like below:
```bash
./torch/csrc/autograd/generated/VariableType_0.cpp:3:// generated from tools/autograd/templates/VariableType.cpp
./torch/csrc/autograd/generated/VariableType_1.cpp:3:// generated from tools/autograd/templates/VariableType.cpp
......
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17563

Differential Revision: D14260992

Pulled By: soumith

fbshipit-source-id: 038181367fa43bee87837e4170704ddff7f4d6f2

5 years agoRemove useless OpenCV reference
Dmytro Dzhulgakov [Thu, 28 Feb 2019 07:18:46 +0000 (23:18 -0800)]
Remove useless OpenCV reference

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17564

Differential Revision: D14255542

Pulled By: dzhulgakov

fbshipit-source-id: c129f3751ae82deedd258ee16586552b77baaca6

5 years agoconvolution/matmul/dropout (#17523)
Ailing Zhang [Thu, 28 Feb 2019 05:36:37 +0000 (21:36 -0800)]
convolution/matmul/dropout (#17523)

Summary:
* Add AD formula for _convolution & matmul & dropout
* add prim::range, fixes #17483
Example:
```
dim = 3
x = range(dim)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17523

Differential Revision: D14254002

Pulled By: ailzhang

fbshipit-source-id: ba60d77b047db347929b72beca2623fb26aec957

5 years agodisallow shape analysis with resize ops (#17518)
Elias Ellison [Thu, 28 Feb 2019 02:59:19 +0000 (18:59 -0800)]
disallow shape analysis with resize ops (#17518)

Summary:
resize_ and resize_as resize the input tensor. because our shape analysis
is flow invariant, we don't do shape analysis on any op that relies on a Tensor that can alias a resized Tensor.

