platform/upstream/pytorch.git
5 years agoadd reverse to list (#17001)
Michael Kösel [Fri, 15 Mar 2019 18:43:33 +0000 (11:43 -0700)]
add reverse to list (#17001)

Summary:
Add reverse functionality to list. See https://github.com/pytorch/pytorch/issues/16662

```python
import torch

torch.jit.script
def foo():
    a = [1, 2, 3, 4]
a.reverse()

    return a
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17001

Reviewed By: eellison

Differential Revision: D14092019

Pulled By: driazati

fbshipit-source-id: b353c763677c22312b64dde0db268e2988610ba1

5 years ago1/2 Add Tracing support for C2 Ops (#17899)
Lu Fang [Fri, 15 Mar 2019 18:41:31 +0000 (11:41 -0700)]
1/2 Add Tracing support for C2 Ops (#17899)

Summary:
The C10 ops are not registered as custom ops in PyTorch. So we have to add the explicit support for it, too.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17899

Reviewed By: dzhulgakov

Differential Revision: D14436999

Pulled By: houseroad

fbshipit-source-id: a31fdf13a5c84f9b156a7288e0ffa57deb23b83f

5 years agoDelete dead code in THTensorMoreMath.cpp (#17993)
Richard Zou [Fri, 15 Mar 2019 14:41:08 +0000 (07:41 -0700)]
Delete dead code in THTensorMoreMath.cpp (#17993)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17993
ghimport-source-id: 5427773f6306bdeddffd9a3ae032acc3f253f458

Stack:
* #17926 Implement at::has_internal_overlap helper function
* #17927 Error out on in-place (unary) ops on tensors that have internal overlap
* **#17993 [easy] Delete dead code in THTensorMoreMath.cpp**

We seem to have new implementations already for these in ATen.

Reviewed By: ezyang

Differential Revision: D14457838

fbshipit-source-id: 8481aad74b2127bd28c0f3e09740889fc0488a31

5 years agoError out on in-place (unary) ops on tensors that have internal overlap (#17927)
Richard Zou [Fri, 15 Mar 2019 14:41:08 +0000 (07:41 -0700)]
Error out on in-place (unary) ops on tensors that have internal overlap (#17927)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17927
ghimport-source-id: 626d321e430b6b5c0ea3aa1eb9df8c1e2d058bf8

Stack:
* #17926 Implement at::has_internal_overlap helper function
* **#17927 Error out on in-place (unary) ops on tensors that have internal overlap**

On the way to #17935.

Works for CPU and CUDA on the following ops:
- abs_, acos_, asin_, atan_, ceil_, cos_, erf_, erfc_, exp_, expm1_
- floor_, log_, log10_, log1p_, log2_, round_, rsqrt_,
- sin_, sqrt_, tan_, tanh_, trunc_

This PR adds a check to see if the out/result tensor has internal
overlap. If it does, then we error out because the result **may** be
incorrect.

This is overly conservative; there are some cases where if the result is
the same as the input, the inplace operation is OK (such as floor_,
round_, and trunc_). However, the current code isn't organized in such a
way that this is easy to check, so enabling those will come in the future.

Reviewed By: ezyang

Differential Revision: D14438871

fbshipit-source-id: 15e12bf1fdb2ab7f74bb806e22bc74840bd6abd1

5 years agoImplement at::has_internal_overlap helper function (#17926)
Richard Zou [Fri, 15 Mar 2019 14:41:08 +0000 (07:41 -0700)]
Implement at::has_internal_overlap helper function (#17926)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17926
ghimport-source-id: 9f7572b5d43e474492363fa17dcb86a6c27ca13c

Stack:
* **#17926 Implement at::has_internal_overlap helper function**
* #17927 Error out on in-place (unary) ops on tensors that have internal overlap

On the way to #17935.

Checks if a tensor's sizes/strides indicate that multiple elements share
the same memory location. This problem in general is hard so
at::has_internal_overlap implements two heuristics and avoids solving
the general problem:

if a tensor is contiguous, it cannot have internal overlap
if a tensor has any zero strides, it does have internal overlap
otherwise, return MemOverlap::kTooHard to indicate that there might be
overlap, but we don't know.

Reviewed By: ezyang

Differential Revision: D14438858

fbshipit-source-id: 607ab31771315921ab6165b2a1f072ac3e75925a

5 years agoFix truncation of default float values in JIT signatures. (#18044)
Gregory Chanan [Fri, 15 Mar 2019 14:36:13 +0000 (07:36 -0700)]
Fix truncation of default float values in JIT signatures. (#18044)

Summary:
In python2, float values get truncated.  We are storing default float values as floats (not 100% sure why?), which results in the defaults being truncated in the JIT and not matching the (specified) native function signatures.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18044

Reviewed By: ezyang

Differential Revision: D14469868

Pulled By: gchanan

fbshipit-source-id: a456de599e8dab106966bcac7a6033f02ce3cdd2

5 years agoAllow None for checkpoint (#17969)
Choongwoo Han [Fri, 15 Mar 2019 14:33:31 +0000 (07:33 -0700)]
Allow None for checkpoint (#17969)

Summary:
Currently, we cannot run a checkpointed function with None argument.

