platform/upstream/pytorch.git
5 years agofix lint errors in gen.py (#19221)
Jerry Zhang [Sat, 13 Apr 2019 01:10:37 +0000 (18:10 -0700)]
fix lint errors in gen.py (#19221)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19221

att

Reviewed By: colesbury

Differential Revision: D14923858

fbshipit-source-id: 4793d7794172d401455c5ce72dfc27dddad515d4

5 years agoAdd pass registration mechanism (#18587)
Bram Wasti [Fri, 12 Apr 2019 21:53:17 +0000 (14:53 -0700)]
Add pass registration mechanism (#18587)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18587
ghimport-source-id: 80d753f7046a2a719e0c076684f44fa2059a0921

Differential Revision: D14901227

Pulled By: bwasti

fbshipit-source-id: 56511d0313419b63945a36b80e9ea51abdef2bd4

5 years agoJIT Layernorm fusion (#18266)
Wanchao Liang [Fri, 12 Apr 2019 21:24:37 +0000 (14:24 -0700)]
JIT Layernorm fusion (#18266)

Summary:
Partially fuse layer_norm by decomposing layer_norm into the batchnorm kernel that computes the stats, and then fusing the affine operations after the reduce operations, this is similar to the batchnorm fusion that apaszke did, it also only works in inference mode now.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18266

Differential Revision: D14879877

Pulled By: wanchaol

fbshipit-source-id: 0197d8f2a17ec438d3e53f4c411d759c1ae81efe

5 years agoAdd more debugging helper to net transformer (#19176)
Yinghai Lu [Fri, 12 Apr 2019 21:23:06 +0000 (14:23 -0700)]
Add more debugging helper to net transformer (#19176)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19176

Add some amenities for debugging.

Reviewed By: llyfacebook

Differential Revision: D14901740

fbshipit-source-id: 2c4018fdbf7e3aba2a754b6b4103a72893c229c2

5 years agoAdd Quantized Backend (#18546)
Jerry Zhang [Fri, 12 Apr 2019 19:47:39 +0000 (12:47 -0700)]
Add Quantized Backend (#18546)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18546

We'll expose all combinations of various ways of quantization in the top level dispatch key, that is we have AffineCPUTensor, PerChannelAffineCUDATensor, etc.

QTensor method added:
- is_quantized()
- item()

Differential Revision: D14637671

fbshipit-source-id: 346bc6ef404a570f0efd34e8793056ad3c7855f5

5 years agoStep 2: Rename _unique_dim2_temporary_will_remove_soon to unique_dim (#18649)
Xiang Gao [Fri, 12 Apr 2019 19:34:29 +0000 (12:34 -0700)]
Step 2: Rename _unique_dim2_temporary_will_remove_soon to unique_dim (#18649)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18649
ghimport-source-id: 3411d240a6af5fe299a889667964730184e30645

Differential Revision: D14888292

Pulled By: VitalyFedyunin

fbshipit-source-id: 80da83c264598f74ab8decb165da4a1ce2b352bb

5 years agoFix onnx ints (#19102)
Lu Fang [Fri, 12 Apr 2019 18:58:06 +0000 (11:58 -0700)]
Fix onnx ints (#19102)

Summary:
If JIT constant propagation doesn't work, we have to handle the ListConstructor in symbolic.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19102

Reviewed By: zrphercule

Differential Revision: D14875588

Pulled By: houseroad

fbshipit-source-id: d25c847d224d2d32db50aae1751100080e115022

5 years agouse C10_REGISTER for GELU op
Huamin Li [Fri, 12 Apr 2019 18:38:02 +0000 (11:38 -0700)]
use C10_REGISTER for GELU op

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/19090

Reviewed By: BIT-silence

Differential Revision: D14864737

fbshipit-source-id: 8debd53171f7068726f0ab777a13ca46becbfbdf

5 years agoFix tabs lint. (#19196)
Edward Yang [Fri, 12 Apr 2019 18:13:39 +0000 (11:13 -0700)]
Fix tabs lint. (#19196)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19196
ghimport-source-id: c10b1b19b087d7650e1614f008a9c2db21dfec2f

Differential Revision: D14913428

Pulled By: ezyang

fbshipit-source-id: 815b919d8e4516d0e5d89ebbdc4dff6d1d08da47

5 years agoPin nvidia-container-runtime version (#19195)
Will Feng [Fri, 12 Apr 2019 16:57:51 +0000 (09:57 -0700)]
Pin nvidia-container-runtime version (#19195)