E.g. in the following graph the x += 10 x may have been resized.
```
torch.jit.script
def test(x, y):
    for i in range(10):
        x += 10
        x.resize_as_([1 for i in int(range(torch.rand())))
    return x

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17518

Differential Revision: D14249835

Pulled By: eellison

fbshipit-source-id: f281b468ccb8c29eeb0f68ca5458cc7246a166d9

5 years agoMake C10_MOBILE consistent with how feature macros are usually used (#17481)
Sebastian Messmer [Thu, 28 Feb 2019 01:54:51 +0000 (17:54 -0800)]
Make C10_MOBILE consistent with how feature macros are usually used (#17481)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17481

Usually, feature macros are either defined or undefined and checked accordingly.
C10_MOBILE was a weird special case that was always defined but either defined to 1 or to 0.

This caused a lot of confusion for me when trying to disable something from mobile build and it also disabled it
from the server build (because I was using ifdef). Also, I found a place in the existing code base that made
that wrong assumption and used the macro wrongly, see https://fburl.com/y4icohts

Reviewed By: dzhulgakov

Differential Revision: D14214825

fbshipit-source-id: f3a155b6d43d334e8839e2b2e3c40ed2c773eab6

5 years agoDisable c10 dispatcher on mobile (#17078)
Sebastian Messmer [Thu, 28 Feb 2019 01:54:50 +0000 (17:54 -0800)]
Disable c10 dispatcher on mobile (#17078)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17078

This prevents caffe2 operators from being expsoed to c10 on mobile,
which in turn causes the whole c10 dispatcher to be stripped away
and saves binary size.

We probably want to re-enable the c10 dispatcher for mobile,
but for now this is ok.

Reviewed By: ezyang

Differential Revision: D14077972

fbshipit-source-id: e4dd3e3b60cdfbde91fe0d24102c1d9708d3e5c4

5 years agoAlways synchronize src and dst streams when copying tensors (#16966)
Shen Li [Wed, 27 Feb 2019 22:54:30 +0000 (14:54 -0800)]
Always synchronize src and dst streams when copying tensors (#16966)

Summary:
fixes #15568
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16966

Differential Revision: D14213144

Pulled By: mrshenli

fbshipit-source-id: 2fcf5e07895fde80b4aee72e2736b0def876d21f

5 years agoONNX Export Adaptive Pooling
Lara Haidar [Wed, 27 Feb 2019 22:52:26 +0000 (14:52 -0800)]
ONNX Export Adaptive Pooling

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17412

Differential Revision: D14247923

Pulled By: houseroad

fbshipit-source-id: 5530cea8f80da7368bff1e29cf89c45ad53accee

5 years agoUse name for output variables instead of out in JIT (#17386)
Christian Puhrsch [Wed, 27 Feb 2019 21:48:34 +0000 (13:48 -0800)]
Use name for output variables instead of out in JIT (#17386)

Summary:
This adds 88 matches.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17386

Differential Revision: D14179139

Pulled By: cpuhrsch

fbshipit-source-id: 2c3263b8e4d084db84791e53290e8c8b1b7aecd5

5 years agoForcing UTC on Mac circleci jobs (#17516)
Jesse Hellemn [Wed, 27 Feb 2019 21:17:16 +0000 (13:17 -0800)]
Forcing UTC on Mac circleci jobs (#17516)

Summary:
And adding timestamps to linux build jobs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17516

Differential Revision: D14244533

Pulled By: pjh5

fbshipit-source-id: 26c38f59e0284c99f987d69ce6a2c2af9116c3c2

5 years agoFix math::Set for large tensor (#17539)
Xiaomeng Yang [Wed, 27 Feb 2019 20:18:52 +0000 (12:18 -0800)]
Fix math::Set for large tensor (#17539)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17539

Fix math::Set for large tensor

i-am-not-moving-c2-to-c10

Reviewed By: dzhulgakov, houseroad

Differential Revision: D14240756

fbshipit-source-id: 0ade26790be41fb26d2cc193bfa3082c7bd4e69d

5 years agoAdd sparse gradient option to `gather` operation (#17182)
Natalia Gimelshein [Wed, 27 Feb 2019 19:39:37 +0000 (11:39 -0800)]
Add sparse gradient option to `gather` operation (#17182)

Summary:
This PR allows `gather` to optionally return sparse gradients, as requested in #16329. It also allows to autograd engine to accumulate sparse gradients in place when it is safe to do so.
I've commented out size.size() check in `SparseTensor.cpp` that also caused #17152, it does not seem to me that check serves a useful purpose, but please correct me if I'm wrong and a better fix is required.
Motivating example:
For this commonly used label smoothing loss function
```
def label_smoothing_opt(x, target):
    padding_idx = 0
    smoothing = 0.1
    logprobs = torch.nn.functional.log_softmax(x, dim=-1, dtype=torch.float32)
    pad_mask = (target == padding_idx)
    ll_loss = logprobs.gather(dim=-1, index=target.unsqueeze(1), sparse = True).squeeze(1)
    smooth_loss = logprobs.mean(dim=-1)
    loss =  (smoothing - 1.0) * ll_loss - smoothing * smooth_loss
    loss.masked_fill_(pad_mask, 0)
    return loss.sum()
```