```python
out = torch.utils.checkpoint.checkpoint(run_fn, input_var, None)
```

```
  File "/home/tunz/anaconda3/envs/torchdev/lib/python3.7/site-packages/torch/utils/checkpoint.py", line 14, in detach_variable
    x = inp.detach()
AttributeError: 'NoneType' object has no attribute 'detach'
```

This PR makes checkpoint function to safely handle None argument.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17969

Differential Revision: D14475148

Pulled By: ezyang

fbshipit-source-id: 9afe9e9aac511a6df1e1620e9ac341536890d451

5 years agoFix unclosed files in download.py, test_onnxifi.py, test_trt.py (#18017)
ttup7777 [Fri, 15 Mar 2019 14:26:38 +0000 (07:26 -0700)]
Fix unclosed files in download.py, test_onnxifi.py, test_trt.py (#18017)

Summary:
According to https://docs.python.org/3/tutorial/inputoutput.html, it is good practice to use the "with" keyword when dealing with file objects. If not, you should call f.close() to close the file and immediately free up any system resources used by it.  Thus, I adjust the open file function to "with open() as f".
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18017

Differential Revision: D14475112

Pulled By: ezyang

fbshipit-source-id: d1c0821e39cb8a09f86d6d08b437b4a99746416c

5 years agoRun multi-gpu (single host) resnet50 and resnext101 training in bench (#18043)
Junjie Bai [Fri, 15 Mar 2019 09:49:02 +0000 (02:49 -0700)]
Run multi-gpu (single host) resnet50 and resnext101 training in bench (#18043)

Summary:
This is now working in rocm 2.2

cc xw285cornell
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18043

Differential Revision: D14477493

Pulled By: bddppq

fbshipit-source-id: 4d2dab1d5dbdbd4d6189162c074b19c4e9882c7d

5 years agoUpdate nonzero onnx export (#18047)
BowenBao [Fri, 15 Mar 2019 05:13:11 +0000 (22:13 -0700)]
Update nonzero onnx export (#18047)

Summary:
The output format of NonZero in ONNX(numpy https://docs.scipy.org/doc/numpy/reference/generated/numpy.nonzero.html) differs from that in PyTorch:
In ONNX: `[rank_of_input, num_of_nonzeros]`, whereas in PyTorch: `[num_of_nonzeros, rank_of_input]`.
To resolve the difference a Transpose op after the nonzero output is added in the exporter.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18047

Differential Revision: D14475081

Pulled By: ezyang

fbshipit-source-id: 7a3e4899f3419766b6145d3e9261e92859e81dc4

5 years agomore careful use of auto in sparse operations (#17958)
Jongsoo Park [Fri, 15 Mar 2019 05:07:58 +0000 (22:07 -0700)]
more careful use of auto in sparse operations (#17958)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17958

In some places, we need 64-bit for corner cases even though it's going to be rare.
In some places, we were using 64-bit unnecessarily.

Reviewed By: hyuen

Differential Revision: D14435523

fbshipit-source-id: e01ab73029ff780133af7ff4bbbe2e17926ed5a2

5 years agoUpdate caffe2 docker images tag to 253 (#18031)
Junjie Bai [Fri, 15 Mar 2019 03:49:54 +0000 (20:49 -0700)]
Update caffe2 docker images tag to 253 (#18031)

Summary:
To use ROCm 2.2
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18031

Reviewed By: ezyang

Differential Revision: D14469242

Pulled By: bddppq

fbshipit-source-id: c969bcf95dabe067d7b1a2cf6e07209e11148ec1

5 years agoFix typo (#17949)
Johannes M Dieterich [Fri, 15 Mar 2019 03:06:06 +0000 (20:06 -0700)]
Fix typo (#17949)

Summary:
Fix a very common typo in my name.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17949

Differential Revision: D14475162

Pulled By: ezyang

fbshipit-source-id: 91c2c364c56ecbbda0bd530e806a821107881480

5 years agoUpdate to ROCm2.2 (#18007)
J M Dieterich [Fri, 15 Mar 2019 01:44:24 +0000 (18:44 -0700)]
Update to ROCm2.2 (#18007)

Summary:
ROCm 2.2 was released today, if we respin the CI docker images with the attached, PyTorch/Caffe2 will support ROCm 2.2

Changes necessary:
* for the Ubuntu target, HIP PR 934 needs to be applied to fix the forceinline definition. ROCm 2.3 will contain this.
* two unit tests proof flaky on different platforms, disable them defensively.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18007

Differential Revision: D14473903

Pulled By: bddppq

fbshipit-source-id: b1939f11d1c765a3bf71bb244b15f6ceb0e816d3

5 years agofix clang-tidy (#18030)
Michael Suo [Fri, 15 Mar 2019 00:27:22 +0000 (17:27 -0700)]
fix clang-tidy (#18030)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18030
ghimport-source-id: d68781226eee923c90be862ef54693feef5f1c1a

Stack:
* **#18030 [jit] fix clang-tidy**

fix the following complaint
```
pytorch/torch/csrc/jit/ir.cpp:84:7: error: pass by value and use std::move [modernize-pass-by-value,-warnings-as-errors]
      const std::string& delim = ", ")
      ^~~~~~~~~~~~~~~~~~
      std::string
```

Reviewed By: shannonzhu

Differential Revision: D14466714

fbshipit-source-id: 195cba335ae656db28fc6230b9e56ad208c88c29

5 years agoAllow fewer arguments than the max in ArgumentSpec (#17826)
David Riazati [Thu, 14 Mar 2019 23:45:31 +0000 (16:45 -0700)]
Allow fewer arguments than the max in ArgumentSpec (#17826)

Summary:
Fixes #17558

The flattened tuple `Optional[Tuple[int, int]]` could either result in 1 (`None`) or 2 (`int` and `int`) values, so allow this case in `ArgumentSpec`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17826

Differential Revision: D14415290

Pulled By: driazati

fbshipit-source-id: 971bfa39502cfb8f08a991f16ffed6d138e48dc9

5 years agoAutomatic update of fbcode/foxi to d1f45b1a2b1585d0e9bc65e15e463db344fc3ff6 (#18028)
Lu Fang [Thu, 14 Mar 2019 22:39:25 +0000 (15:39 -0700)]
update of fbcode/foxi to d1f45b1a2b1585d0e9bc65e15e463db344fc3ff6 (#18028)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18028

Previous import was 520e8e135f1ad75959bf9b5bd15c361b8caeb8d6

Included changes:
- **[d1f45b1](https://github.com/houseroad/foxi/commit/d1f45b1)**: update the gitignore (#6) <Lu Fang>
- **[398135c](https://github.com/houseroad/foxi/commit/398135c)**: Remove static variable in header (#3) <Lu Fang>
- **[f817be1](https://github.com/houseroad/foxi/commit/f817be1)**: sync to ONNX cb544d07cc022e3fe83622fda9b2b1fa00b75b89 (#2) <Lu Fang>

Reviewed By: zrphercule

Differential Revision: D14464213

fbshipit-source-id: b5d166f05f7fd503dec11d676e219cc6c6a373f9

5 years agoUse std::isnan instead of self-comparison. (#18021)
Edward Yang [Thu, 14 Mar 2019 22:25:35 +0000 (15:25 -0700)]
Use std::isnan instead of self-comparison. (#18021)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18021
ghimport-source-id: 03423ba47ba5900c2b400c4457b148147ce8b35e

Stack:
* **#18021 Use std::isnan instead of self-comparison.**

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Reviewed By: soumith

Differential Revision: D14460699

fbshipit-source-id: d8feb7f3f0e93996bd1b4f4aea163548b1d12437

5 years agoUnroll If ops when doing ONNXIFI transform (#18039)
Yinghai Lu [Thu, 14 Mar 2019 21:45:28 +0000 (14:45 -0700)]
Unroll If ops when doing ONNXIFI transform (#18039)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18039

We basically flatten the whole net in order to ease the ONNXIFI transform. An alternative way is to ONNXIFI the internal net of the If op, which can be done by adding interfacing inputs/outputs that the internal then_net or else_net referred to the inputs/outputs of the If op. This will be left as an TODO option.

Reviewed By: zrphercule

Differential Revision: D14452132

fbshipit-source-id: 00ad48d40da6fb8eabf9cca36701bcf61cbe4edc

5 years agoMinor improvements to ONNXIFI transform (#17964)
Yinghai Lu [Thu, 14 Mar 2019 21:45:27 +0000 (14:45 -0700)]
Minor improvements to ONNXIFI transform (#17964)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17964

1. Make the output of TensorFill outputs CONSTANT during shape inference
2. Add option to avoid adding BatchAdjust ops
3. Add option to avoid lowering subgraph that's smaller than a limit

Reviewed By: hyuen

Differential Revision: D14360903

fbshipit-source-id: b3c5966b44e7cd0d56428acd6cc97f529b36b171

5 years agoRun fp16 resnext101 training in bench script (#17963)
Junjie Bai [Thu, 14 Mar 2019 21:35:31 +0000 (14:35 -0700)]
Run fp16 resnext101 training in bench script (#17963)

Summary:
cc xw285cornell
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17963

Differential Revision: D14453445

Pulled By: bddppq

fbshipit-source-id: 7ca0e0c33ae89d4d4cf6ddba321daf4d6b2d5ed6

5 years agoTensor Iterator loop unrolling (#17667)
Jie [Thu, 14 Mar 2019 21:01:45 +0000 (14:01 -0700)]
Tensor Iterator loop unrolling (#17667)

Summary:
Modified Tensor Iterator gpu reduction kernel.
Creating multiple accumulator during thread reduce, this removes data dependency
between unrolled loops, expose instruction level parallelism that benefits
latency bounded kernels (e.g. welford used by `torch.std`)

This approach increases register usage, such that we need to tune unrolling
factors to prevent register spilling.
Current implementation tune down the unrolling factor to 2 for welford (register
