Jihoon Lee [Tue, 19 Oct 2021 10:00:56 +0000 (19:00 +0900)]
[Test] Add model v2 test generator
This patch add model v2 test generator using pytorch.
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Tue, 19 Oct 2021 08:39:59 +0000 (17:39 +0900)]
[Test] Connect v2 test to the parameterized test
This patch connect v2 test to the model param test for convenience
+ add validateFor_v2. This is separated out because label dimension is
not given, although it should be merged to validateFor
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Tue, 19 Oct 2021 08:32:39 +0000 (17:32 +0900)]
[Test] Add models v2 test
This patch proposes models v2 test which is much lighter.
**Purpose**
1. Lighter model test as layer golden test compensates for it.
2. Easier debugging especially by checking offset, and moving metatdat
3. Give greater flexibility to the golden test generator on the model
architecture
4. Not saving golden file but making it on the fly on the builder side
**Major Difference**
1. Gradient comparison is skipped as it is automatically checked at the
next iteration.
2. Add metadata about num_iterations to file
3. Add size check while reading the golden file
4. Delete redundant information that can be infered.
5. Every iteration has it's own input information.
**Golden Format**
```
## file format is as below
# [<number of iteration(int)> <Iteration> <Iteration>...<Iteration>]
# Each iteration contains
# [<input(Tensors)><Label(Tensors)><Parameters(Tensors)><Output(Tensors)>]
# Each tensor contains
# [<num_elements(int32)><data_point(float32)>...<data_point(float32)>]
```
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Tue, 19 Oct 2021 08:29:15 +0000 (17:29 +0900)]
[Trivial] Open sizeCheckedReadTensor to util
This patch opens sizeCheckedReadTensor to util for the later use
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Tue, 19 Oct 2021 08:20:00 +0000 (17:20 +0900)]
[Fix/Sharing] Fix gradient updation log
Gradient should be initialized at the very first (backward) access, but the
shared weight was updated at the very last (backward) access, this patch
resolves the issue by adding isFirstAccess to the var_grad.h
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Parichay Kapoor [Tue, 19 Oct 2021 07:10:44 +0000 (16:10 +0900)]
[layer] Support reshape layer
This patch provides support for reshape layer and basic unittests.
The flatten layer is also updated to use reshape layer internally.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Tue, 19 Oct 2021 05:14:54 +0000 (14:14 +0900)]
[test] GRU with reset_after=False
GRU matches with tf1 but not with tf2.
Tf2 changes the reset_after to True as default, which leads to an extra
bias. This patch forces the reset_after to be always false to enable
matching with tf1 and tf2.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Tue, 19 Oct 2021 02:40:52 +0000 (11:40 +0900)]
[tensor] Add checks for external tensors
This patch adds checks while setting the external tensors:
- ensure that the external tensor size is more than the required memory
- if the tensor size is 0, its data must be null
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Mon, 18 Oct 2021 08:32:46 +0000 (17:32 +0900)]
[layer/test] Add unittests for conv1d
This patch adds layers golden tests for conv1d.
conv1d is also added to the list of transpose layers while saving data
from tensorflow.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Mon, 18 Oct 2021 08:30:36 +0000 (17:30 +0900)]
[layer] Add conv1d implementation
This patch adds conv1d implementation support.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Mon, 18 Oct 2021 08:28:45 +0000 (17:28 +0900)]
[properties] Bug fix for padding compute
This patch provides bug fix for padding compute in the usage of stride.
The stride along width and height were being used wrongly.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Jihoon Lee [Mon, 18 Oct 2021 02:21:48 +0000 (11:21 +0900)]
[LSTM] Add lstm fix and test run
This patch add lstm fix and test run.