backward goes from 12.6 ms with dense gather gradients to 7.3 ms with sparse gradients, for 9K tokens x 30K vocab, which is some single percent end-to-end improvement, and also improvement in peak memory required.
Shout-out to core devs: adding python-exposed functions with keyword arguments through native_functions.yaml is very easy now!

cc gchanan apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17182

Differential Revision: D14158431

Pulled By: gchanan

fbshipit-source-id: c8b654611534198025daaf7a634482b3151fbade

5 years agoadd elastic zeus handler (#16746)
Jane Wang [Wed, 27 Feb 2019 19:26:40 +0000 (11:26 -0800)]
add elastic zeus handler (#16746)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16746

as titled. We use a special url schem elasticzeus for elastic zeus so that we dont need to change the public interface of init_process_group.

Reviewed By: aazzolini, soumith

Differential Revision: D13948151

fbshipit-source-id: 88939dcfa0ad93467dabedad6905ec32e6ec60e6

5 years agooptimize elementwise sum (#17456)
Jongsoo Park [Wed, 27 Feb 2019 18:09:53 +0000 (10:09 -0800)]
optimize elementwise sum (#17456)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17456

Using an instruction sequence similar to function in fbgemm/src/QuantUtilAvx2.cc
elementwise_sum_benchmark added

Reviewed By: protonu

Differential Revision: D14205695

fbshipit-source-id: 84939c9d3551f123deec3baf7086c8d31fbc873e

5 years agoEnable boolean_mask, adadelta, adagrad fp16 on ROCm (#17235)
rohithkrn [Wed, 27 Feb 2019 18:04:33 +0000 (10:04 -0800)]
Enable boolean_mask, adadelta, adagrad fp16 on ROCm (#17235)

Summary:
-  Fix bugs, indentation for adadelta and adagrad tests to enable fp16
- Enable boolean_mask fp16  on ROCm
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17235

Differential Revision: D14240828

Pulled By: bddppq

fbshipit-source-id: ab6e8f38aa7afb83b4b879f2f4cf2277c643198f

5 years agoEnabled HALF for fill() and zero() methods. Moved them into THTensorFill (#17536)
Iurii Zdebskyi [Wed, 27 Feb 2019 17:17:04 +0000 (09:17 -0800)]
Enabled HALF for fill() and zero() methods. Moved them into THTensorFill (#17536)

Summary:
For some additional context on this change, please, see this [PR](https://github.com/pytorch/pytorch/pull/17376)

As a part of work on Bool Tensor, we will need to add support for a bool type to _fill() and _zero() methods that are currently located in THTensorMath. As we don't need anything else and those methods are not really math related - we are moving them out into separate THTensorFill for simplicity.

Change:
-moved _fill() and _zero() from THTensorMath.h to THTensorFill
-enabled _fill() and _zero() for HALF type.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17536

Differential Revision: D14242130

Pulled By: izdeby

fbshipit-source-id: 1d8bd806f0f5510723b9299d360b70cc4ab96afb

5 years agoFix autograd with buffers requiring grad in DataParallel (#13352)
Tongzhou Wang [Wed, 27 Feb 2019 04:43:11 +0000 (20:43 -0800)]
Fix autograd with buffers requiring grad in DataParallel (#13352)

Summary:
Causing a problem with spectral norm, although SN won't use that anymore after #13350 .
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13352

Differential Revision: D14209562

Pulled By: ezyang

fbshipit-source-id: f5e3183e1e7050ac5a66d203de6f8cf56e775134

5 years agoenable assymetric dilations and stride for miopen conv (#17472)
Chaitanya Sri Krishna Lolla [Wed, 27 Feb 2019 04:36:45 +0000 (20:36 -0800)]
enable assymetric dilations and stride for miopen conv (#17472)

Summary:
As of MIOpen 1.7.1 as shipped in ROCm 2.1 this works correctly and we can use MIOpen and do not need to fall back
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17472

Differential Revision: D14210323

Pulled By: ezyang

fbshipit-source-id: 4c08d0d4623e732eda304fe04cb722c835ec70e4

5 years agoEnable tests working on ROCm 2.1 dual gfx906
Johannes M Dieterich [Wed, 27 Feb 2019 04:35:28 +0000 (20:35 -0800)]
Enable tests working on ROCm 2.1 dual gfx906

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17473

Reviewed By: bddppq

Differential Revision: D14210243

Pulled By: ezyang

fbshipit-source-id: 519032a1e73c13ecb260ea93102dc8efb645e070

5 years agoFix linking errors when building dataloader test binaries on Windows (#17494)
peter [Wed, 27 Feb 2019 04:33:59 +0000 (20:33 -0800)]
Fix linking errors when building dataloader test binaries on Windows (#17494)

Summary:
Fixes #17489.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17494

Differential Revision: D14226525

Pulled By: ezyang

fbshipit-source-id: 3dfef9bc6f443d647e9f05a54bc17c5717033723

5 years agoFix typo
hysts [Wed, 27 Feb 2019 04:20:32 +0000 (20:20 -0800)]
Fix typo

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17521

Differential Revision: D14237482

Pulled By: soumith

fbshipit-source-id: 636e0fbe2c667d15fcb649136a65ae64937fa0cb

5 years agoRemove Bool/IndexTensor from schema for native functions with derivatives (#17193)
Christian Puhrsch [Wed, 27 Feb 2019 01:41:56 +0000 (17:41 -0800)]