heavy kernel), while keeping it unchanged (4) for the rest of reduction kernels.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17667

Differential Revision: D14368325

Pulled By: umanwizard

fbshipit-source-id: 9d64c0dccabdb1b7c3922a6557224af704a1974e

5 years agoTemp fix for TileOp backward compatibility (#18026)
Xiaomeng Yang [Thu, 14 Mar 2019 20:48:13 +0000 (13:48 -0700)]
Temp fix for TileOp backward compatibility (#18026)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18026

Temp fix for TileOp backward compatibility

Reviewed By: kittipatv

Differential Revision: D14463672

fbshipit-source-id: 1f3ec550245cb63f1bc4f26196b9334cfe5d0705

5 years agoadd a dump method to TreeViews (#17965)
Michael Suo [Thu, 14 Mar 2019 19:16:30 +0000 (12:16 -0700)]
add a dump method to TreeViews (#17965)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17965
ghimport-source-id: 0d3d6340141d8413ce524a8d8ed0d308854ee7ef

Stack:
* (to be filled)

Also added it to the python bindings. Not for any particular reason,
just because otherwise the function gets elided (even in debug mode!)
and thus can't be called from the debugger

Reviewed By: eellison

Differential Revision: D14442654

fbshipit-source-id: 2868bb32ccb80b04f9483883faa702f63a7948bf

5 years agoJIT IR - Make valueMapPtr optional in convertNetDefToIR (#17942)
Duc Ngo [Thu, 14 Mar 2019 19:16:12 +0000 (12:16 -0700)]
JIT IR - Make valueMapPtr optional in convertNetDefToIR (#17942)

Summary:
Make valueMapPtr optional in convertNetDefToIR, and add tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17942

Differential Revision: D14429687

Pulled By: duc0

fbshipit-source-id: 3a5a72bbb5acc1bfd7144a987688c599016fbf7a

5 years agoregister RoIAlign with C10
Yanghan Wang [Thu, 14 Mar 2019 18:49:31 +0000 (11:49 -0700)]
register RoIAlign with C10

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17889

Reviewed By: smessmer

Differential Revision: D14411630

fbshipit-source-id: c3b7941d725ae2c78e8d79f52a7983db92b75807

5 years agoadd tanh to AD and fix layernorm schema
Wanchao Liang [Thu, 14 Mar 2019 18:17:18 +0000 (11:17 -0700)]
add tanh to AD and fix layernorm schema

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17816

Differential Revision: D14453048

Pulled By: wanchaol

fbshipit-source-id: 45815db964a4d9ee85d8933e335b47f215e3c467

5 years agoAdd magma debug version for Windows
peter [Thu, 14 Mar 2019 17:05:53 +0000 (10:05 -0700)]
Add magma debug version for Windows

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/18008

Differential Revision: D14455117

Pulled By: soumith

fbshipit-source-id: 29d9a2e0b36d72bece0bb1870bbdc740c4d1f9d6

5 years agoSimplify env creation when running Windows tests (#17916)
peter [Thu, 14 Mar 2019 17:05:04 +0000 (10:05 -0700)]
Simplify env creation when running Windows tests (#17916)

Summary:
Fixes https://github.com/pytorch/pytorch/issues/13465.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17916

Differential Revision: D14460589

Pulled By: soumith

fbshipit-source-id: e952d08648b833cfd4a8551355ecd68045fea25c

5 years agoFix lint in test_multiprocessing.
Edward Yang [Thu, 14 Mar 2019 16:53:05 +0000 (09:53 -0700)]
Fix lint in test_multiprocessing.

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/18016

Reviewed By: eellison

Differential Revision: D14458177

fbshipit-source-id: f17b3e06223ab399e9ce24be6988effe04dad636

5 years agoRemove ArgcountSortPlugin, which doesn't seem to be used.
Gregory Chanan [Thu, 14 Mar 2019 16:21:02 +0000 (09:21 -0700)]
Remove ArgcountSortPlugin, which doesn't seem to be used.

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17977

Reviewed By: ezyang

Differential Revision: D14438842

Pulled By: gchanan

fbshipit-source-id: 9b1746880fd7e3bd2b76a2559face34940ce7570

5 years agoFix lint in test_nn.py (#18006)
Edward Yang [Thu, 14 Mar 2019 15:52:55 +0000 (08:52 -0700)]
Fix lint in test_nn.py (#18006)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18006
ghimport-source-id: e267ece1ac03e0d17e01dddf4a77f52421859435

Stack:
* **#18006 Fix lint in test_nn.py**

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Reviewed By: eellison

Differential Revision: D14458108

fbshipit-source-id: 18ee6199447efed55a922cff5b3ad940a21c0536

5 years agoSimplify macros for exposing c10 ops to c2 (#17781)
Sebastian Messmer [Thu, 14 Mar 2019 15:50:46 +0000 (08:50 -0700)]
Simplify macros for exposing c10 ops to c2 (#17781)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17781

The wrapper for calling a c10 operator from caffe2 is now based on a runtime FunctionSchema instead of compile time information. This way, it can be created for any c10 operator schema with just one invocation to a simple macro instead of having to define arguments and more as compile time structures.

Furthermore, previously, the wrapper assumed there's an argument present for preallocated outputs, but that was only true for caffe2 operators exported to c10. So the wrapper only worked correctly for calling caffe2->c10->caffe2. Now with the new implementation, it works for any c10 operator.

Also, binary size for this should be much smaller.

Reviewed By: ezyang

Differential Revision: D14375054

fbshipit-source-id: bac7ab8e63929e6e2a148eacac41ed092009aa86

5 years agoImprove caffe2 operator wrapping (#17743)
Sebastian Messmer [Thu, 14 Mar 2019 15:50:45 +0000 (08:50 -0700)]
Improve caffe2 operator wrapping (#17743)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17743

- caffe2::Operator::SetOutputTensor() can now be used in operators that are called from c10/PyTorch.
- If the operator uses SetOutputTensor() instead of XOutput(), the wrapper doesn't preallocate an empty tensor for the operator anymore. Only outputs accessed in XOutput() will get an output tensor preallocated.
- Remove the copying of the vector with output tensors into a vector with pointer to output tensors.
- Preallocated outputs are now passed in as one TensorList argument on the stack. This TensorList argument has a well-defined name so other wrappers (i.e. the wrapper calling from c2 into c10) can recognize and use it).
- Macros for exporting caffe2 operators to c10 are simplified. Instead of having `c10_op_handle_for_c2_op`, we now pass in the operator handle as a template argument.
- `SetOutputTensor` and `OutputTensorOrUndefined` now work with operators exported to c10

Reviewed By: ezyang

Differential Revision: D14362434

fbshipit-source-id: 44a5e717204f21ea8e9728437429d9b84906f9f5

5 years agoRemove unused KwargsPlugin.
Gregory Chanan [Thu, 14 Mar 2019 15:00:51 +0000 (08:00 -0700)]
Remove unused KwargsPlugin.

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17980

Reviewed By: ezyang

Differential Revision: D14438877

Pulled By: gchanan

fbshipit-source-id: f93764b00999effb5c8f852f8eda3a6da32dc767

5 years agoDisable btri tests on Windows if MAGMA is not found (#17989)
vaeksare [Thu, 14 Mar 2019 14:19:49 +0000 (07:19 -0700)]
Disable btri tests on Windows if MAGMA is not found (#17989)

Summary:
Fixes #17988
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17989

Reviewed By: ezyang

Differential Revision: D14454571

Pulled By: soumith

fbshipit-source-id: fc39a807a597d3574f4ca4e22cea12194e4693c0

5 years agoReport convolution size mismatch (#17436)
bhushan [Thu, 14 Mar 2019 13:29:03 +0000 (06:29 -0700)]
Report convolution size mismatch (#17436)

Summary:
1. Kernel size is larger than input
2. Expected output size to be less than zero

Test case added:
- invalid_conv1d
- Relevant test cases for conv2d and conv3d exists

Fixes #17247
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17436

Reviewed By: mrshenli

Differential Revision: D14354272

Pulled By: fmassa

fbshipit-source-id: 94b98621aa03b1f60d151ef9399ed3da55d41b42

5 years agomake momentum non negative in adagrad test (#18009)
Jongsoo Park [Thu, 14 Mar 2019 10:12:08 +0000 (03:12 -0700)]
make momentum non negative in adagrad test (#18009)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18009

momentum should be initialized with non-negative values

Reviewed By: hyuen

Differential Revision: D14450841

fbshipit-source-id: 5bbbd11645db9e6f2dc42b26a00ff3caf378c59f

5 years agoFix the CI
Lu Fang [Thu, 14 Mar 2019 00:26:01 +0000 (17:26 -0700)]
Fix the CI

Summary: https://github.com/pytorch/pytorch/pull/17995 's CI has verified it should fix the CI.

Reviewed By: bddppq

Differential Revision: D14447674

fbshipit-source-id: 50085db9ae7421b5be216ed0a2216234babfdf6c

5 years agoFix missing return in HIPStreamMasqueradingAsCUDA::operator<< (#17961)
Junjie Bai [Wed, 13 Mar 2019 23:01:45 +0000 (16:01 -0700)]
Fix missing return in HIPStreamMasqueradingAsCUDA::operator<< (#17961)

Summary:
```
In file included from /var/lib/jenkins/workspace/aten/src/ATen/native/hip/BatchLinearAlgebra.hip:3:
In file included from /var/lib/jenkins/workspace/aten/src/ATen/hip/HIPContext.h:5:
/var/lib/jenkins/workspace/aten/src/ATen/hip/impl/HIPStreamMasqueradingAsCUDA.h:107:1: warning: control reaches end of non-void function [-Wreturn-type]
}
^
1 warning generated.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17961