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Fri, 15 Oct 2021 09:24:42 +0000 (18:24 +0900)]
[Neuralnet] Add debug mode to check optimizer
This patch add debug mode to check optimizer
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Fri, 15 Oct 2021 09:23:51 +0000 (18:23 +0900)]
[Fix] tensor pool prerequest bug
This patch fix tensor pool prereuqestedrequest bug by that shared_name
was wrong
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Fri, 15 Oct 2021 06:29:42 +0000 (15:29 +0900)]
[Trivial] Move makeGraph function out
this patch moves makeGraph function from compiler_util -> test_util
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Fri, 15 Oct 2021 06:05:15 +0000 (15:05 +0900)]
[Test] Make model test to take arbitrary nn
This patch updates model test to accept arbitrary neuralnetwork instead
of ini only
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Fri, 15 Oct 2021 04:52:57 +0000 (13:52 +0900)]
[Trivial] Extract golden test from nnt_models
This patch extracts golden test from nntrainer models, nothing done.
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Fri, 15 Oct 2021 04:23:55 +0000 (13:23 +0900)]
[Trivial] Separate Watchers into a new file
This patch separates watchers into a new file
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Parichay Kapoor [Wed, 8 Sep 2021 11:56:50 +0000 (20:56 +0900)]
[mem-opt] Support in-place batch normalization
This patch provides support for in-place batch normalization.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Wed, 8 Sep 2021 11:48:16 +0000 (20:48 +0900)]
[batchnorm] Optimize batch norm memory usage
This patch optimized batch norm memory usage by updating the exec order
for its input as its not used in calcDerivative.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Tue, 7 Sep 2021 07:21:27 +0000 (16:21 +0900)]
[in-place] Support in-place activation
This patch adds support for in-place activation. Further, the in-place
optimization has been moved to the model compile phase.
This patch also adds support for running the model in in-place as well
as out-of-place mode.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Jihoon Lee [Thu, 14 Oct 2021 17:07:03 +0000 (02:07 +0900)]
[LayerGroups] Normalize identifiers
This patch normalize identifiers inside addWithRefrenceLayers() for further use
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Thu, 14 Oct 2021 17:06:37 +0000 (02:06 +0900)]
[Refactor] Recurrent realizer with in/out props
This patch adds recurrent realizer with in/out props
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Thu, 14 Oct 2021 16:14:06 +0000 (01:14 +0900)]
[Realizer] Implement input realizer
This patch implements input realizer which connect input to external
input
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Thu, 14 Oct 2021 11:06:23 +0000 (20:06 +0900)]
[Realizer] Implement slice realizer
This patch implements slice realizer and it's test
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Parichay Kapoor [Fri, 15 Oct 2021 11:37:20 +0000 (20:37 +0900)]
[layer/test] Bug fix for dropout + unittest
This patch adds bug fix for dropout for training as well as inference
mode. Futher, added unittest:
- when dropout_rate is 0 or 100%, all the values are checked
- when dropout_rate between 0 and 100, weak check ensures that either
values are equal or one of the values (golden vs output) is 0
- when dropout_rate r between 0 and 100, strong check ensures that
100 - 2*r percentage of values must always match
All the checks for performed in the unittests.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Jihoon Lee [Thu, 14 Oct 2021 03:30:07 +0000 (12:30 +0900)]
[Recurrent] Add timestep property to recurrent layers
This patch creates recurrent layer setting property support to the
recurrent wrapper.
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Parichay Kapoor [Fri, 15 Oct 2021 03:55:36 +0000 (12:55 +0900)]
[packaging] Debian launchpad buildfix for focal
This patch provides buildfix for focal buildfix for launchpad.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Thu, 14 Oct 2021 13:17:34 +0000 (22:17 +0900)]
[network] Bug fix for trainable with supportBackwarding
This patch resolves the bug for calling calcDerivative on layer which
do not support backwaring.
The issue rises from the assumption that there will be no layer
requiring backwarding after the last non-trainable layer. But this is
not valid for multi-input scenario. With multi-input, there can be over
two input layers where they both do not support backwarding but the rest of
the model can be trainable.