Summary:
This PR is to fix the CI error:
```
nvidia-docker2 : Depends: nvidia-container-runtime (= 2.0.0+docker18.09.4-1) but 2.0.0+docker18.09.5-1 is to be installed
E: Unable to correct problems, you have held broken packages.
Exited with code 100
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19195

Differential Revision: D14913104

Pulled By: yf225

fbshipit-source-id: d151205f5ffe9cac7320ded3c25baa7e051c3623

5 years agoOne more fix for #18790
peter [Fri, 12 Apr 2019 16:25:55 +0000 (09:25 -0700)]
One more fix for #18790

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/19187

Differential Revision: D14913100

Pulled By: ezyang

fbshipit-source-id: bf147747f933a2c9a35f3ff00bf6b83a4f29286c

5 years agoFix promoteTypes for QInt types (#19182)
Jerry Zhang [Fri, 12 Apr 2019 02:38:21 +0000 (19:38 -0700)]
Fix promoteTypes for QInt types (#19182)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19182

This is a bug discovered by zafartahirov, right now if one of the tensor is QInt
type we'll return undefined, but actually we want to allow ops that accepts
Tensors of the same QInt type to work.

Reviewed By: zafartahirov

Differential Revision: D14909172

fbshipit-source-id: 492fd6403da8c56e180efe9d632a3b7fc879aecf

5 years agoReplace more usages of Type with DeprecatedTypeProperties (#19093)
Roy Li [Thu, 11 Apr 2019 23:55:39 +0000 (16:55 -0700)]
Replace more usages of Type with DeprecatedTypeProperties (#19093)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19093
ghimport-source-id: a82e3dce912a173b42a6a7e35eb1302d9f334e03

Differential Revision: D14865520

Pulled By: li-roy

fbshipit-source-id: b1a8bf32f87920ce8d82f990d670477bc79d0ca7

5 years agoSupport attributes when copying modules (#19040)
David Riazati [Thu, 11 Apr 2019 22:33:51 +0000 (15:33 -0700)]
Support attributes when copying modules (#19040)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19040
ghimport-source-id: 37933efd717795751283cae8141e2e2caaae2e95

Reviewed By: eellison

Differential Revision: D14895573

Pulled By: driazati

fbshipit-source-id: bc2723212384ffa673d2a8df2bb57f38c62cc104

5 years agoMove version_counter_ to TensorImpl (#18223)
Will Feng [Thu, 11 Apr 2019 22:09:35 +0000 (15:09 -0700)]
Move version_counter_ to TensorImpl (#18223)

Summary:
According to https://github.com/pytorch/pytorch/issues/13638#issuecomment-468055428, after the Variable/Tensor merge, we may capture variables without autograd metadata inside an autograd function, and we need a working version counter in these cases. This PR makes it possible by moving `version_counter_` out of autograd metadata and into TensorImpl, so that variables without autograd metadata still have version counters.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18223

Differential Revision: D14735123

Pulled By: yf225

fbshipit-source-id: 15f690311393ffd5a53522a226da82f5abb6c65b

5 years agoEnable comp ops for bool tensor (#19109)
Iurii Zdebskyi [Thu, 11 Apr 2019 21:25:21 +0000 (14:25 -0700)]
Enable comp ops for bool tensor (#19109)

Summary:
Enabled comparison ops for bool tensors
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19109

Differential Revision: D14871187

Pulled By: izdeby

fbshipit-source-id: cf9951847d69124a93e5e21dd0a39c9568b1037d

5 years agoChange is_variable() to check existence of AutogradMeta, and remove is_variable_...
Will Feng [Thu, 11 Apr 2019 20:32:45 +0000 (13:32 -0700)]
Change is_variable() to check existence of AutogradMeta, and remove is_variable_ (#19139)

Summary:
Currently, a TensorImpl's `is_variable_` is true if and only if the TensorImpl has AutogradMeta. This PR unifies these two concepts by removing `is_variable_` and change `is_variable()` to check existence of AutogradMeta instead.

Removing `is_variable_` is part of the work in Variable/Tensor merge.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19139

Differential Revision: D14893339

Pulled By: yf225

fbshipit-source-id: ceb5e22c3c01f79b5d21d5bdbf4a7d1bc397796a

5 years agoFirst class modules in the compiler, round 2 (#19167)
Zachary DeVito [Thu, 11 Apr 2019 20:30:42 +0000 (13:30 -0700)]
First class modules in the compiler, round 2 (#19167)

Summary:
This PR propagates where we use first-class modules objects into the compiler. This creates a transitionary state where:

* compiler.cpp creates Graphs where `self` is a Module class and attributes/parameters/buffers/submodules are looked up with `prim::GetAttr`
* GraphExecutor still runs "lowered graphs" where the self object has been removed by a compiler pass `lower_first_class_method`.
* Tracing still creates "lowered graphs", and a pass "lift_lowered_method" creates a first-class method graph for things.

* This PR separates out Method and Function. A script::Function is a pure Graph with no `self` bound.  Similar to Python, a script::Method is just a bound `self` and its underlying `script::Function`.
* This PR also separates CompilationUnit from Module. A CompilationUnit is just a list of named script::Functions.  Class's have a CompilationUnit holding the class methods, and Modules also have a CompilationUnit holding their Methods. This avoids the weird circular case Module --has a-> Class -> has a -> Module ...

Details:
* In this transitionary state, we maintain two copies of a Graph, first-class module and lowered. Th first-class one has a self argument that is the module's class type. The lowered one is the lowered graph that uses the initial_ivalues inputs.
* When defining lowered methods using `_defined_lowered` we immediately create the first-class equivalent. The reverse is done lazily, creating lowered_methods on demand from the class.
* The two way conversions will be deleted in a future PR when the executor itself runs first-class objects. However this requires more changes to (1) the traces, (2) the python bindings, and (3) the onnx export pass and would make this PR way to large.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19167

Differential Revision: D14891966

Pulled By: zdevito

fbshipit-source-id: 0b5f03118aa65448a15c7a7818e64089ec93d7ea

5 years agoMaterialize a non-default device for C2 legacy storage. (#18605)
Gregory Chanan [Thu, 11 Apr 2019 20:22:49 +0000 (13:22 -0700)]
Materialize a non-default device for C2 legacy storage. (#18605)

Summary:
It's not intended that Storages have 'default' CUDA devices, but this is allowable via the Storage::create_legacy codepath.

This also messages with device_caching, because the initial cache is obtained from the Storage, which may have a 'default' device.

Instead, we materialize a device by allocating 0 bytes via the allocator.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18605

Differential Revision: D14680620

Pulled By: gchanan

fbshipit-source-id: 6d43383d836e90beaf12bfe37c3f0506843f5432