Reviewed By: houseroad

Differential Revision: D14436421

Pulled By: bddppq

fbshipit-source-id: 962665602178699d7c7b55f4ca7ff1eb72ee0349

5 years agoRemove AssertNDim, which doesn't seem to be used.
Gregory Chanan [Wed, 13 Mar 2019 22:07:49 +0000 (15:07 -0700)]
Remove AssertNDim, which doesn't seem to be used.

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17978

Reviewed By: colesbury

Differential Revision: D14438845

Pulled By: gchanan

fbshipit-source-id: 106650c37fb1885201eaef27cb6d86b49ef27976

5 years agoRemove unused BoolOption.
Gregory Chanan [Wed, 13 Mar 2019 20:28:08 +0000 (13:28 -0700)]
Remove unused BoolOption.

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17979

Reviewed By: zou3519

Differential Revision: D14438876

Pulled By: gchanan

fbshipit-source-id: a6aeab0261ce6926ed82a81edee4564a8dd341ed

5 years agoFix some typos in distributed.py.
Elliot Waite [Wed, 13 Mar 2019 16:18:34 +0000 (09:18 -0700)]
Fix some typos in distributed.py.

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17959

Differential Revision: D14437347

Pulled By: soumith

fbshipit-source-id: 4c33571f56e9da687666516a310f91924cddd4d9

5 years agoFix Windows test CI
peter [Wed, 13 Mar 2019 16:07:57 +0000 (09:07 -0700)]
Fix Windows test CI

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17954

Differential Revision: D14437473

Pulled By: soumith

fbshipit-source-id: f0d79ff0c5d735f822be3f42bbca91c1928dacaf

5 years agoFix lint in test_utils.py (#17944)
Edward Yang [Wed, 13 Mar 2019 15:35:26 +0000 (08:35 -0700)]
Fix lint in test_utils.py (#17944)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17944
ghimport-source-id: 5b45086428b5a36e737882c78f285141121fd1bc

Stack:
* **#17944 Fix lint in test_utils.py**

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: D14430132

fbshipit-source-id: b00de7b4c685645ad5a4dc8c5fe6ce7e1893a3eb

5 years agoSpeed up gemm by reordering the for loops (#17730)
Guanheng Zhang [Wed, 13 Mar 2019 15:22:56 +0000 (08:22 -0700)]
Speed up gemm by reordering the for loops (#17730)

Summary:
Optimize the order of the "for" loops.

Note: For "transa = true" cases, the order of the "for" loops has been optimzied in the original code. Therefore, no significant improvement is observed in those case (i.e. "transa && transb" and "transa && !transb")

mode/opt (i.e. static libary)
//////////////////////////////////////////////////////////////////////////////
transa && transb
after:
loops:  2229     x:     128      y:     128      z:     128      time:  2243ns      =>  acceleration multiplier:  0.90
loops:  124      x:     128      y:     1024     z:     128      time:  40381ns      =>  acceleration multiplier:  0.97
loops:  121      x:     1024     y:     128      z:     128      time:  41651ns      =>  acceleration multiplier:  0.96
loops:  15       x:     1024     y:     1024     z:     128      time:  333771ns       =>  acceleration multiplier:  0.98
loops:  4610     x:     128      y:     128      z:     64       time:  1084ns       =>  acceleration multiplier:  0.95
loops:  252      x:     128      y:     1024     z:     64       time:  19860ns      =>  acceleration multiplier:  0.98
loops:  248      x:     1024     y:     128      z:     64       time:  20232ns      =>  acceleration multiplier:  0.98
loops:  30       x:     1024     y:     1024     z:     64       time:  167338ns      =>  acceleration multiplier:  0.99

before:
loops:  2468     x:     128      y:     128      z:     128      time:  2026ns
loops:  128      x:     128      y:     1024     z:     128      time:  39338ns
loops:  126      x:     1024     y:     128      z:     128      time:  39930ns
loops:  16       x:     1024     y:     1024     z:     128      time:  327549ns
loops:  4840     x:     128      y:     128      z:     64       time:  1033ns
loops:  258      x:     128      y:     1024     z:     64       time:  19441ns
loops:  252      x:     1024     y:     128      z:     64       time:  19854ns
loops:  31       x:     1024     y:     1024     z:     64       time:  166254ns

//////////////////////////////////////////////////////////////////////////////
transa && !transb
after:
loops:  4880     x:     128      y:     128      z:     128      time:  1024ns      =>  acceleration multiplier:  0.98
loops:  638      x:     128      y:     1024     z:     128      time:  7839ns      =>  acceleration multiplier:  1.04
loops:  605      x:     1024     y:     128      z:     128      time:  8276ns      =>  acceleration multiplier:  1.01
loops:  77       x:     1024     y:     1024     z:     128      time:  65713ns      =>  acceleration multiplier:  1.00
loops:  9935     x:     128      y:     128      z:     64       time:  503ns      =>  acceleration multiplier:  1.00
loops:  1252     x:     128      y:     1024     z:     64       time:  3994ns      =>  acceleration multiplier:  1.00
loops:  1183     x:     1024     y:     128      z:     64       time:  4226ns      =>  acceleration multiplier:  0.98
loops:  153      x:     1024     y:     1024     z:     64       time:  32766ns      =>  acceleration multiplier:  0.99

before:
loops:  4985     x:     128      y:     128      z:     128      time:  1003ns
loops:  615      x:     128      y:     1024     z:     128      time:  8140ns
loops:  599      x:     1024     y:     128      z:     128      time:  8357ns
loops:  76       x:     1024     y:     1024     z:     128      time:  65934ns
loops:  9897     x:     128      y:     128      z:     64       time:  505ns
loops:  1248     x:     128      y:     1024     z:     64       time:  4008ns
loops:  1203     x:     1024     y:     128      z:     64       time:  4159ns
loops:  154      x:     1024     y:     1024     z:     64       time:  32499ns

//////////////////////////////////////////////////////////////////////////////
!transa && transb
after:
loops:  3919     x:     128      y:     128      z:     128      time:  1276ns      =>  acceleration multiplier:  2.97
loops:  497      x:     128      y:     1024     z:     128      time:  10069ns      =>  acceleration multiplier:  7.85
loops:  449      x:     1024     y:     128      z:     128      time:  11145ns      =>  acceleration multiplier:  4.77
loops:  57       x:     1024     y:     1024     z:     128      time:  88595ns      =>  acceleration multiplier:  7.12
loops:  7575     x:     128      y:     128      z:     64       time:  660ns      =>  acceleration multiplier:  3.00
loops:  967      x:     128      y:     1024     z:     64       time:  5173ns      =>  acceleration multiplier:  7.66
loops:  877      x:     1024     y:     128      z:     64       time:  5702ns      =>  acceleration multiplier:  4.76
loops:  111      x:     1024     y:     1024     z:     64       time:  45232ns      =>  acceleration multiplier:  7.03

before:
loops:  1320     x:     128      y:     128      z:     128      time:  3789ns
loops:  64       x:     128      y:     1024     z:     128      time:  79061ns
loops:  95       x:     1024     y:     128      z:     128      time:  53107ns
loops:  8        x:     1024     y:     1024     z:     128      time:  631161ns
loops:  2521     x:     128      y:     128      z:     64       time:  1983ns
loops:  127      x:     128      y:     1024     z:     64       time:  39604ns
loops:  185      x:     1024     y:     128      z:     64       time:  27128ns
loops:  16       x:     1024     y:     1024     z:     64       time:  318155ns