This patch changes this error check. Below are the updated semantics:
1. After initialization of the graph, a check is added to ensure that
for each trainable layer, all the layers all of ahead must support
backwarding, so that the trainable layer can be trained. If any layer
ahead of it does not support backwarding, error is thrown.
2. A layer is only trainable if its trainable property is set to true
(defaults to true) and contains at least 1 weight. If a layer does not
contain any weights, the layer is treated as non-trainable.
3. When backwarding the model, backwarding is called only for layers
which support backwarding, and skipped for layers which donot.
The updated semantics ensure the dependency of the flow of the
derivatives and allows mixture of layers which support and do not
support backwarding.
Resolves #1017
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Jihoon Lee [Thu, 14 Oct 2021 06:55:15 +0000 (15:55 +0900)]
[Model/API] renew addWithReferenceLayers
This patch add refactored version of addWithReferenceLayers
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Wed, 13 Oct 2021 13:26:53 +0000 (22:26 +0900)]
[Model] Add Model::addWithReferenceLayers
This patch add addWithReferenceLayers prototype
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Parichay Kapoor [Thu, 14 Oct 2021 11:58:30 +0000 (20:58 +0900)]
[layer] Support setBatch for attention layer
This patch provides support for setBatch for attention layer.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Thu, 14 Oct 2021 10:36:49 +0000 (19:36 +0900)]
[layer] Add constructor for attention layer
This patch adds constructor for attention layer.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Thu, 14 Oct 2021 03:28:34 +0000 (12:28 +0900)]
[layer] Support single timestep for lstm
This patch adds support for single timestep for lstm.
This is achieved with two external properties:
1. timestep - provides the current timestep for which lstm will run
2. max_timestep - the maximum timestep till which lstm will run
This patch also verifies that this LSTM implementation already does gradient stacking appropriately.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Thu, 14 Oct 2021 10:20:11 +0000 (19:20 +0900)]
[layer] Bug fix of setBatch for LSTM/GRU/RNN
LSTM/GRU/RNN requested tensors from manager and the shape of tensor
depends on the batch size. However, the layers didnot override the
setBatch to update the batchsize of the request tensors. This patch
provides the corresponding bugfix.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Thu, 14 Oct 2021 10:06:59 +0000 (19:06 +0900)]
[layer] Remove setBatch for init context
This patch remove setBatch for the init context from the layer
interface. setBatch is now only needed to be set for runContext.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Thu, 14 Oct 2021 08:51:37 +0000 (17:51 +0900)]
[graph/model] Support for multi-label/input for the model
This patch adds the support for mutli-label while training the model.
- Multi labels/inputs are now allowed for the model by taking the
dimensions from the graph than the first and last nodes
- Outputs are now also taken from the graph for validation
Another bug fix is added related to setBatch. The caches input and label
dimensions were not updated when batchsize was updated in the network
graph. This patch updates the bug for updating the batch size in the
network graph.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Jihoon Lee [Thu, 14 Oct 2021 02:00:01 +0000 (11:00 +0900)]
[Sharing] SKip saving shared weights
If weight is not original, skip saving it
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Tue, 12 Oct 2021 16:57:05 +0000 (01:57 +0900)]
[Recurrent] Implement finalizing graph
This patch implements finalizing graph with/without return sequence
property
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Tue, 12 Oct 2021 16:12:03 +0000 (01:12 +0900)]
[Recurrent] Implement unrolling
This patch implement unrolling in RecurrentRealizer
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Tue, 12 Oct 2021 15:00:10 +0000 (00:00 +0900)]
[LayerNode] Add cloneConfiguration function
This patch add cloneConfiguration function, which creates a new node
from an exisiting node
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Tue, 12 Oct 2021 14:50:28 +0000 (23:50 +0900)]
[Recurrent] Add verification and preparation
This patch add logic to verify and add connection from input <->
external inputs
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Tue, 12 Oct 2021 12:41:43 +0000 (21:41 +0900)]
[Realizer] Implement remap realizer
This patch introduce remap realizer which remaps identifier inside a
graph representation. Please refer to the test to see what this realizer
does.