Remove Bool/IndexTensor from schema for native functions with derivatives (#17193)

Summary:
This only deals with four functions, but is an important first step towards removing BoolTensor and IndexTensor entirely.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17193

Differential Revision: D14157829

Pulled By: cpuhrsch

fbshipit-source-id: a36f16d1d88171036c44cc7de60ac9dfed9d14f2

5 years agoFix operator initialization order (#15445)
Ilia Cherniavskii [Tue, 26 Feb 2019 23:34:04 +0000 (15:34 -0800)]
Fix operator initialization order (#15445)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15445

Initilize task graph after operators (task graph uses ops)

Reviewed By: yinghai

Differential Revision: D13530864

fbshipit-source-id: fdc91e9158c1b50fcc96fd1983fd000fdf20c7da

5 years agoMake transpose consistent with numpy's behavior (#17462)
bhushan [Tue, 26 Feb 2019 22:11:18 +0000 (14:11 -0800)]
Make transpose consistent with numpy's behavior (#17462)

Summary:
Pytorch's tensor.t() is now equivalent with Numpy's ndarray.T for 1D tensor
i.e. tensor.t() == tensor

Test case added:
- test_t

fixes #9687
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17462

Differential Revision: D14214838

Pulled By: soumith

fbshipit-source-id: c5df1ecc8837be22478e3a82ce4854ccabb35765

5 years agoBump up the ONNX default opset version to 10 (#17419)
Lu Fang [Tue, 26 Feb 2019 20:22:14 +0000 (12:22 -0800)]
Bump up the ONNX default opset version to 10 (#17419)

Summary:
Align with the master of ONNX.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17419

Reviewed By: zrphercule

Differential Revision: D14197985

Pulled By: houseroad

fbshipit-source-id: 13fc1f7786aadbbf5fe83bddf488fee3dedf58ce

5 years ago' ' ==> ' ' (#17498)
liangdzou [Tue, 26 Feb 2019 20:18:42 +0000 (12:18 -0800)]
' ' ==> ' ' (#17498)

Summary:
Fix formatting error for cpp code.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17498

Reviewed By: zou3519

Differential Revision: D14224549

Pulled By: fmassa

fbshipit-source-id: f1721c4a75908ded759aea8c561f2e1d66859eec

5 years agoSupport all ROCm supported uarchs simultaneously: gfx803, gfx900, gfx906 (#17367)
Johannes M Dieterich [Tue, 26 Feb 2019 19:35:26 +0000 (11:35 -0800)]
Support all ROCm supported uarchs simultaneously: gfx803, gfx900, gfx906 (#17367)

Summary:
Correct misspelled flag.

Remove dependency on debug flag (HCC_AMDGPU_TARGET)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17367

Differential Revision: D14227334

Pulled By: bddppq

fbshipit-source-id: d838f219a9a1854330b0bc851c40dfbba77a32ef

5 years agorefactor: a bit intricate so I refactor it (#16995)
knightXun [Tue, 26 Feb 2019 18:09:54 +0000 (10:09 -0800)]
refactor: a bit intricate so I refactor it (#16995)

Summary:
this code is a bit intricate so i refactor it
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16995

Differential Revision: D14050667

Pulled By: ifedan

fbshipit-source-id: 55452339c6518166f3d4bc9898b1fe2f28601dc4

5 years agonew batch of expect file removals
Elias Ellison [Tue, 26 Feb 2019 16:11:47 +0000 (08:11 -0800)]
new batch of expect file removals

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17486

Differential Revision: D14218963

Pulled By: eellison

fbshipit-source-id: dadc8bb71e756f47cdb04525d47f66c13ed56d16

5 years agouser defined types (#17314)
Michael Suo [Tue, 26 Feb 2019 09:24:05 +0000 (01:24 -0800)]
user defined types (#17314)

Summary:
First pass at user defined types. The following is contained in this PR:
- `UserType` type, which contains a reference to a module with all methods for the type, and a separate namespace for data attributes (map of name -> TypePtr).
- `UserTypeRegistry`, similar to the operator registry
- `UserObject` which is the runtime representation of the user type (just a map of names -> IValues)
- `UserTypeValue` SugaredValue, to manage getattr and setattr while generating IR, plus compiler.cpp changes to make that work.
- Frontend changes to get `torch.jit.script` to work as a class decorator
- `ClassDef` node in our AST.
- primitive ops for object creation, setattr, and getattr, plus alias analysis changes to make mutation safe.

Things that definitely need to get done:
- Import/export, python_print support
- String frontend doesn't understand class definitions yet
- Python interop (using a user-defined type outside TorchScript) is completely broken
- Static methods (without `self`) don't work

Things that are nice but not essential:
- Method definition shouldn't matter (right now you can only reference a method that's already been defined)
- Class definitions can only contain defs, no other expressions are supported.

Things I definitely won't do initially:
- Polymorphism/inheritance
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17314

Differential Revision: D14194065

Pulled By: suo

fbshipit-source-id: c5434afdb9b39f84b7c85a9fdc2891f8250b5025

5 years agoadd mutability to docs (#17454)
Michael Suo [Tue, 26 Feb 2019 08:24:15 +0000 (00:24 -0800)]