//////////////////////////////////////////////////////////////////////////////
!transa && !transb
after:
loops:  3895     x:     128      y:     128      z:     128      time:  1283ns      =>  acceleration multiplier:  1.73
loops:  393      x:     128      y:     1024     z:     128      time:  12746ns      =>  acceleration multiplier:  3.36
loops:  411      x:     1024     y:     128      z:     128      time:  12170ns      =>  acceleration multiplier:  1.93
loops:  46       x:     1024     y:     1024     z:     128      time:  110116ns      =>  acceleration multiplier:  3.17
loops:  7404     x:     128      y:     128      z:     64       time:  675ns      =>  acceleration multiplier:  1.58
loops:  636      x:     128      y:     1024     z:     64       time:  7872ns      =>  acceleration multiplier:  2.70
loops:  724      x:     1024     y:     128      z:     64       time:  6911ns      =>  acceleration multiplier:  1.32
loops:  73       x:     1024     y:     1024     z:     64       time:  68502ns      =>  acceleration multiplier:  2.49

before:
loops:  2253     x:     128      y:     128      z:     128      time:  2219ns
loops:  117      x:     128      y:     1024     z:     128      time:  42788ns
loops:  214      x:     1024     y:     128      z:     128      time:  23465ns
loops:  15       x:     1024     y:     1024     z:     128      time:  349076ns
loops:  4694     x:     128      y:     128      z:     64       time:  1065ns
loops:  236      x:     128      y:     1024     z:     64       time:  21251ns
loops:  549      x:     1024     y:     128      z:     64       time:  9108ns
loops:  30       x:     1024     y:     1024     z:     64       time:  170799ns
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17730

Differential Revision: D14325149

Pulled By: zhangguanheng66

fbshipit-source-id: a7a5a83890fdf99fee6eb87a3a5060b7b6bd862f

5 years agofix punctuation
livc [Wed, 13 Mar 2019 15:06:56 +0000 (08:06 -0700)]
fix punctuation

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17973

Differential Revision: D14438725

Pulled By: zou3519

fbshipit-source-id: 30a5485b508b4ae028057e0b66a8abb2b163d66b

5 years agofixes for AVX detection (#17915)
Thomas Viehmann [Wed, 13 Mar 2019 10:44:16 +0000 (03:44 -0700)]
fixes for AVX detection (#17915)

Summary:
Our AVX2 routines use functions such as _mm256_extract_epi64
that do not exist on 32 bit systems even when they have AVX2.
This disables AVX2 when _mm256_extract_epi64 does not exist.

This fixes the "local" part of #17901 (except disabling FBGEMM),
but there also is sleef to be updated and NNPACK to be fixed,
see the bug report for further discussion.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17915

Differential Revision: D14437338

Pulled By: soumith

fbshipit-source-id: d4ef7e0801b5d1222a855a38ec207dd88b4680da

5 years agoDisable FBGEMM when building under x86 32bit (#17922)
Thomas Viehmann [Wed, 13 Mar 2019 10:43:58 +0000 (03:43 -0700)]
Disable FBGEMM when building under x86 32bit (#17922)

Summary:
FBGEMM doesn't work on x86 32bit and prior to this patch, it will
generate x86_64 objects in a build that is supposed to be x86 32bit.
FBGEMM actually relies on registers not available on x86_32, so
we disable it.

This takes of one element of #17901. There are more dependencies
and a separate PR (#17915) regarding AVX detection for the code in the
main repository.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17922

Differential Revision: D14437340

Pulled By: soumith

fbshipit-source-id: bd9fc98cf607d9b0bc28127fbbc8b04fa10eecbe

5 years agoUpdate docs for `mark_non_differentiable` method (#17891)
serhii-havrylov [Wed, 13 Mar 2019 10:16:40 +0000 (03:16 -0700)]
Update docs for `mark_non_differentiable` method (#17891)

Summary:
The current documentation doesn't reflect the real values of tensors during the backward pass.
This issue is mentioned in https://github.com/pytorch/pytorch/issues/12631
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17891

Differential Revision: D14419949

Pulled By: soumith

fbshipit-source-id: 8b495628c3f017bc880f8096682cd176a53974e5

5 years agoSimplify OpKernel (#17925)
Sebastian Messmer [Wed, 13 Mar 2019 08:20:57 +0000 (01:20 -0700)]
Simplify OpKernel (#17925)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17925

There's no need for OpKernel to keep the cache creator around if we initialize cache on construction.

This basically means, kernel caches are now constructed when the kernel is looked up from the dispatcher, and not delayed to the first call anymore.
This gives us the benefit of cheaper calling because now kernel calling doesn't have to check if the cache is already initialized.

Also, this improves thread-safety. Now, OpKernel is thread-safe if the kernel is thread-safe.

Reviewed By: ezyang

Differential Revision: D14424907

fbshipit-source-id: a0d09a3a560dfe78aab53d558c9ebb91b57722df

5 years agoMark DispatchTable move ctor and move assignment operator as deleted (#17948)
Junjie Bai [Wed, 13 Mar 2019 08:01:13 +0000 (01:01 -0700)]
Mark DispatchTable move ctor and move assignment operator as deleted (#17948)

Summary:
```
21:39:50 /var/lib/jenkins/workspace/aten/src/ATen/core/dispatch/DispatchTable.h:125:3: warning: explicitly defaulted move constructor is implicitly deleted [-Wdefaulted-function-deleted]
21:39:50   DispatchTable(DispatchTable&&) = default;
21:39:50   ^
21:39:50 /var/lib/jenkins/workspace/aten/src/ATen/core/dispatch/DispatchTable.h:212:36: note: move constructor of 'DispatchTable' is implicitly deleted because field 'kernels_' has a deleted move constructor
21:39:50   detail::ThreadsafeOperatorTable_ kernels_;
21:39:50                                    ^
21:39:50 /var/lib/jenkins/workspace/aten/src/ATen/core/dispatch/DispatchTable.h:105:68: note: copy constructor of 'ThreadsafeOperatorTable_' is implicitly deleted because field 'map_' has a deleted copy constructor
21:39:50    LeftRight<ska::flat_hash_map<TensorTypeId, DispatchTableEntry>> map_;
21:39:50                                                                    ^
21:39:50 /var/lib/jenkins/workspace/c10/util/LeftRight.h:152:16: note: copy constructor of 'LeftRight<ska::flat_hash_map<c10::TensorTypeId, c10::DispatchTableEntry, std::hash<c10::TensorTypeId>, std::equal_to<c10::TensorTypeId>, std::allocator<std::pair<c10::TensorTypeId, c10::DispatchTableEntry> > > >' is implicitly deleted because field '_writeMutex' has a deleted copy constructor
21:39:50     std::mutex _writeMutex;
21:39:50                ^
21:39:50 /usr/lib/gcc/x86_64-linux-gnu/5.4.0/../../../../include/c++/5.4.0/mutex:129:5: note: 'mutex' has been explicitly marked deleted here
21:39:50     mutex(const mutex&) = delete;
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17948

Reviewed By: ezyang

Differential Revision: D14431344

Pulled By: bddppq

fbshipit-source-id: b1c6593b73cb467a58b09a3470b8899b82564d5e

5 years agoAdd more hint in the JIT tracer (#17957)
Lu Fang [Wed, 13 Mar 2019 07:49:07 +0000 (00:49 -0700)]
Add more hint in the JIT tracer (#17957)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17957

So developer knows what action should be taken when model contains nondeterministic node

Reviewed By: dzhulgakov

Differential Revision: D14435923

fbshipit-source-id: 12d930185852f78c54efc8e90c51aa7c7c7faab5

5 years agoFix half-float conversion ops to handle tensors larger than 2B of params (#17952)
Andrey Malevich [Wed, 13 Mar 2019 05:57:44 +0000 (22:57 -0700)]
Fix half-float conversion ops to handle tensors larger than 2B of params (#17952)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17952

As desc.

Reviewed By: hyuen

Differential Revision: D14435092

fbshipit-source-id: dc614ba16ad531101d04d01aec8f1fbd534ebec5

5 years agoOverride the resolve_library_path in FBCode (#17497)
Lu Fang [Wed, 13 Mar 2019 05:06:25 +0000 (22:06 -0700)]
Override the resolve_library_path in FBCode (#17497)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17497

The following problems have been addressed: 1) import torch.ops correctly, 2) make realpath call optional

Reviewed By: dzhulgakov

Differential Revision: D14094358

fbshipit-source-id: 2f9a6fca656867287a7c82c465a4554384ff7323

5 years agoupdate ccache guide (#17938)
Karl Ostmo [Wed, 13 Mar 2019 04:40:13 +0000 (21:40 -0700)]
update ccache guide (#17938)

Summary:
closes #17937
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17938

Differential Revision: D14435791

Pulled By: kostmo

fbshipit-source-id: b1d0db8902f78bde51150606e2a67fb9ddfe7812

5 years agounify cpp tests (#17947)
Michael Suo [Wed, 13 Mar 2019 04:31:59 +0000 (21:31 -0700)]
unify cpp tests (#17947)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17947

Instead of having a gtest and a no-gtest file that you have to remember to register tests in, add a single registration point and use some macro magic to make it work for both gtest and non-gtest builds

Reviewed By: eellison

Differential Revision: D14431302

fbshipit-source-id: e1abac135992577a943eaa7abcc81a6ed31fa6e5

5 years agoUpdating submodules
svcscm [Wed, 13 Mar 2019 03:28:59 +0000 (20:28 -0700)]
Updating submodules

Reviewed By: zpao

fbshipit-source-id: 7d454d0f58898741f293b356dfc10d7fc31fd55c

5 years agoRemove sinkMaxPool transformation (#17694)
Duc Ngo [Wed, 13 Mar 2019 03:05:36 +0000 (20:05 -0700)]
Remove sinkMaxPool transformation (#17694)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17694

Remove sinkMaxPool transformation as it's unused

Differential Revision: D14328624

fbshipit-source-id: bd245403b756157120faa61a0f9253c15120e7a8

5 years agoFix Windows build (#17917)
Alexey Kozhevnikov [Wed, 13 Mar 2019 02:48:11 +0000 (19:48 -0700)]
Fix Windows build (#17917)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17917

D14375995 introduced instantiation of the following templates with `bool` type (more specifically `To` is `int64_t`, `From` is `bool`):
```
template <typename To, typename From>
typename std::enable_if<std::is_integral<From>::value, bool>::type overflows(
    From f) {
  using limit = std::numeric_limits<typename scalar_value_type<To>::type>;
  if (!limit::is_signed && std::numeric_limits<From>::is_signed) {
    // allow for negative numbers to wrap using two's complement arithmetic.
    // For example, with uint8, this allows for `a - b` to be treated as
    // `a + 255 * b`.
    return f > limit::max() ||
        (f < 0 && -static_cast<uint64_t>(f) > limit::max());
  } else {
    return f < limit::lowest() || f > limit::max();
  }
}