5 years agoAllow empty net type (#19154)
Yinghai Lu [Thu, 11 Apr 2019 19:28:32 +0000 (12:28 -0700)]
Allow empty net type (#19154)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19154

I recently saw some weird workflow error due to empty but set net_type. Maybe we should just fallback to simple net in this case.

Reviewed By: dzhulgakov

Differential Revision: D14890072

fbshipit-source-id: 4e9edf8232298000713bebb0bfdec61e9c5df17d

5 years agoSkip Slice if it's no op (#19155)
Lu Fang [Thu, 11 Apr 2019 19:23:30 +0000 (12:23 -0700)]
Skip Slice if it's no op (#19155)

Summary:
If it's identity op, just skip the slice and return the input.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19155

Reviewed By: zrphercule

Differential Revision: D14890238

Pulled By: houseroad

fbshipit-source-id: f87b93df2cca0cb0e8ae2a1d95ba148044eafd4a

5 years agoRename ONNX util test names (#19153)
Lu Fang [Thu, 11 Apr 2019 18:15:47 +0000 (11:15 -0700)]
Rename ONNX util test names (#19153)

Summary:
Rename test cases.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19153

Reviewed By: zrphercule

Differential Revision: D14890095

Pulled By: houseroad

fbshipit-source-id: 37a787398c88d9cc92b411c2355b43200cf1c4b0

5 years agoRemove ProcessGroup::getGroupRank (#19147)
Pieter Noordhuis [Thu, 11 Apr 2019 16:14:31 +0000 (09:14 -0700)]
Remove ProcessGroup::getGroupRank (#19147)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19147

After #14809 was merged there is no longer a need for getGroupRank.
Every ProcessGroup object has its own rank and size fields which are
accurate for the global group as well as subgroups.

Strictly speaking removing a function in a minor version bump is a big
no-no, but I highly doubt this was ever used outside of
`torch.distributed` itself. This will result in a compile error for
folks who have subclassed the ProcessGroup class though.

If this is a concern we can delay merging until a later point in time,
but eventually this will need to be cleaned up.

Differential Revision: D14889736

fbshipit-source-id: 3846fe118b3265b50a10ab8b1c75425dad06932d

5 years agoBasic implementation of QRelu in C10 (#19091)
Zafar Takhirov [Thu, 11 Apr 2019 15:29:52 +0000 (08:29 -0700)]
Basic implementation of QRelu in C10 (#19091)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19091

Implements a basic quantized ReLU (uint8). This is a temporary solution before using the `QTensor` type instead of the tuple.

Reviewed By: dzhulgakov

Differential Revision: D14565413

fbshipit-source-id: 7d53cf5628cf9ec135603d6a1fb7c79cd9383019

5 years agoImport MultiheadAttention to PyTorch (#18334)
Guanheng Zhang [Thu, 11 Apr 2019 15:04:32 +0000 (08:04 -0700)]
Import MultiheadAttention to PyTorch (#18334)

Summary:
Import MultiheadAttention into the core pytorch framework.
Users now can import MultiheadAttention directly from torch.nn.
See "Attention Is All You Need" for more details related to MultiheadAttention function.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18334

Differential Revision: D14577966

Pulled By: zhangguanheng66

fbshipit-source-id: 756c0deff623f3780651d9f9a70ce84516c806d3

5 years agotry to enable uncertainty for lr loss (#17236)
Xing Wang [Thu, 11 Apr 2019 14:27:46 +0000 (07:27 -0700)]
try to enable uncertainty for lr loss (#17236)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17236

Following the paper in https://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf, approximate the classification case with the regression formulation. For the LRLoss, add penalty based on the variance and regularization on the variance with a tunable parameter lambda.

Reviewed By: chocjy

Differential Revision: D14077106

fbshipit-source-id: 4405d8995cebdc7275a0dd07857d32a8915d78ef

5 years agoRemove comment (#19148)
sakaia@jp.fujitsu.com [Thu, 11 Apr 2019 13:58:46 +0000 (06:58 -0700)]
Remove comment (#19148)

Summary:
Remove pointer to nonexistent Note.
It is already removed in "Remove support for CUDNN 6 (#15851)"
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19148

Differential Revision: D14891514

Pulled By: soumith

fbshipit-source-id: dd33cfefa3a21e18afae5b3992dea085adaabda8

5 years agoRevert D14842057: Compiler uses first-class modules**
Zachary DeVito [Thu, 11 Apr 2019 13:14:21 +0000 (06:14 -0700)]
Revert D14842057: Compiler uses first-class modules**

Differential Revision:
D14842057

Original commit changeset: ca6e7b5a4380

fbshipit-source-id: e8f1862a59bf20d5f78648b2fdc53a8b3750ead3

5 years agoCompiler uses first-class modules** (#19043)
Zachary DeVito [Thu, 11 Apr 2019 06:57:36 +0000 (23:57 -0700)]
Compiler uses first-class modules** (#19043)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19043
ghimport-source-id: 0c9e80d5f35654af6d472abd5643bff3e9eb9ddf

Differential Revision: D14842057

Pulled By: zdevito

fbshipit-source-id: ca6e7b5a43805240f40b84d30e54495061067dc0

5 years agoRequire matches_jit_signature within native_functions.yaml (#18956)
Christian Puhrsch [Thu, 11 Apr 2019 06:32:51 +0000 (23:32 -0700)]
Require matches_jit_signature within native_functions.yaml (#18956)

Summary:
"""
This will verify that the func syntax follows the JIT signature schema. If you are a developer outside the core team, set this to False first to help us track unification. After your tests pass try setting this to True once and leave it set to True if it doesn't trigger any asserts. This means that your signature happens to be compliant. In general, it serves as a means of tracking an ongoing schema unification with the goal of aligning func syntax with other components of PyTorch in order to reduce overall complexity and assert coverage of all functions by each component.
"""
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18956

Differential Revision: D14807952

Pulled By: cpuhrsch

fbshipit-source-id: 42dac49269fb3cd96dc62e0b10820d0c32c7fb0e

5 years agoadd/move a few apis in torch.hub (#18758)
Ailing Zhang [Thu, 11 Apr 2019 06:05:10 +0000 (23:05 -0700)]
add/move a few apis in torch.hub (#18758)

Summary:
* `torch.hub.list('pytorch/vision')` - show all available hub models in `pytorch/vision`
* `torch.hub.show('pytorch/vision', 'resnet18')` - show docstring & example for `resnet18` in `pytorch/vision`
* Moved `torch.utils.model_zoo.load_url` to `torch.hub.load_state_dict_from_url` and deprecate `torch.utils.model_zoo`
* We have too many env to control where the cache dir is, it's not very necessary. I actually want to unify `TORCH_HUB_DIR`, `TORCH_HOME` and `TORCH_MODEL_ZOO`, but haven't done it. (more suggestions are welcome!)
* Simplify `pytorch/vision` example in doc, it was used to show how how hub entrypoint can be written so had some confusing unnecessary args.

An example of hub usage is shown below
```