add mutability to docs (#17454)

Summary:
Not sure the best way to integrate this…I wrote something that focuses on mutability "vertically" through the stack. Should I split it up and distribute it into the various sections, or keep it all together?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17454

Differential Revision: D14222883

Pulled By: suo

fbshipit-source-id: 3c83f6d53bba9186c32ee443aa9c32901a0951c0

5 years agoRemove usages of int64_t from native_functions.yaml
Christian Puhrsch [Tue, 26 Feb 2019 01:44:07 +0000 (17:44 -0800)]
Remove usages of int64_t from native_functions.yaml

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17387

Differential Revision: D14185458

Pulled By: cpuhrsch

fbshipit-source-id: 5c8b358d36b77b60c3226afcd3443c2b1727cbc2

5 years agoupload alias tracker graph for docs (#17476)
Michael Suo [Tue, 26 Feb 2019 00:55:55 +0000 (16:55 -0800)]
upload alias tracker graph for docs (#17476)

Summary:
as title
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17476

Differential Revision: D14218312

Pulled By: suo

fbshipit-source-id: 64df096a3431a6f25cd2373f0959d415591fed15

5 years agoTemporarily disable select/topk/kthvalue AD (#17470)
Ailing Zhang [Tue, 26 Feb 2019 00:22:16 +0000 (16:22 -0800)]
Temporarily disable select/topk/kthvalue AD (#17470)

Summary:
Temporarily disable them for perf consideration. Will figure out a way to do `torch.zeros(sizes, grad.options())` in torchscript before enabling these.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17470

Differential Revision: D14210313

Pulled By: ailzhang

fbshipit-source-id: efaf44df1192ae42f4fe75998ff0073234bb4204

5 years agoBatch of expect file removals Remove dce expect files (#17471)
Elias Ellison [Tue, 26 Feb 2019 00:11:47 +0000 (16:11 -0800)]
Batch of expect file removals Remove dce expect files (#17471)

Summary:
Batch of removing expect test files
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17471

Differential Revision: D14217265

Pulled By: eellison

fbshipit-source-id: 425da022115b7e83aca86ef61d4d41fd046d439e

5 years agoBack out part of "Fix NERPredictor for zero initialization"
Dmytro Dzhulgakov [Tue, 26 Feb 2019 00:00:56 +0000 (16:00 -0800)]
Back out part of "Fix NERPredictor for zero initialization"

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17482

Reviewed By: david-y-lam

Differential Revision: D14216135

fbshipit-source-id: 2ef4cb5dea74fc5c68e9b8cb43fcb180f219cb32

5 years agoFollowup to #17049: change more instances of RuntimeError to IndexError
Stefan Krah [Mon, 25 Feb 2019 23:30:59 +0000 (15:30 -0800)]
Followup to #17049: change more instances of RuntimeError to IndexError

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17114

Differential Revision: D14150890

Pulled By: gchanan

fbshipit-source-id: 579ca71665166c6a904b894598a0b334f0d8acc7

5 years agoMissing argument description (value) in scatter_ function documentation (#17467)
Krishna Kalyan [Mon, 25 Feb 2019 22:32:34 +0000 (14:32 -0800)]
Missing argument description (value) in scatter_ function documentation (#17467)

Summary: Update the docs to include the value parameter that was missing in the `scatter_` function.

Differential Revision: D14209225

Pulled By: soumith

fbshipit-source-id: 5c65e4d8fbd93fcd11a0a47605bce6d57570f248

5 years agoThrow exception when foxi is not checked out (#17477)
Lu Fang [Mon, 25 Feb 2019 22:25:18 +0000 (14:25 -0800)]
Throw exception when foxi is not checked out (#17477)

Summary:
Add check and provide useful warning/error information to user if foxi is not checked out.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17477

Reviewed By: zrphercule

Differential Revision: D14212896

Pulled By: houseroad

fbshipit-source-id: 557247d5d8fdc016b1c24c2a21503e59f874ad09

5 years agoUpdating submodules
svcscm [Mon, 25 Feb 2019 21:42:28 +0000 (13:42 -0800)]
Updating submodules

Reviewed By: yns88

fbshipit-source-id: ae3e05c2ee3af5df171556698ff1469780d739d1

5 years agosimplify aliasdb interface (#17453)
Michael Suo [Mon, 25 Feb 2019 21:27:43 +0000 (13:27 -0800)]
simplify aliasdb interface (#17453)

Summary:
Stack:
&nbsp;&nbsp;&nbsp;&nbsp;:black_circle:&nbsp; **#17453 [jit] simplify aliasdb interface**&nbsp;&nbsp;[:yellow_heart:](https://our.intern.facebook.com/intern/diff/D14205209/)

The previous "getWrites" API relies on the user to do alias checking, which is confusing and inconsistent with the rest of the interface. So replace it with a higher-level call.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17453

Differential Revision: D14209942

Pulled By: suo

fbshipit-source-id: d4aff2af6062ab8465ee006fc6dc603296bcb7ab

5 years agofix list type unification (#17424)
Elias Ellison [Mon, 25 Feb 2019 21:26:49 +0000 (13:26 -0800)]
fix list type unification (#17424)

Summary:
Previously we were unifying the types of lists across if block outputs. This now fails with Optional subtyping because two types which can be unified have different runtime representations.
```