template <typename To, typename From>
typename std::enable_if<std::is_floating_point<From>::value, bool>::type
overflows(From f) {
  using limit = std::numeric_limits<typename scalar_value_type<To>::type>;
  if (limit::has_infinity && std::isinf(static_cast<double>(f))) {
    return false;
  }
  if (!limit::has_quiet_NaN && (f != f)) {
    return true;
  }
  return f < limit::lowest() || f > limit::max();
}
```
MSVC gives C4804 warning and because "treat warnings as errors" is on it fails to build on Windows. Disabling such warning for those 2 templates.

Reviewed By: mingzhe09088

Differential Revision: D14421157

fbshipit-source-id: e72ba34406628c84da48518b32a46f851819bad1

5 years agofix overly restrictive assertion (#17939)
Jongsoo Park [Wed, 13 Mar 2019 01:14:50 +0000 (18:14 -0700)]
fix overly restrictive assertion (#17939)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17939

Instead of just asserting min <= 0 and max >= 0 , we adjust histogram to include 0 in the range.
We need to include 0 in the range during norm error minimization to correctly represent our quantization method that includes 0.

Reviewed By: csummersea

Differential Revision: D14428732

fbshipit-source-id: 6669a9d2c7d409ec3b31aee0afe48071986b9b71

5 years agoEnable threadpool threads to greedily acquire new tasks if available. (#17808)
Owen Anderson [Wed, 13 Mar 2019 01:00:23 +0000 (18:00 -0700)]
Enable threadpool threads to greedily acquire new tasks if available. (#17808)

Summary:
This improves locality and affinity by keeping work on the same
threads preferentially to starting work on new ones, and reduces
contention on the threadpool lock more generally.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17808

Differential Revision: D14391282

Pulled By: resistor

fbshipit-source-id: 3aec81656a50460a725aa4187c61864295d4f46e

5 years agoJIT IR - Add option to remove prefix string when converting from JIT IR to NetDef...
Duc Ngo [Tue, 12 Mar 2019 23:54:47 +0000 (16:54 -0700)]
JIT IR - Add option to remove prefix string when converting from JIT IR to NetDef (#17931)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17931

When converting from NetDef to IR and back, the prefix string should be removed so the operator types are preserved in caffe2.

Reviewed By: ZolotukhinM

Differential Revision: D14425954

fbshipit-source-id: 2807e7337b0f804f126970768b1250a4a8c5f35c

5 years agoMisleading documentation for module._load_from_state_dict (#17618)
Kai Zhang [Tue, 12 Mar 2019 23:52:38 +0000 (16:52 -0700)]
Misleading documentation for module._load_from_state_dict (#17618)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17618

Base on the code, we only add key to `missing_keys` and `unexpected_keys` if `$strict` is `True`. The documentation is confusing.

This diff also fix one FLAKE8 warning.

Reviewed By: ailzhang

Differential Revision: D14280593

fbshipit-source-id: d368f5596bdf74ff62ee4d28d79120f5af91e0a3

5 years agoEnable detectron on AMD GPU
Sandeep Kumar [Tue, 12 Mar 2019 23:22:41 +0000 (16:22 -0700)]
Enable detectron on AMD GPU

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17862

Differential Revision: D14429234

Pulled By: bddppq

fbshipit-source-id: 5cb8750bd9db0ff8a179977d2bfbb180265cce81

5 years agoRemoved dead code from THTensorMath.h (#17873)
Iurii Zdebskyi [Tue, 12 Mar 2019 20:49:40 +0000 (13:49 -0700)]
Removed dead code from THTensorMath.h (#17873)

Summary:
This PR removes dead code from THTensorMath.h
I found these unused methods while working on a PR where i plan to move fill and zero methods from TH/THC to Aten.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17873

Differential Revision: D14407013

Pulled By: izdeby

fbshipit-source-id: a3551c5d91e7b380931a8b3bd4b3ae972d16911d

5 years agoFix lint in test_torch.py (#17807)
Edward Yang [Tue, 12 Mar 2019 20:34:40 +0000 (13:34 -0700)]
Fix lint in test_torch.py (#17807)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17807

Lint also detected a bug in test_linspace where we weren't
actually testing the CUDA case.

Differential Revision: D14388241

fbshipit-source-id: e219e46400f4952c6b384bca3baa0724ef94acde

5 years agoUpdating submodules
svcscm [Tue, 12 Mar 2019 20:22:58 +0000 (13:22 -0700)]
Updating submodules

Reviewed By: zpao

fbshipit-source-id: 06c0f738c791cccf79025d15f1fc2076bf34fcd1

5 years agoEliminate the use of Type. (#17804)
jainkunal3004 [Tue, 12 Mar 2019 19:50:29 +0000 (12:50 -0700)]
Eliminate the use of Type. (#17804)

Summary:
Stack:
&nbsp;&nbsp;&nbsp;&nbsp;:black_circle:&nbsp; **#17804 Eliminate the use of Type.**&nbsp;&nbsp;[:yellow_heart:](https://our.intern.facebook.com/intern/diff/D14382165/)

at::CPU produces Type object which is then casted into TensorOptions, instead directly using TensorOptions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17804

Differential Revision: D14407851

Pulled By: ezyang

fbshipit-source-id: 6462d698305b7c24382c1bfd440d3227bd28d9e4

5 years agoMake Variable::set_data non-const; cosmetic fixes.
Dan Povey [Tue, 12 Mar 2019 19:37:58 +0000 (12:37 -0700)]
Make Variable::set_data non-const; cosmetic fixes.

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17761

Differential Revision: D14406603

Pulled By: ezyang

fbshipit-source-id: bc8bba73352eb4b3e21196b36522e9cec70f6676

5 years agoremove warning for upsample code (#17921)
Ailing Zhang [Tue, 12 Mar 2019 19:01:49 +0000 (12:01 -0700)]
remove warning for upsample code (#17921)

Summary:
IIRC we decided to remove warning in code in #11568. This got reverted accidentally in #14123.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17921

Differential Revision: D14422811

Pulled By: ailzhang

fbshipit-source-id: 7067264bd1d3e3b7861d29e18ade2969ed705ca1

5 years agoOptimize TileOp (#17290)
Xiaomeng Yang [Tue, 12 Mar 2019 18:54:29 +0000 (11:54 -0700)]
Optimize TileOp (#17290)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17290

Optimize TileOp

Reviewed By: wesolwsk

Differential Revision: D14145844

fbshipit-source-id: 1571fa0512218dbc48080592ede4e23903be85dd

5 years agoOptimize channel_stats_op (#16243)
Xiaomeng Yang [Tue, 12 Mar 2019 18:52:01 +0000 (11:52 -0700)]
Optimize channel_stats_op (#16243)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16243

Optimize channel_stats_op and add NHWC impl

Reviewed By: takatosp1

Differential Revision: D13775515

fbshipit-source-id: decb889e646f5316d4afefdf9f9b6bc6343613cd

5 years agoenable shape inference for elementwise operators (#17885)
Hector Yuen [Tue, 12 Mar 2019 18:51:37 +0000 (11:51 -0700)]
enable shape inference for elementwise operators (#17885)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17885

enable shape inference for elementwise operators

Reviewed By: yinghai