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Tue, 12 Oct 2021 11:02:53 +0000 (20:02 +0900)]
[Recurrent] Add skleton of recurrent realizer
This patch add skeleton of and some basic verification
for the recurrent realizer
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
jijoongmoon [Wed, 13 Oct 2021 11:45:58 +0000 (20:45 +0900)]
[ Conv1D ] Add Skeleton code for Conv1D Layer
This commit includes:
. Skeleton code for conv1D
. Padding1D Property
. and minor
Signed-off-by: jijoongmoon <jijoong.moon@samsung.com>
Jihoon Lee [Tue, 12 Oct 2021 08:37:51 +0000 (17:37 +0900)]
[Realizer] Apply flatten realizer
This patch applies flatten realizer to model compile. Later, neuralnet
will not have model_graph until compile() is being called
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Tue, 12 Oct 2021 08:34:21 +0000 (17:34 +0900)]
[Model] Add memory optimization property
This patch add memory optimization property to neuralnetwork. The main
purpose of this is to fixating memory optimzation boolean to be applied
only at neuralnet::compile();
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Tue, 12 Oct 2021 06:49:03 +0000 (15:49 +0900)]
[Test/realizer] Add flatten realizer test
This patch adds flatten realizer test
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Wed, 13 Oct 2021 10:48:28 +0000 (19:48 +0900)]
[Sharing] Implement tensor sharing
This patch implement tensor sharing.
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Parichay Kapoor [Wed, 13 Oct 2021 05:38:24 +0000 (14:38 +0900)]
[test/layers] Add gru layer testing
This patch added gru layer unittest for layer golden tests.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Jihoon Lee [Sat, 9 Oct 2021 08:54:21 +0000 (17:54 +0900)]
[Graph] Add realizer test skeleton
This patch add realizer test skleton with separating utils to compiler
test utils
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Sat, 9 Oct 2021 08:26:47 +0000 (17:26 +0900)]
[Graph/recurrent] Add concept of realizer
This patch add graph realizer. Graph realizer will preprocess graph
which can be effectively done as a lowering process of compile
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Sat, 9 Oct 2021 07:54:53 +0000 (16:54 +0900)]
[Interpreter] Change signature of interpreter
Instead of returning networkgraph from the interpreter, it returns the
graph representation, which is a specification to generate a graph.
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Sat, 9 Oct 2021 07:15:06 +0000 (16:15 +0900)]
[Fix] Tflite Interpreter disable
This patch update tflite interpreter to pass the test
The main problem was that, before tensors to be saved was distinguished
by when it's not allocated. Now it's manually decided by it's
kind(weight, input, outputs)
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Sat, 9 Oct 2021 01:51:20 +0000 (10:51 +0900)]
[inputs] remove multi input realization
This patch removes multiinput realization behavior for now, this is not
used else where so it's fine to remove
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Parichay Kapoor [Wed, 13 Oct 2021 02:18:36 +0000 (11:18 +0900)]
[layer] Update dropout rate property name
Update dropout rate property name from `dropout` to `dropout_rate`.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Jihoon Lee [Fri, 8 Oct 2021 11:25:07 +0000 (20:25 +0900)]
[Debian] Disable debug on normal package build
This patch disable debug on normal package build
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Parichay Kapoor [Fri, 8 Oct 2021 11:36:58 +0000 (20:36 +0900)]
[test] Added unittests for LSTM
This patch adds unittests for LSTM layer
1. single and multi timesteps
2. with and without return sequences
3. with setting activations differently
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Fri, 8 Oct 2021 08:33:12 +0000 (17:33 +0900)]
[layer] Attention support for different key value
This patch adds support for different values of key and value to
be given to the attention layer.