            torch.jit.script
            def list_optional_fails(x):
                # type: (bool) -> Optional[int]
                if x:
                    y = [1]
                else:
                    y = [None]
                return y[0]

```
the indexing op will expect y to be a generic list, but it will find an intlist.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17424

Differential Revision: D14210903

Pulled By: eellison

fbshipit-source-id: 4b8b26ba2e7e5bebf617e40316475f91e9109cc2

5 years agoRestore current streams on dst device after switching streams (#17439)
Shen Li [Mon, 25 Feb 2019 20:02:35 +0000 (12:02 -0800)]
Restore current streams on dst device after switching streams (#17439)

Summary:
When switching back to `d0` from a stream on a different device `d1`, we need to restore the current streams on both `d0` and `d1`. The current implementation only does that for `d0`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17439

Differential Revision: D14208919

Pulled By: mrshenli

fbshipit-source-id: 89f2565b9977206256efbec42adbd789329ccad8

5 years agoAutomatic update of fbcode/onnx to e18bb41d255a23daf368ffd62a2645db55db4c72 (#17460)
Lu Fang [Mon, 25 Feb 2019 19:05:10 +0000 (11:05 -0800)]
update of fbcode/onnx to e18bb41d255a23daf368ffd62a2645db55db4c72 (#17460)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17460

Previous import was 4c091e048ca42682d63ccd3c1811560bc12b732d

Included changes:
- **[e18bb41](https://github.com/onnx/onnx/commit/e18bb41)**: Infer shape of the second output of Dropout op (#1822) <Shinichiro Hamaji>
- **[cb544d0](https://github.com/onnx/onnx/commit/cb544d0)**: Clarify dtype of Dropout's mask output (#1826) <Shinichiro Hamaji>
- **[b60f693](https://github.com/onnx/onnx/commit/b60f693)**: Fix shape inference when auto_pad  is notset (#1824) <Li-Wen Chang>
- **[80346bd](https://github.com/onnx/onnx/commit/80346bd)**: update test datat (#1825) <Rui Zhu>
- **[b37fc6d](https://github.com/onnx/onnx/commit/b37fc6d)**: Add stringnormalizer operator to ONNX (#1745) <Dmitri Smirnov>

Reviewed By: zrphercule

Differential Revision: D14206264

fbshipit-source-id: 0575fa3374ff2b93b2ecee9989cfa4793c599117

5 years agoFix variable checking in THCPModule_setRNGState (#17474)
Will Feng [Mon, 25 Feb 2019 18:56:03 +0000 (10:56 -0800)]
Fix variable checking in THCPModule_setRNGState (#17474)

Summary:
See https://github.com/pytorch/pytorch/pull/16325/files#r259576901
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17474

Differential Revision: D14209549

Pulled By: yf225

fbshipit-source-id: 2ae091955ae17f5d1540f7d465739c4809c327f8

5 years agoFix reduction='none' in poisson_nll_loss (#17358)
vishwakftw [Mon, 25 Feb 2019 18:32:48 +0000 (10:32 -0800)]
Fix reduction='none' in poisson_nll_loss (#17358)

Summary:
Changelog:
- Modify `if` to `elif` in reduction mode comparison
- Add error checking for reduction mode
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17358

Differential Revision: D14190523

Pulled By: zou3519

fbshipit-source-id: 2b734d284dc4c40679923606a1aa148e6a0abeb8

5 years agoApply modernize-use-override (4)
Michael Liu [Mon, 25 Feb 2019 16:10:14 +0000 (08:10 -0800)]
Apply modernize-use-override (4)

Summary:
Use C++11’s override and remove virtual where applicable.
Change are automatically generated.
bypass-lint
drop-conflicts

Reviewed By: ezyang

Differential Revision: D14191981

fbshipit-source-id: 1f3421335241cbbc0cc763b8c1e85393ef2fdb33

5 years agoFix nonzero for scalars on cuda, to_sparse for scalars on cpu/cuda. (#17406)
Gregory Chanan [Mon, 25 Feb 2019 16:08:15 +0000 (08:08 -0800)]
Fix nonzero for scalars on cuda, to_sparse for scalars on cpu/cuda. (#17406)

Summary:
I originally set out to fix to_sparse for scalars, which had some overly restrictive checking (sparse_dim > 0, which is impossible for a scalar).

This fix uncovered an issue with nonzero: it didn't properly return a size (z, 0) tensor for an input scalar, where z is the number of nonzero elements (i.e. 0 or 1).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17406

Differential Revision: D14185393

Pulled By: gchanan

fbshipit-source-id: f37a6e1e3773fd9cbf69eeca7fdebb3caa192a19

5 years agoExport ElementwiseLinear to ONNX (Mul + Add). (#17411)
Tongliang Liao [Mon, 25 Feb 2019 16:07:56 +0000 (08:07 -0800)]
Export ElementwiseLinear to ONNX (Mul + Add). (#17411)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17411

Reshape-based approach to support dynamic shape.
The first Reshape flatten inner dimensions and the second one recover the actual shape.
No Shape/Reshape will be generated unless necessary.

![image](https://user-images.githubusercontent.com/5203025/52215001-114ace80-28ce-11e9-815f-28ad190d3189.png)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16716

Reviewed By: zrphercule

Differential Revision: D14094532

Pulled By: houseroad

fbshipit-source-id: bad6a1fbf5963ef3dd034ef4bf440f5a5d6980bc

5 years agoAdd foxi submodule (ONNXIFI facebook extension)
Lu Fang [Mon, 25 Feb 2019 15:57:21 +0000 (07:57 -0800)]
Add foxi submodule (ONNXIFI facebook extension)

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17178

Reviewed By: yinghai

Differential Revision: D14197987

Pulled By: houseroad

fbshipit-source-id: c21d7235e40c2ca4925a10c467c2b4da2f1024ad

5 years agoFix remaining -Wreturn-std-move violations in fbcode (#17308)
Michael Liu [Mon, 25 Feb 2019 15:26:27 +0000 (07:26 -0800)]
Fix remaining -Wreturn-std-move violations in fbcode (#17308)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17308

In some cases there is still no RVO/NRVO and std::move is still needed. Latest
Clang gained -Wreturn-std-move warning to detect cases like this (see
https://reviews.llvm.org/D43322).

Reviewed By: igorsugak

Differential Revision: D14150915

fbshipit-source-id: 0df158f0b2874f1e16f45ba9cf91c56e9cb25066

5 years agoadd debug/release tip to cpp docs (#17452)
Michael Suo [Mon, 25 Feb 2019 07:01:32 +0000 (23:01 -0800)]
add debug/release tip to cpp docs (#17452)

Summary:
as title. These were already added to the tutorials, but I didn't add them to the cpp docs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17452

Differential Revision: D14206501

Pulled By: suo

fbshipit-source-id: 89b5c8aaac22d05381bc4a7ab60d0bb35e43f6f5

5 years agoadd pointer to windows FAQ in contributing.md (#17450)
Michael Suo [Mon, 25 Feb 2019 07:00:10 +0000 (23:00 -0800)]
add pointer to windows FAQ in contributing.md (#17450)

Summary:
" ProTip! Great commit summaries contain fewer than 50 characters. Place extra information in the extended description."
lol
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17450

Differential Revision: D14206500

Pulled By: suo

fbshipit-source-id: af7ffe299f8c8f04fa8e720847a1f6d576ebafc1

5 years agoRemove ROIPooling (#17434)
Thomas Viehmann [Sun, 24 Feb 2019 04:57:28 +0000 (20:57 -0800)]
Remove ROIPooling (#17434)

Summary:
Fixes: #17399

It's undocumented, unused and, according to the issue, not actually working.

Differential Revision: D14200088

Pulled By: soumith

fbshipit-source-id: a81f0d0f5516faea2bd6aef5667b92c7dd012dbd

5 years agoAdd example to WeightedRandomSampler doc string (#17432)
Krishna Kalyan [Sun, 24 Feb 2019 04:24:21 +0000 (20:24 -0800)]
Add example to WeightedRandomSampler doc string (#17432)

Summary: Example for the weighted random sampler are missing [here](https://pytorch.org/docs/stable/data.html#torch.utils.data.WeightedRandomSampler)

Differential Revision: D14198642

Pulled By: soumith

fbshipit-source-id: af6d8445d31304011002dd4308faaf40b0c1b609

5 years agoRevert D14095703: [pytorch][PR] [jit] Add generic list/dict custom op bindings
Michael Suo [Sat, 23 Feb 2019 23:52:38 +0000 (15:52 -0800)]
Revert D14095703: [pytorch][PR] [jit] Add generic list/dict custom op bindings

Differential Revision:
D14095703

Original commit changeset: 2b5ae20d42ad

fbshipit-source-id: 85b23fe4ce0090922da953403c95691bf3e28710

5 years agoUpdating submodules
svcscm [Sat, 23 Feb 2019 20:43:01 +0000 (12:43 -0800)]
Updating submodules

Reviewed By: zpao

fbshipit-source-id: 8fa0be05e7410a863febb98b18be55ab723a41db

5 years agoJaliyae/chunk buffer fix (#17409)
Jaliya Ekanayake [Sat, 23 Feb 2019 16:46:24 +0000 (08:46 -0800)]
Jaliyae/chunk buffer fix (#17409)

Summary:
The chunk buffer had a possibility to hang when no data is read and the buffer size is lower than chunk size. We detected this while running with larger dataset and hence the fix. I added a test to mimic the situation and validated that the fix is working. Thank you Xueyun for finding this issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17409

Differential Revision: D14198546

Pulled By: soumith

fbshipit-source-id: b8ca43b0400deaae2ebb6601fdc65b47f32b0554

5 years agoSkip test_event_handle_multi_gpu() on a single GPU system (#17402)
Stefan Krah [Sat, 23 Feb 2019 16:24:05 +0000 (08:24 -0800)]
Skip test_event_handle_multi_gpu() on a single GPU system (#17402)

Summary:
This fixes the following test failure:

```
======================================================================
ERROR: test_event_handle_multi_gpu (__main__.TestMultiprocessing)
----------------------------------------------------------------------
Traceback (most recent call last):
  File "test_multiprocessing.py", line 445, in test_event_handle_multi_gpu
    with torch.cuda.device(d1):
  File "/home/stefan/rel/lib/python3.7/site-packages/torch/cuda/__init__.py", line 229, in __enter__
    torch._C._cuda_setDevice(self.idx)
RuntimeError: cuda runtime error (10) : invalid device ordinal at /home/stefan/pytorch/torch/csrc/cuda/Module.cpp:33
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17402

Differential Revision: D14195190

Pulled By: soumith

fbshipit-source-id: e911f3782875856de3cfbbd770b6d0411d750279

5 years agofix(typo): Change 'integeral' to 'integer'
Olen ANDONI [Sat, 23 Feb 2019 16:19:09 +0000 (08:19 -0800)]
fix(typo): Change 'integeral' to 'integer'

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17396

Differential Revision: D14195023

Pulled By: soumith

fbshipit-source-id: 300ab68c24bfbf10768fefac44fad64784463c8f

5 years agoFix the ONNX expect file (#17430)
Lu Fang [Sat, 23 Feb 2019 07:56:21 +0000 (23:56 -0800)]
Fix the ONNX expect file (#17430)

Summary:
The CI is broken now, this diff should fix it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17430

Differential Revision: D14198045

Pulled By: houseroad

fbshipit-source-id: a1c8cb5ccff66f32488702bf72997f634360eb5b

5 years agoorder caffe2 ubuntu configs contiguously (#17427)
Karl Ostmo [Sat, 23 Feb 2019 04:10:22 +0000 (20:10 -0800)]
order caffe2 ubuntu configs contiguously (#17427)

Summary:
This involves another purely cosmetic (ordering) change to the `config.yml` to facilitate simpler logic.