Differential Revision: D14411014

fbshipit-source-id: b19bcaabb2bba26fb79745ec84af0e4e5ed18ff0

5 years agoRemove remaining test jit expects redux (#17924)
Elias Ellison [Tue, 12 Mar 2019 18:25:37 +0000 (11:25 -0700)]
Remove remaining test jit expects redux (#17924)

Summary:
Trying to reland https://github.com/pytorch/pytorch/pull/17886 since it broke a build and I reverted it
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17924

Differential Revision: D14423842

Pulled By: eellison

fbshipit-source-id: f219e786bd07f7da3b7f9e866981199f5ccf6318

5 years agoHandle Scalars Better (#17875)
Elias Ellison [Tue, 12 Mar 2019 17:36:38 +0000 (10:36 -0700)]
Handle Scalars Better (#17875)

Summary:
This PR allows Scalars to be castable with `int()` and `float()`, allows scalars to match with float arguments, and prints out a better error message if `x.item()` is used as an int.

Scalars are a very uncommon case, and I don't think we want to add the maintenance burden of building out op coverage for it. It's more maintainable to better handle converting it to int/float.

Fix https://github.com/pytorch/pytorch/issues/17652

Also note: https://github.com/pytorch/pytorch/issues/16849
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17875

Differential Revision: D14411138

Pulled By: eellison

fbshipit-source-id: a4e957cefb0ffd10ddb234d92f6d1558cfce8751

5 years agoFixed a formatting issue in doc comments (#17505)
Brian Johnson [Tue, 12 Mar 2019 16:52:05 +0000 (09:52 -0700)]
Fixed a formatting issue in doc comments (#17505)

Summary:
for torch.distributed.broadcast_multigpu per issue #17243
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17505

Reviewed By: janewangfb

Differential Revision: D14373865

Pulled By: pietern

fbshipit-source-id: 6d7e91a3da50a7c9ba417ad852f7746eb5200043

5 years agoAdd nbytes, itemsize, element_size to at::Tensor. (#17810)
Edward Yang [Tue, 12 Mar 2019 16:45:06 +0000 (09:45 -0700)]
Add nbytes, itemsize, element_size to at::Tensor. (#17810)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17810

Partially addresses #12728. Also, switch the element_size bindings
to use the new function, rather than the method on Type.

We don't add Python bindings yet, as they need to be special
(they will be properties.)

Differential Revision: D14388790

fbshipit-source-id: 294183d0c8a59b0c13f2bf21d6f1cd557333e83b

5 years agoFix lint in test_distributions.py
Edward Yang [Tue, 12 Mar 2019 16:28:43 +0000 (09:28 -0700)]
Fix lint in test_distributions.py

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17821

Differential Revision: D14392899

fbshipit-source-id: 99f75b1d3a71bde8050caef8df7e5b9ecfe0c755

5 years agoFix lint in test_jit.py
Edward Yang [Tue, 12 Mar 2019 16:17:16 +0000 (09:17 -0700)]
Fix lint in test_jit.py

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17823

Differential Revision: D14392996

fbshipit-source-id: b9aa83898768c929e753c0f17bb09a54d724ae4d

5 years agoFix lint errors in test_autograd
Edward Yang [Tue, 12 Mar 2019 15:46:52 +0000 (08:46 -0700)]
Fix lint errors in test_autograd

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17812

Reviewed By: eellison

Differential Revision: D14388897

fbshipit-source-id: 6e2671805dc8d57af68eb0a0cd6ccb24d9db45e2

5 years agoAdded a few extra python bindings to help with walking the IR graph from Python ...
Andras Tantos [Tue, 12 Mar 2019 15:46:16 +0000 (08:46 -0700)]
Added a few extra python bindings to help with walking the IR graph from Python (#17822)

Summary:
These changes add the following new Python bindings:

- Values have a 'type' property now that allows getting to the 'type' object
- Blocks have now inputs and outputs as well as returnNode and paramNode properties
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17822

Differential Revision: D14410123

Pulled By: ezyang

fbshipit-source-id: 64ef79f85a7a43b83e4b127b1d39efcaa64b74dc

5 years agokthvalue consistency with sort in the presence of NaN (#17824)
Thomas Viehmann [Tue, 12 Mar 2019 15:45:17 +0000 (08:45 -0700)]
kthvalue consistency with sort in the presence of NaN (#17824)

Summary:
This PR causes kthvalue to be consistent with sort
(i.e. treat NaN as larger than any number), so that
`a.kthvalue(n) == a.sort()[n - 1]`.

One drawback is that median with a NaN argument does not return NaN,
which is a deviation from NumPy.

Thank you, ngimel, for raising this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17824

Differential Revision: D14410092

Pulled By: ezyang

fbshipit-source-id: bdec2d8272dc4c65bcf2f9b8995e237774c44c02

5 years agoFix minor grammatical mistakes in torch/nn/modules/loss.py (#17892)
joy [Tue, 12 Mar 2019 15:39:37 +0000 (08:39 -0700)]
Fix minor grammatical mistakes in torch/nn/modules/loss.py (#17892)

Summary:
Fixes some minor grammatical mistakes in the doc of `loss.py`.

I think in the doc:
>  Note that for some losses, there multiple elements per sample.

the "are" is lost between "there" and "multiple".

This mistake takes place in all the descriptions of parameter `size_average` and there are 17 of them.
It's minor but perfects the doc I think. 😁
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17892

Differential Revision: D14418177

Pulled By: ezyang

fbshipit-source-id: 412759f2f9b215819463bf8452ab0e0513218cd6

5 years agoRemove (almost all) TensorOptions from native_functions.yaml (#17385)
Christian Puhrsch [Tue, 12 Mar 2019 14:54:17 +0000 (07:54 -0700)]
Remove (almost all) TensorOptions from native_functions.yaml (#17385)

Summary:
Stacked on top of https://github.com/pytorch/pytorch/pull/17386

Brings us to 1014/1106 of writing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17385

Differential Revision: D14248008

Pulled By: cpuhrsch

fbshipit-source-id: 033e00de91e3edf7ae01ca03ebe436c0446b3b5c

5 years agoRestore full Windows tests (#17102)
Karl Ostmo [Tue, 12 Mar 2019 13:28:54 +0000 (06:28 -0700)]
Restore full Windows tests (#17102)

Summary:
closes #17101
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17102

Differential Revision: D14420716

Pulled By: ezyang

fbshipit-source-id: 0134736e2d919afa683afa84cb2140f659042643

5 years agoPrevent VS2017 from emitting ambiguous symbol errors (second time)
peter [Tue, 12 Mar 2019 08:53:42 +0000 (01:53 -0700)]
Prevent VS2017 from emitting ambiguous symbol errors (second time)

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17863

Differential Revision: D14404818

Pulled By: soumith

fbshipit-source-id: 9dac6b926e270e2a29ec2e4dba2e93984da0e5f5

5 years agoFix windows test hang (#17778)
xuzhu [Tue, 12 Mar 2019 08:43:45 +0000 (01:43 -0700)]
Fix windows test hang (#17778)

Summary:
This PR resolves two concurrent issues discovered when running the test in windows. Details about the windows test can be found here: https://github.com/pytorch/pytorch/issues/17609