In [1]: import torch

In [2]: torch.hub.list('pytorch/vision', force_reload=True)
Downloading: "https://github.com/pytorch/vision/archive/master.zip" to /private/home/ailzhang/.torch/hub/master.zip
Out[2]: ['resnet18', 'resnet50']

In [3]: torch.hub.show('pytorch/vision', 'resnet18')
Using cache found in /private/home/ailzhang/.torch/hub/vision_master

    Resnet18 model
    pretrained (bool): a recommended kwargs for all entrypoints
    args & kwargs are arguments for the function

In [4]: model = torch.hub.load('pytorch/vision', 'resnet18', pretrained=True)
Using cache found in /private/home/ailzhang/.torch/hub/vision_master
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18758

Differential Revision: D14883651

Pulled By: ailzhang

fbshipit-source-id: 6db6ab708a74121782a9154c44b0e190b23e8309

5 years agoRevert D14878128: [jit] Support attributes when copying modules
Pieter Noordhuis [Thu, 11 Apr 2019 05:21:45 +0000 (22:21 -0700)]
Revert D14878128: [jit] Support attributes when copying modules

Differential Revision:
D14878128

Original commit changeset: 7ef5f7b1b16b

fbshipit-source-id: 3818222a897f8c01bc67f550ed0fd3ddecf61015

5 years agoProcessGroupMPI exists only if it is valid (#14809)
Pieter Noordhuis [Thu, 11 Apr 2019 04:27:51 +0000 (21:27 -0700)]
ProcessGroupMPI exists only if it is valid (#14809)

Summary:
Previously, MPI process groups were created for all processes, even if
they were not part of the created group. Their MPI_Comm member field
would be MPI_COMM_NULL and they would ignore any calls. Their rank and
size were identical to that of the global process group and they had a
special groupRank and groupSize field to capture the _real_ rank.

This also meant assymetry with other process group types, where creating
a new group would either return the process group OR
GroupMember.NON_GROUP_MEMBER. For the MPI process group, it would always
return a process group and an additional check was needed to verify
whether or not a process was indeed part of a process group or not.

This commit changes this such that every MPI process group is a valid
process group, and by extension that we no longer have to special case
MPI to determine whether or not a process is part of a group. Now, if
the value returned by `new_group` is GroupMember.NON_GROUP_MEMBER, the
process is not a member, otherwise it is.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14809

Differential Revision: D14887937

Pulled By: pietern

fbshipit-source-id: c5bf86d3b33e524cc5004ee68e30103178fa491d

5 years agoFix flaky store timeout test (#19114)
Shen Li [Thu, 11 Apr 2019 03:30:46 +0000 (20:30 -0700)]
Fix flaky store timeout test (#19114)

Summary:
~Sometimes, `init_process_group()`, `store.get()`, and `destory_process_group()` can take more than a few seconds. Hence, removing thread join timeout.~

The error was due to `Address already in use` when starting TPC backend. The solution is to catch the error and report it to the `retry_on_address_already_in_use_error` decorator.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19114

Reviewed By: ezyang

Differential Revision: D14872680

Pulled By: mrshenli

fbshipit-source-id: fc504d02853ca73f76288c0ade564ab20bc01f7e

5 years agoOptimize SoftmaxOp on CPU (#18635)
Xiaomeng Yang [Thu, 11 Apr 2019 01:45:57 +0000 (18:45 -0700)]
Optimize SoftmaxOp on CPU (#18635)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18635

Optimize SoftmaxOp on CPU

Reviewed By: houseroad

Differential Revision: D14689516

fbshipit-source-id: d2dcee2476d1a3a21f428e99bce9835f1d229d64

5 years agoAllow Tensor lists to show up in symbolic differentiable graphs. (#16784)
Zachary DeVito [Thu, 11 Apr 2019 01:12:38 +0000 (18:12 -0700)]
Allow Tensor lists to show up in symbolic differentiable graphs. (#16784)

Summary:
It is done by flattening all tensor lists that are inputs/outputs to the
graph into the inputs/outputs list in the autograd graph.

This is less desirable than simply allowing IValues to exist in the
inputs/outputs of autograd::Function but it is substantially less
intrusive.

CaptureList describes the variables captured for backward in a single class.
UnpackInstructs describes how the flattened inputs to backwards are re-packed into lists.
ailzhang

This PR is also part 2 of covering maskrcnn & bert AD formulas, following #16689.