Other changes:
* add some review feedback as comments
* exit with nonzero status on config.yml mismatch
* produce a diagram for pytorch builds
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17427

Differential Revision: D14197618

Pulled By: kostmo

fbshipit-source-id: 267439d3aa4c0a80801adcde2fa714268865900e

5 years agoremove redundant inference functions for FC (#17407)
Jongsoo Park [Sat, 23 Feb 2019 04:03:09 +0000 (20:03 -0800)]
remove redundant inference functions for FC (#17407)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17407

As title says

Reviewed By: csummersea

Differential Revision: D14177921

fbshipit-source-id: e48e1086d37de2c290922d1f498e2d2dad49708a

5 years agooptimize max pool 2d (#17418)
Jongsoo Park [Sat, 23 Feb 2019 03:38:38 +0000 (19:38 -0800)]
optimize max pool 2d (#17418)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17418

Retry of D14181620 this time with CMakeLists.txt changes

Reviewed By: jianyuh

Differential Revision: D14190538

fbshipit-source-id: c59b1bd474edf6376f4c2767a797b041a2ddf742

5 years agoGenerate derived extension backend Type classes for each scalar type (#17278)
Roy Li [Sat, 23 Feb 2019 02:33:18 +0000 (18:33 -0800)]
Generate derived extension backend Type classes for each scalar type (#17278)

Summary:
Previously we only generate one class for each extension backend. This caused issues with scalarType() calls and mapping from variable Types to non-variable types. With this change we generate one Type for each scalar type.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17278

Reviewed By: ezyang

Differential Revision: D14161489

Pulled By: li-roy

fbshipit-source-id: 91e6a8f73d19a45946c43153ea1d7bc9d8fb2409

5 years agoBetter handling of net errors in prof_dag counters (#17384)
Ilia Cherniavskii [Sat, 23 Feb 2019 02:30:58 +0000 (18:30 -0800)]
Better handling of net errors in prof_dag counters (#17384)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17384

Better handling of possible net run errors in prof_dag counters.

Reviewed By: yinghai

Differential Revision: D14177619

fbshipit-source-id: 51bc952c684c53136ce97e22281b1af5706f871e

5 years agoBatch of Expect Files removal (#17414)
eellison [Sat, 23 Feb 2019 01:54:09 +0000 (17:54 -0800)]
Batch of Expect Files removal (#17414)

Summary:
Batch of removing expect files, and some tests that no longer test anything.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17414

Differential Revision: D14196342

Pulled By: eellison

fbshipit-source-id: 75c45649d1dd1ce39958fb02f5b7a2622c1d1d01

5 years agoFix target name.
Arthur Crippa Búrigo [Sat, 23 Feb 2019 01:11:06 +0000 (17:11 -0800)]
Fix target name.

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17365

Differential Revision: D14195831

Pulled By: soumith

fbshipit-source-id: fdf03f086f650148c34f4c548c66ef1eee698f05

5 years agojit technical docs - parts 1, 2, and most of 3 (#16887)
Zachary DeVito [Sat, 23 Feb 2019 01:10:19 +0000 (17:10 -0800)]
jit technical docs - parts 1, 2, and most of 3 (#16887)

Summary:
This will evolve into complete technical docs for the jit. Posting what I have so far so people can start reading it and offering suggestions. Goto to Files Changed and click 'View File' to see markdown formatted.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16887

Differential Revision: D14191219

Pulled By: zdevito

fbshipit-source-id: 071a0e7db05e4f2eb657fbb99bcd903e4f46d84a

5 years agoUSE_ --> BUILD_ for CAFFE2_OPS and TEST (#17390)
Vishwak Srinivasan [Sat, 23 Feb 2019 01:03:49 +0000 (17:03 -0800)]
USE_ --> BUILD_ for CAFFE2_OPS and TEST (#17390)

Differential Revision: D14195572

Pulled By: soumith

fbshipit-source-id: 28e4ff3fe03a151cd4ed014c64253389cb85de3e

5 years agoFix install libcaffe2_protos.a issue mentioned in #14317 (#17393)
Gemfield [Sat, 23 Feb 2019 00:56:06 +0000 (16:56 -0800)]
Fix install libcaffe2_protos.a issue mentioned in #14317 (#17393)

Summary:
Fix install libcaffe2_protos.a issue mentioned in #14317.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17393

Differential Revision: D14195359

Pulled By: soumith

fbshipit-source-id: ed4da594905d708d03fcd719dc50aec6811d5d3f

5 years agoImprove onnxifi backend init time (#17375)
Yinghai Lu [Sat, 23 Feb 2019 00:53:32 +0000 (16:53 -0800)]
Improve onnxifi backend init time (#17375)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17375

Previously we create the onnxGraph first and take it to the onnx manager for registration. It doesn't work well in practice. This diff takes "bring your own constructor" approach to reduce the resource spent doing backend compilation.

Reviewed By: kimishpatel, rdzhabarov

Differential Revision: D14173793

fbshipit-source-id: cbc4fe99fc522f017466b2fce88ffc67ae6757cf