The change covers two fixes:
1. update running_preloaders_ upfront before creating worker thread to prevent underflow.
2. add a lock when updating stop_ to prevent dead lock in condition variable cv_write_.

The fix has been tested on both Windows and Linux. With --gtest_repeat=1000, the tests runs smoothly without issues.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17778

Differential Revision: D14404910

Pulled By: soumith

fbshipit-source-id: 2fbb8007e4b0bce4613e9a9fd31b8aace1bbfa8d

5 years agotorch.btrifact for tensors with greater than 3 dimensions (#14964)
vishwakftw [Tue, 12 Mar 2019 08:42:28 +0000 (01:42 -0700)]
torch.btrifact for tensors with greater than 3 dimensions (#14964)

Summary:
Motivation:
- Earlier, `torch.btrifact` could not handle tensors with greater than 3 dimensions. This is because of the check:
>   AT_CHECK(THTensor_(nDimension)(a) == 3, "expected 3D tensor, got size: ", a->sizes());

What is in this PR?:
- Move `btrifact` to ATen
- Remove relation to TH/THC.
- Handle tensors with more than three dimensions
- Tests
- Docs modifications: added a note about the non-pivoting variant.

[blocked due to old magma-cuda binaries]
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14964

Differential Revision: D14405106

Pulled By: soumith

fbshipit-source-id: f051f5d6aaa45f85836a2867176c065733563184

5 years agoSmall clean up of aten_op
Roy Li [Tue, 12 Mar 2019 04:01:21 +0000 (21:01 -0700)]
Small clean up of aten_op

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17530

Reviewed By: ezyang

Differential Revision: D14237931

fbshipit-source-id: fb73d63d89fab0622097a49be6ed0b75ddb02a7c

5 years agoadd support for parsing class defs to the string frontend (#17628)
Michael Suo [Tue, 12 Mar 2019 02:07:58 +0000 (19:07 -0700)]
add support for parsing class defs to the string frontend (#17628)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17628

This is not hooked up anywhere yet, just adding support.
This shares the same restrictions as the python frontend—namely, that the only exprs allowed right now are method defs.

Reviewed By: shannonzhu

Differential Revision: D14291654

fbshipit-source-id: 7798e5ff412a52ef8803c7bae8f439e50968a73a

5 years agoadd test for out of order methods (#17624)
Michael Suo [Tue, 12 Mar 2019 02:07:57 +0000 (19:07 -0700)]
add test for out of order methods (#17624)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17624

Just to make sure this path works

Reviewed By: shannonzhu

Differential Revision: D14288056

fbshipit-source-id: b719c0e90252b6821b1f9b22d3d98982985a6cb3

5 years agoinitializing class value (#17585)
Michael Suo [Tue, 12 Mar 2019 02:07:57 +0000 (19:07 -0700)]
initializing class value (#17585)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17585

Create a sugared value that represents a class during initialization. This is
so that assignments to attributes correctly define attributes in __init__ but
raise an error elsewhere.

Reviewed By: shannonzhu

Differential Revision: D14263403

fbshipit-source-id: 09b2feeb272302f00a79c2a0302fbdf5483aed6a

5 years agoRemove unused parameter in ProcessGroupGloo (#17718)
Pieter Noordhuis [Tue, 12 Mar 2019 00:57:56 +0000 (17:57 -0700)]
Remove unused parameter in ProcessGroupGloo (#17718)

Summary:
This is not used anywhere and wasn't cleaned up prior to 1.0.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17718

Reviewed By: janewangfb

Differential Revision: D14355154

Pulled By: pietern

fbshipit-source-id: f8ff3c8f50cd6365b369a5c5b85d72d8940df048

5 years agoRevert D14414435: [pytorch][PR] Remove remaining IR Expect files
Elias Ellison [Tue, 12 Mar 2019 00:27:50 +0000 (17:27 -0700)]
Revert D14414435: [pytorch][PR] Remove remaining IR Expect files

Differential Revision:
D14414435

Original commit changeset: 0bfd7ce66ac2

fbshipit-source-id: 02de1814f3c4e581d3798059cee752517b176ed9

5 years agoRemove remaining IR Expect files (#17886)
Elias Ellison [Tue, 12 Mar 2019 00:23:27 +0000 (17:23 -0700)]
Remove remaining IR Expect files (#17886)

Summary:
Last batch of IR expect files removed. Includes some removal of expect files that are no longer used.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17886

Differential Revision: D14414435

Pulled By: eellison

fbshipit-source-id: 0bfd7ce66ac2f72a57f15f45ebd60b95e80b6c16

5 years agoBool tensor creation (cpu) (#17376)
Iurii Zdebskyi [Mon, 11 Mar 2019 23:58:09 +0000 (16:58 -0700)]
Bool tensor creation (cpu) (#17376)

Summary:
This PR enables bool tensor creation and some basic operations for the CPU backend. This is a part of Bool Tensor feature implementation work. The whole plan looks like this:
    1. Storage Implementation [Done]
    2. Tensor Creation.
        a) CPU (this PR)
        b) CUDA
    3. Tensor Conversions.
    4. Tensor Indexing.
    5. Tensor Operations.
    6. Back compatibility related changes.

**Change**:
Enable CPU tensors and these operations:
- torch.zeros
- torch.tensor
- torch.ones
- torch.randint
- torch.full
- torch.full_like
- torch.empty
- torch.empty_like

**Tested via**:
1) unit tests

2)
torch.zeros(2,2, dtype=torch.bool)
torch.tensor([True, False], dtype=torch.bool)
torch.tensor([-1, -1.1, 0, 1, 1.1, 2], dtype=torch.bool)
torch.ones([1,2], dtype=torch.bool)
torch.randint(10, (2, 2), dtype=torch.bool)
torch.full((2, 3), True, dtype=torch.bool)
torch.empty(4, dtype=torch.bool)

a = torch.tensor([0,0,1])
b = torch.full_like(a, True)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17376

Reviewed By: ezyang

Differential Revision: D14375995

Pulled By: izdeby

fbshipit-source-id: a65490b5360ee0e6e3accc54ce7e32e49ad2d2a8

5 years agoRemove device guard from TypeDefault::copy()
Roy Li [Mon, 11 Mar 2019 22:50:45 +0000 (15:50 -0700)]
Remove device guard from TypeDefault::copy()

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17833

Reviewed By: ezyang

Differential Revision: D14400901

Pulled By: li-roy

fbshipit-source-id: ababc95dadfc94a996a80c5332f45f76a300963d

5 years agore-enable torch.split tests (#17859)
Michael Suo [Mon, 11 Mar 2019 22:09:00 +0000 (15:09 -0700)]
re-enable torch.split tests (#17859)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17859

this has been fixed due to improvements in shape analysis

Reviewed By: driazati

Differential Revision: D14402781

fbshipit-source-id: 4ef2722ffedd9c8ac1eff55c244b421d7d3715ed

5 years agoFix lint in test_dataloader.py
Edward Yang [Mon, 11 Mar 2019 21:42:49 +0000 (14:42 -0700)]
Fix lint in test_dataloader.py

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17878

Reviewed By: eellison

Differential Revision: D14409933

fbshipit-source-id: 20ee8953a21e29b4557aff62b5e48dddd630eef6