Corresponding unittests are also added.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Jihoon Lee [Fri, 8 Oct 2021 03:55:45 +0000 (12:55 +0900)]
[Fix] Prevent connect input layer when in the middle
This patch update network graph to prevent making connections when input
layer is in the middle
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Fri, 8 Oct 2021 04:37:14 +0000 (13:37 +0900)]
[Trivial] Add tensor dim constructor from array
This patch adds tensor dim constructor from array
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Thu, 7 Oct 2021 11:06:45 +0000 (20:06 +0900)]
[Trivial] Open up util_func.h header
This patch open up util_func.h to devel packages
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Wed, 6 Oct 2021 16:54:15 +0000 (01:54 +0900)]
[Neuralnet] set input, output layers
This patch enables setting multiple input and output layers explicitly
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Wed, 6 Oct 2021 16:38:50 +0000 (01:38 +0900)]
[Neuralnet] Add property of input layers, label layers
This patch add property, input layers and label layers to neuralnet
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Wed, 6 Oct 2021 16:19:09 +0000 (01:19 +0900)]
[graph] update getter of input/output dims
This patch update input/output dims to properly reflect model input,
output dimensions, not just a single object.
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Wed, 6 Oct 2021 15:39:09 +0000 (00:39 +0900)]
[Graph] Identify model_input, model_label
This patch add ability of graph to identify model_input and model_label
with determined order, which follows semantics described in #1374
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Parichay Kapoor [Thu, 7 Oct 2021 08:34:31 +0000 (17:34 +0900)]
[test] Add unittest for attention layer
This patch adds unittest for attention layer.
- Backwarding implementation is fixed for attention layer
- more wider coverage unittests are added
- layer golden test is updated to generate float input data which is
needed for the attention
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Tue, 5 Oct 2021 07:23:27 +0000 (16:23 +0900)]
[test] Add unittest for attention layer
This patch adds unittest for attention layer:
- unittest generator for layers is updated to work for multi-input
layers
- initial unittest for attention layer is added
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Tue, 5 Oct 2021 07:21:51 +0000 (16:21 +0900)]
[layer] attention layer backwarding match
This patch adds bug fix for backwarding operation for the attention
layer.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Tue, 5 Oct 2021 05:27:06 +0000 (14:27 +0900)]
[layer] Attention layer bugfix
This patch adds bugfix for the forwarding of the attention layer.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Tue, 5 Oct 2021 05:25:29 +0000 (14:25 +0900)]
[layer] Bug fix for softmax operation
Current implementation of softmax operation applies flatten on the
tensor unintentionally and calculates softmax on the last 3 dimensions
of the given tensor.
This patch updates the softmax operation to apply its operations on the
last dimension only.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Jihoon Lee [Wed, 6 Oct 2021 12:18:04 +0000 (21:18 +0900)]
[WeightSharing] Remove zero grad
Removing zero grad function in the cost of the layer should handle the scenarios
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Tue, 5 Oct 2021 11:12:45 +0000 (20:12 +0900)]
[Test] Add recurrent model test
This patch contains intial test for the recurrent model.
In this patch, there are three fc layers sharing the same weights
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Tue, 5 Oct 2021 11:08:12 +0000 (20:08 +0900)]
[fclayer] Update gradient to accumulate
This patch update gradient calculation to accumulate for fully connected
layer.
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Tue, 5 Oct 2021 11:03:10 +0000 (20:03 +0900)]
[Tensor pool] Query execution order by source
This patch enables querying execution order by source tensor. As
dependent tensor does not have the ground truth.
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Tue, 5 Oct 2021 06:52:47 +0000 (15:52 +0900)]
[Layer] Add constant derivative layer
This patch adds constant derivative layer. This layer will be used to
simulate a backward operation without any loss.
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Tue, 5 Oct 2021 04:43:37 +0000 (13:43 +0900)]
[WeightSharing] enable weight sharing from manager
This patch enables weight sharing from manager.