Ops added in this PR:
```
cat
index
meshgrid
reshape
split
split_with_sizes
stack
unbind
```
I will also add a few perf numbers here.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16784

Differential Revision: D14104063

Pulled By: ailzhang

fbshipit-source-id: 5ceadadfd67ccaac60c5fd6740786c5354e252b9

5 years agoSupport attributes when copying modules (#19040)
David Riazati [Wed, 10 Apr 2019 22:56:42 +0000 (15:56 -0700)]
Support attributes when copying modules (#19040)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19040
ghimport-source-id: 37933efd717795751283cae8141e2e2caaae2e95

Differential Revision: D14878128

Pulled By: driazati

fbshipit-source-id: 7ef5f7b1b16b9bf9254e8503564fa3a750d841ab

5 years agoMove ConcatBatchMatMulBatchGatherOp to OSS
Hao Lu [Wed, 10 Apr 2019 22:20:55 +0000 (15:20 -0700)]
Move ConcatBatchMatMulBatchGatherOp to OSS

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/19059

Reviewed By: bwasti

Differential Revision: D14849735

fbshipit-source-id: fefd1887d38e51151c07a8b187e9c7c50ef02c6e

5 years agoPrint CuDNN version correctly. (#19110)
Edward Yang [Wed, 10 Apr 2019 21:09:35 +0000 (14:09 -0700)]
Print CuDNN version correctly. (#19110)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19110
ghimport-source-id: efbaf9b23cb61e7ea65460684778c6eeb38ae28e

Differential Revision: D14874497

Pulled By: ezyang

fbshipit-source-id: ced03576f7598189dd8cce79b3303a5529551f46

5 years agoInfer device from pointer in from_blob (#19094)
Roy Li [Wed, 10 Apr 2019 19:47:51 +0000 (12:47 -0700)]
Infer device from pointer in from_blob (#19094)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19094
ghimport-source-id: 8207cf614ba36333af610309b24fdc13441b2837

Differential Revision: D14865925

Pulled By: li-roy

fbshipit-source-id: 16613801f7fe0e829ccab8af081517ea4257db06

5 years agoimplement operators for DNNLOWP (#18656)
Gu, Jinghui [Wed, 10 Apr 2019 18:58:38 +0000 (11:58 -0700)]
implement operators for DNNLOWP (#18656)

Summary:
Implement operators for DNNLOWP, including int8_conv, int8_FC, int8_pooling, int8_relu, int8_sum, quantize/dequantize, and order_swtich operators.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18656

Differential Revision: D14767092

Pulled By: yinghai

fbshipit-source-id: 1f3e24929a358a42214da333bd304c593ea4468f

5 years agoImprove mismatched storage error message. (#19068)
Gregory Chanan [Wed, 10 Apr 2019 18:46:35 +0000 (11:46 -0700)]
Improve mismatched storage error message. (#19068)

Summary:
Previously the error message would look like:
```
Attempted to set the storage of a tensor on device cuda:0 to a storage on different device cuda. This is no longer allowed; the devices must match.
```

Now it looks like:
```
Attempted to set the storage of a tensor on device "cuda:0" to a storage on different device "cuda". This is no longer allowed; the devices must match.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19068

Reviewed By: dzhulgakov

Differential Revision: D14854257

Pulled By: gchanan

fbshipit-source-id: deb1ef73c2fcbf9338e7d67f2856282db2befac8

5 years agoRefactor pickler (#19035)
David Riazati [Wed, 10 Apr 2019 18:20:44 +0000 (11:20 -0700)]
Refactor pickler (#19035)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19035
ghimport-source-id: 553977b9963d4877e5066a61702f887e81706598

Differential Revision: D14839341

Pulled By: driazati

fbshipit-source-id: d6e4f21b2df28e2a0a21b26bf08d9905599119ad

5 years agoFixed bool Tensor value change bug (#19096)
iurii zdebskyi [Wed, 10 Apr 2019 18:05:54 +0000 (11:05 -0700)]
Fixed bool Tensor value change bug (#19096)

Summary:
Fixes #19077
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19096

Differential Revision: D14871044

Pulled By: izdeby

fbshipit-source-id: 61b12559c8c5b9613e00ba5933f478321ea80469

5 years agoSplit python_ir.h in a more sensible way (#19081)
Dmytro Dzhulgakov [Wed, 10 Apr 2019 17:13:59 +0000 (10:13 -0700)]
Split python_ir.h in a more sensible way (#19081)

Summary:
Files included in libtorch do depend on torch/csrc/utils/object_ptr.h, e.g. ir.cpp: https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/ir.h#L10 (including usage in std::vector that requires destructor for THPPointer)

However, object_ptr.h depends on python stub: https://github.com/pytorch/pytorch/blob/master/torch/csrc/utils/object_ptr.h#L3

Whereas object_ptr.cpp depends full on on python: https://github.com/pytorch/pytorch/blob/master/torch/csrc/utils/object_ptr.cpp#L8

`torch/csrc/utils/object_ptr.cpp` is included only in Python extension target: https://github.com/pytorch/pytorch/blob/master/torch/CMakeLists.txt#L541

The only reason it was working on master is that compiler was aggressive enough in pruning unused inline functions. With a bit of changes in flags, it started breaking (like in kostmo's PR).

This PR splits out python-dependent bits more explicitly by forward declaring THPPointer for real.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19081

Reviewed By: ezyang

Differential Revision: D14860091

Pulled By: dzhulgakov

fbshipit-source-id: 4e86cb8e2ac57aedb3cd00c15270d65bb376206c

5 years agoClear input/ouput shape cache for each inference (#19085)
Yinghai Lu [Wed, 10 Apr 2019 17:07:43 +0000 (10:07 -0700)]
Clear input/ouput shape cache for each inference (#19085)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19085

This is a bug where input_shapes_ and output_shapes_ will grow indefinitely. Fix it here.

Reviewed By: bertmaher, rdzhabarov

Differential Revision: D14861695

fbshipit-source-id: d59116f27c3b54f5cc5a33533de4b9222dbb7afc

5 years agoAdd torch.unique_consecutive (#19060)
Xiang Gao [Wed, 10 Apr 2019 14:33:15 +0000 (07:33 -0700)]
Add torch.unique_consecutive (#19060)

Summary:
Fixes: https://github.com/pytorch/pytorch/issues/19045

Please review: VitalyFedyunin ngimel

This is independent on the #18649 series. This will cause merge conflicts in #18649 series, but please merge this first, and I will resolve the merge conflicts there.

The new feature is exposed in `_unique2_temporary_will_remove_soon` and `_unique_dim2_temporary_will_remove_soon`. But not at `torch.unique` yet. I will take care of the API after #18649 series get merged completely.

Benchmark on a tensor of shape `torch.Size([15320, 2])`:

```python
print(torch.__version__)
print()
a = tensor.sort().values.to('cpu')
print('cpu, sorted_input=False:')
%timeit torch._unique2_temporary_will_remove_soon(a)
%timeit torch._unique2_temporary_will_remove_soon(a, return_inverse=True)
%timeit torch._unique2_temporary_will_remove_soon(a, return_counts=True)
%timeit torch._unique2_temporary_will_remove_soon(a, return_inverse=True, return_counts=True)
print()
print('cpu, sorted_input=True:')
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True)
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True, return_inverse=True)
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True, return_counts=True)
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True, return_inverse=True, return_counts=True)
print()
a = a.to('cuda')
print('cuda, sorted_input=False:')
%timeit torch._unique2_temporary_will_remove_soon(a); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, return_inverse=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, return_counts=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, return_inverse=True, return_counts=True); torch.cuda.synchronize()
print()
print('cuda, sorted_input=True:')
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True, return_inverse=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True, return_counts=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True, return_inverse=True, return_counts=True); torch.cuda.synchronize()
```

```
1.1.0a0+2addccc

cpu, sorted_input=False:
340 Âµs Â± 5.88 Âµs per loop (mean Â± std. dev. of 7 runs, 1000 loops each)
717 Âµs Â± 14.9 Âµs per loop (mean Â± std. dev. of 7 runs, 1000 loops each)
52.3 ms Â± 2.75 ms per loop (mean Â± std. dev. of 7 runs, 10 loops each)
52.3 ms Â± 1.79 ms per loop (mean Â± std. dev. of 7 runs, 10 loops each)

cpu, sorted_input=True:
32.8 Âµs Â± 285 ns per loop (mean Â± std. dev. of 7 runs, 10000 loops each)
49.9 Âµs Â± 557 ns per loop (mean Â± std. dev. of 7 runs, 10000 loops each)
51.6 Âµs Â± 1.08 Âµs per loop (mean Â± std. dev. of 7 runs, 10000 loops each)
78 Âµs Â± 782 ns per loop (mean Â± std. dev. of 7 runs, 10000 loops each)

cuda, sorted_input=False:
213 Âµs Â± 1.52 Âµs per loop (mean Â± std. dev. of 7 runs, 1000 loops each)
291 Âµs Â± 3.81 Âµs per loop (mean Â± std. dev. of 7 runs, 1000 loops each)
250 Âµs Â± 1.05 Âµs per loop (mean Â± std. dev. of 7 runs, 1000 loops each)
321 Âµs Â± 1.59 Âµs per loop (mean Â± std. dev. of 7 runs, 1000 loops each)

cuda, sorted_input=True:
45.6 Âµs Â± 2.13 Âµs per loop (mean Â± std. dev. of 7 runs, 10000 loops each)
110 Âµs Â± 2.47 Âµs per loop (mean Â± std. dev. of 7 runs, 10000 loops each)
82 Âµs Â± 857 ns per loop (mean Â± std. dev. of 7 runs, 10000 loops each)
143 Âµs Â± 409 ns per loop (mean Â± std. dev. of 7 runs, 10000 loops each)
```

```python
print(torch.__version__)
print()
a1, a2 = tensor.unbind(1)
indices = (a1 * tensor.max() + a2).sort().indices
a = tensor.index_select(0, indices).to('cpu')
print('cpu, sorted_input=False:')
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0)
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, return_inverse=True)
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, return_counts=True)
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, return_inverse=True, return_counts=True)
print()
print('cpu, sorted_input=True:')
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True)
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True, return_inverse=True)
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True, return_counts=True)
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True, return_inverse=True, return_counts=True)
print()
a = a.to('cuda')
print('cuda, sorted_input=False:')
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, return_inverse=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, return_counts=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, return_inverse=True, return_counts=True); torch.cuda.synchronize()
print()
print('cuda, sorted_input=True:')
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True, return_inverse=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True, return_counts=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True, return_inverse=True, return_counts=True); torch.cuda.synchronize()
```

```
cpu, sorted_input=False:
55.4 ms Â± 1.12 ms per loop (mean Â± std. dev. of 7 runs, 10 loops each)
55.8 ms Â± 616 Âµs per loop (mean Â± std. dev. of 7 runs, 10 loops each)
55.2 ms Â± 402 Âµs per loop (mean Â± std. dev. of 7 runs, 10 loops each)
55.1 ms Â± 725 Âµs per loop (mean Â± std. dev. of 7 runs, 10 loops each)

cpu, sorted_input=True:
54.7 ms Â± 585 Âµs per loop (mean Â± std. dev. of 7 runs, 10 loops each)
55.2 ms Â± 1.23 ms per loop (mean Â± std. dev. of 7 runs, 10 loops each)
54.5 ms Â± 865 Âµs per loop (mean Â± std. dev. of 7 runs, 10 loops each)
54.9 ms Â± 577 Âµs per loop (mean Â± std. dev. of 7 runs, 10 loops each)

cuda, sorted_input=False:
171 Âµs Â± 783 ns per loop (mean Â± std. dev. of 7 runs, 10000 loops each)
220 Âµs Â± 1.65 Âµs per loop (mean Â± std. dev. of 7 runs, 1000 loops each)
203 Âµs Â± 2.95 Âµs per loop (mean Â± std. dev. of 7 runs, 1000 loops each)
251 Âµs Â± 2.83 Âµs per loop (mean Â± std. dev. of 7 runs, 1000 loops each)