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Tue, 5 Oct 2021 04:27:25 +0000 (13:27 +0900)]
[WeightSharing] Pass shared_name from the original
This patch adds creating shared_weight_names from the original source
and pass it to the manager.
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Fri, 1 Oct 2021 08:07:45 +0000 (17:07 +0900)]
[Property] Add shared_from key to the layer node
This patch add shared_from key to the layer node
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Tue, 5 Oct 2021 02:05:25 +0000 (11:05 +0900)]
[WeightSharing] Implement isFirst/lastAccess
This patch implements isFirstAccess and isLastAccess making nntrainer
ready for the weight sharing while fixing overriding issue in example
pow layer
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Fri, 1 Oct 2021 05:41:31 +0000 (14:41 +0900)]
[Recurrent] Add zero grad / delegate apply gradient
This patch add zeroing the grad mechanism + delegating apply gradient
to the network graph.
The main reason for this change is that when sharing gradient and
derivatives, 1. the value has to be accumulated starting from zero
2. gradient has to be applied only at the last access.
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Fri, 1 Oct 2021 03:55:17 +0000 (12:55 +0900)]
[Recurrent] Propagate Trainable variable to weights
This patch propagate trainable variable to weights to prepare sharing
weights
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Parichay Kapoor [Thu, 7 Oct 2021 04:22:26 +0000 (13:22 +0900)]
[meson] Disable enable-debug by default
This patch sets enable-debug to false by default which was enabled
mistakenly by #1607.
enable-debug is set to true for ubuntu and tizen build in CI only with
unit_test set to true in the CI.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
jijoong.moon [Fri, 24 Sep 2021 04:44:24 +0000 (13:44 +0900)]
[ API ] Add Inference in CCAPI to get loss value
Add Inference API to get the loss value
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: jijoong.moon <jijoong.moon@samsung.com>
Parichay Kapoor [Thu, 7 Oct 2021 03:32:33 +0000 (12:32 +0900)]
[pkg] Enable debug mode for CI
This patch enables debug mode for the CI build for both ubuntu and
tizen. This enables all the debug tests to be done in the CI which were
disabled till now.
Fixes required to enable the DEBUG mode is also added.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Wed, 6 Oct 2021 07:32:47 +0000 (16:32 +0900)]
[layer] Add checks for layer tensor overwrite bug
This patch adds a check to ensure that when layer tensors are created
and overwrites existing tensors. These checks are enabled only in DEBUG
mode to ensure that they only run in CI mode, and are called after each
operation - forwarding, calcGradient, and calcDerivative.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Fri, 3 Sep 2021 09:46:52 +0000 (18:46 +0900)]
[conv] Update temporary memory requests
This patch updates the request for temporary memory in the convolution
layer.
- im2col and col2im results are both the same size and used exclusive of
each other but both are requested for the backwarding. so, instead of
requesting both, they can share their memories.
- as the values in these tensors can be discarded between forwarding and
backwarding, two independent tensors are requested for forwarding and
backwarding so that the memory can be reused in the intermediate
duration.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Jihoon Lee [Wed, 6 Oct 2021 03:17:28 +0000 (12:17 +0900)]
[Dataset/test] Update batch before creating tensor
Dataset sample creating now creates a tensor after updating batch to one
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
resolves #1604
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Parichay Kapoor [Fri, 1 Oct 2021 08:23:04 +0000 (17:23 +0900)]
[layer] Add backwarding for attention layer
This patch adds backwarding for attention layer. Corresponding unittests
will be added in the next patch.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Fri, 1 Oct 2021 06:09:21 +0000 (15:09 +0900)]
[layer/test] Add basic test for attention
This patch adds basic unittest for attention layer.
To achieve, the existing tests are modified to support multiple inputs
in the test format.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Fri, 1 Oct 2021 06:01:18 +0000 (15:01 +0900)]
[layer] Scaffolding attention layer
This patch adds the initial commit for attention layer.