cuda, sorted_input=True:
59.6 Âµs Â± 757 ns per loop (mean Â± std. dev. of 7 runs, 10000 loops each)
113 Âµs Â± 431 ns per loop (mean Â± std. dev. of 7 runs, 10000 loops each)
93.2 Âµs Â± 2.13 Âµs per loop (mean Â± std. dev. of 7 runs, 10000 loops each)
147 Âµs Â± 2.81 Âµs per loop (mean Â± std. dev. of 7 runs, 10000 loops each)
```
The CPU implementation of `unique_dim` is super slow, see https://github.com/pytorch/pytorch/issues/18987, but this PR will not worry about this issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19060

Differential Revision: D14866909

Pulled By: ezyang

fbshipit-source-id: d20012cec68c37b05cf770a6f4d6524f910b950f

5 years agoReplace tabs with space (#19100)
Lu Fang [Wed, 10 Apr 2019 07:32:02 +0000 (00:32 -0700)]
Replace tabs with space (#19100)

Summary:
fix the linter
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19100

Differential Revision: D14869256

Pulled By: houseroad

fbshipit-source-id: 27ca93cd1dce01ac705b9c9ed93ca8eb6c36351c

5 years agoFixes error when too many parameters are passed to fused cuda kernel (#18063)
Roy Ju [Wed, 10 Apr 2019 05:29:33 +0000 (22:29 -0700)]
Fixes error when too many parameters are passed to fused cuda kernel (#18063)

Summary:
Bug fix for https://github.com/pytorch/pytorch/issues/15043, where a large fusion in JIT with a large number of kernel arguments, which exceeds the limit allowed by nvrtc on a cuda device.
  The fix is to check the number of arguments before a cuda kernel is generated. If the number exceeds the limit, take the runFallBack() path.
  Add a reduced test from the original issue to keep the test time low. The test would fail without this fix.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18063

Differential Revision: D14691401

Pulled By: soumith

fbshipit-source-id: b98829bc89ed7724e91eda82ae3a5a1151af721a

5 years agoamend D14778810 (#18902)
Summer Deng [Wed, 10 Apr 2019 04:59:33 +0000 (21:59 -0700)]
amend D14778810 (#18902)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18902

Fix in D14778810 had an issue that when we fallback to acc32 because the density of outlier is too high W_quantized_ is already modified. In this diff we first just count the number of outliers (without modifying W_quantized_) and only when density is low enough and no need for fallback we modify W_quantized_ and construct an outlier matrix.

Reviewed By: jspark1105

Differential Revision: D14785256

fbshipit-source-id: 03933110a4ca7409686a06b18a9bb921f8657950

5 years agoMove abs, frac, reciprocal, and neg to TensorIterator (#19041)
James Reed [Wed, 10 Apr 2019 04:48:49 +0000 (21:48 -0700)]
Move abs, frac, reciprocal, and neg to TensorIterator (#19041)

Summary:
I've been messing around with vectorizing the fusion compiler in JIT, and noticed that these ops were pathologically slow. I moved them to use TensorIterator + Vec256<> and got some speed wins.

Benchmark script:

```
import torch, time

ops = ['abs', 'neg', 'reciprocal', 'frac']

x = torch.rand(1024, 1024)
NITER = 10000

print('op', 'time per iter (ms)', 'gops/s', 'GB/s', sep='\t')