- add class description
- add basic forwarding
This implements the common form of attention layer where key and value
are the same tensor. The other format will be supported soon.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Fri, 1 Oct 2021 05:59:49 +0000 (14:59 +0900)]
[layernode] Bug fix for finalize
This patch adds bug fix for finalize of the layer node. The checks of
the inputs dimensions and input shapes has been fixed when multiple
inputs are expected to be set.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Jihoon Lee [Fri, 24 Sep 2021 08:10:25 +0000 (17:10 +0900)]
[Test] Add warmup to the golden layer
This patch add warmup forwarding to the layer golden test
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Jihoon Lee [Fri, 24 Sep 2021 08:00:39 +0000 (17:00 +0900)]
[Test] Add conv2d golden tests
**Changes proposed in this PR:**
- Conv2d Golden tests
- remove _golden_ to the name of test cases, as it is attached in the
extension
**Self evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test: [X]Passed [ ]Failed [ ]Skipped
Signed-off-by: Jihoon Lee <jhoon.it.lee@samsung.com>
Parichay Kapoor [Tue, 28 Sep 2021 10:59:50 +0000 (19:59 +0900)]
[batchnorm] Optimize batch norm backwarding
Remove the extra full size extra memory requirement as the cost of the
reduced memory. The difference in memory requirmement can be
significant. Earlier memory requirement was b*c*h*w vs now it is just c
where the assumption is that batch norm if is normalizing along
axis=channel.
This is achieved by reordering of the operations.
Note: this change has no performance impact.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Tue, 28 Sep 2021 10:40:33 +0000 (19:40 +0900)]
[batchnorm] Optimize batch norm forward memory
Reduce the memory comsumption of batch norm for forwarding by re-using
the output tensor as temporary memory than requesting new memory.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Wed, 6 Oct 2021 02:35:50 +0000 (11:35 +0900)]
[rebase] Rebase fix
This patch adds rebase fix.
Further some of the temporary fixes in the previous commits are also
removed.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Mon, 6 Sep 2021 09:39:37 +0000 (18:39 +0900)]
[in-place] Make input layer work in-place
This patch makes input layer work inplace. This is done by support of
externally allocated tensors in tensorPool, and making input of input
layer and labels to be externally allocated tensors.
Input layer is updated to work in-place.
Further the methodology to set inputs and labels has also been updated.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Mon, 6 Sep 2021 04:50:40 +0000 (13:50 +0900)]
[inplace opt] Support in-place no-op flatten layer
This patch updates the flatten layer to be a no-op layer. This is done
with the flatten layer setting the input and output shapes at finalize
time and making flatten layer execute in-place. Changes in this patch:
1. requestPreallocatedTensor() in TensorPool now returns a new tensor
which will eventually share the memory with the preallocated tensor than
returning the preallocated tensor itself. This allows tensor metadata to
be changed (like name, shape, etc) which sharing the memory. This is
done by storing the dependency link between tensors in token.
Corresponding unittests are also added.
2. Manager now supports giving shared tensors for outputs (shared with
some inputs) to support in-place running of some layers.
3. Flatten layer is updated to be a basic no-op and to perform
flattening once at compile time.
4. Update flatten layer supportBackwarding to true
5. Input layer updated to not edit tensor mapping. Input layer will be
updated to be in-place in the next patch.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>
Parichay Kapoor [Fri, 3 Sep 2021 08:59:21 +0000 (17:59 +0900)]
[graph/manager] Enable memory v1 optimizations
This patch adds interface to enable memory optimizations with the neural
network. Enabling the interface changes the planner being used for the
memory allocation.
With this patch, OptimizedV1Planner is put to use when enabling
optimizations.
Unittest of models is updated to disable optimizations in the
non-optimized test cases.
Signed-off-by: Parichay Kapoor <pk.kapoor@samsung.com>