for op in ops:
    s = time.time()
    for i in range(NITER):
        getattr(x, op)()
    elapsed_sec = ((time.time() - s) / NITER)
    print(op, elapsed_sec * 1000, (1024*1024/elapsed_sec)/1e9, (1024*1024*4*2) / elapsed_sec / 1e9, sep='\t')

```

Before this change (on my mac with a skylake):
```
op      time per iter (ms)      gops/s  GB/s
abs     0.9730974197387695      1.0775652866097343      8.620522292877874
neg     1.0723679780960083      0.9778136063534356      7.822508850827485
reciprocal      1.2610594034194946      0.8315040490215421      6.6520323921723366
frac    1.1681334018707275      0.8976509004200546      7.181207203360437
```

After this change:
```
op      time per iter (ms)      gops/s  GB/s
abs     0.5031076192855835      2.084198210889721       16.673585687117768
neg     0.4433974027633667      2.3648672578256087      18.91893806260487
reciprocal      0.47145988941192624     2.2241043693195985      17.79283495455679
frac    0.5036592721939087      2.0819154096627024      16.65532327730162
```

So, after this change it looks like we are hitting machine peak for bandwidth and are bandwidth bound.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19041

Differential Revision: D14862037

Pulled By: jamesr66a

fbshipit-source-id: e2032ac0ca962dbf4120bb36812277c260e22912

5 years agoFix aten op output assignment (#18581)
Wanchao Liang [Wed, 10 Apr 2019 04:33:54 +0000 (21:33 -0700)]
Fix aten op output assignment (#18581)

Summary:
Fixes the problem of #18391

The issue is that when we code gen the ATenOp, we always generated static number of outputs for each operator. E.g. If there's operator from a old model that only requires two outputs, in its createOperator it will only allocate two output blobs, while the newer version of the operator (`unique` in this case) requires more output blob to be allocated.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18581

Differential Revision: D14865647

Pulled By: wanchaol

fbshipit-source-id: 85f63fe16d6fe408a09eca84798c7e8cab3070e9

5 years agoEmbeddingBag w/ differentiable per_sample_weights (#18957)
Richard Zou [Wed, 10 Apr 2019 01:09:01 +0000 (18:09 -0700)]
EmbeddingBag w/ differentiable per_sample_weights (#18957)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18957
ghimport-source-id: 7396ca08b137ea40f04285764a9d9a6d4f19227e

Reviewed By: cpuhrsch

Differential Revision: D14856526

Pulled By: zou3519

fbshipit-source-id: 949faea219c7c02ad981b1db610a477194d3f5c9

5 years agoEmbeddingBag w/ per_sample_weights CUDA fwd + bwd (#18800)
Richard Zou [Wed, 10 Apr 2019 01:08:59 +0000 (18:08 -0700)]
EmbeddingBag w/ per_sample_weights CUDA fwd + bwd (#18800)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18800
ghimport-source-id: 17f638dea0e1ac9a86ec06b223c60362ed78449c

Reviewed By: cpuhrsch

Differential Revision: D14851422

Pulled By: zou3519

fbshipit-source-id: 27b114e51e66112e4bc9cfc63d1d1ddfa650d347

5 years agoEmbeddingBag w/ per_sample_weights CPU backward (#18799)
Richard Zou [Wed, 10 Apr 2019 01:08:59 +0000 (18:08 -0700)]
EmbeddingBag w/ per_sample_weights CPU backward (#18799)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18799
ghimport-source-id: 58a6f629e890449013f24a9b6282664ca2a1e3ba

Reviewed By: cpuhrsch

Differential Revision: D14851417

Pulled By: zou3519

fbshipit-source-id: c36b9d469989354bf6cef1c2c3dc4f13e7cb1a25

5 years agoEmbeddingBag CPU forward with per_sample_weights. (#18735)
Richard Zou [Wed, 10 Apr 2019 01:08:59 +0000 (18:08 -0700)]
EmbeddingBag CPU forward with per_sample_weights. (#18735)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18735
ghimport-source-id: d81bef54dafd7167d2451250d7be478d3c013920

Reviewed By: cpuhrsch

Differential Revision: D14851415

Pulled By: zou3519

fbshipit-source-id: cea6039e760ad571b90f0a536e420498f34be325

5 years agoRefactor CPU embedding_bag implementation (#18734)
Richard Zou [Wed, 10 Apr 2019 01:08:59 +0000 (18:08 -0700)]
Refactor CPU embedding_bag implementation (#18734)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18734
ghimport-source-id: e0e50d4b47f2fb8c86e464aacb950521d601f8d3

Reviewed By: cpuhrsch

Differential Revision: D14851413

Pulled By: zou3519

fbshipit-source-id: 8ac4e4de590a363e9807dc552fe4ca52b92652ed

5 years agoMake BlackBoxPredictor handle networks throwing exceptions (#19080)
Alexander Sidorov [Tue, 9 Apr 2019 23:32:52 +0000 (16:32 -0700)]
Make BlackBoxPredictor handle networks throwing exceptions (#19080)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19080

OSS: add a tiny unit test utility function to create tensors given shape and data outside of any workspace. I use it in an internal test

Reviewed By: dzhulgakov

Differential Revision: D14814194

fbshipit-source-id: 6d53b235d99a97da812215f5c7f11fecad363c8c

5 years agoRemind users to set map_location properly when using DDP
Shen Li [Tue, 9 Apr 2019 23:11:05 +0000 (16:11 -0700)]
Remind users to set map_location properly when using DDP

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/19084

Differential Revision: D14861702

Pulled By: mrshenli

fbshipit-source-id: 10ca4a9b41e707050a6bce228ccca4177c9fa4a6

5 years agoRename btrisolve to lu_solve (#18726)
Vishwak Srinivasan [Tue, 9 Apr 2019 22:15:06 +0000 (15:15 -0700)]
Rename btrisolve to lu_solve (#18726)

Summary:
Changelog:
- Rename `btrisolve` to `lu_solve` to remain consistent with names of solve methods (`cholesky_solve`, `triangular_solve`, `solve`)
- Fix all callsites
- Rename all tests
- Create a tentative alias for `lu_solve` under the name `btrisolve` and add a deprecation warning to not promote usage
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18726

Differential Revision: D14726237

Pulled By: zou3519

fbshipit-source-id: bf25f6c79062183a4153015e0ec7ebab2c8b986b

5 years agoAvoid calling tensor.data.set_() in DDP
Shen Li [Tue, 9 Apr 2019 21:10:04 +0000 (14:10 -0700)]
Avoid calling tensor.data.set_() in DDP

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/18961

Differential Revision: D14811208

Pulled By: mrshenli

fbshipit-source-id: c1c46dfa13e0a6ec83aefd35696ee31a7ea3d810

5 years agoReapply Wrap workaround for cpp custom types a bit prettier and add an example" ...
Dmytro Dzhulgakov [Tue, 9 Apr 2019 19:13:41 +0000 (12:13 -0700)]
Reapply Wrap workaround for cpp custom types a bit prettier and add an example" (#19062)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19062

As a temporary demonstration on how to extend this hack further until custom C types are ready.

Reviewed By: ezyang

Differential Revision: D14817809

fbshipit-source-id: 6eaf731e9135313eb858e178abcd9f25380ab8fe

5 years agoPropagate ProcessGroup timeout to Store (#16571)
Shen Li [Tue, 9 Apr 2019 19:06:04 +0000 (12:06 -0700)]
Propagate ProcessGroup timeout to Store (#16571)

Summary:
closes #16520

Hi pietern, I am not sure if this is the expected way to pass timeout to `Store`, could you please help take a look? Thanks!

Questions:
1. How do I write tests for this? I wanted to do something like `test_barrier_timeout_global`, but it seems I need to set the pg's timeout larger than the `Store`'s default timeout (3 min) to see a difference, which is too long for a unit test. And I do not want to change the `Store`'s default timeout either. Any suggestion?
2. Should I also propagate timeout configuration down to `PrefixStore` in `_new_process_group_helper`?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16571

Differential Revision: D13954527

Pulled By: mrshenli

fbshipit-source-id: 77f2653903f24255207233eb298f7c0321119a87

5 years agomake test_jit_fuser runnable
Wanchao Liang [Tue, 9 Apr 2019 18:53:23 +0000 (11:53 -0700)]
make test_jit_fuser runnable

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/19036

Differential Revision: D14839800

Pulled By: wanchaol

fbshipit-source-id: b52c131b58e1b42a8c3da5d1117217c3dc2e5f5b

5 years agoFix documentation for unfold(dimension=..., ...), fixes #18793 (#19020)
Edward Yang [Tue, 9 Apr 2019 18:48:56 +0000 (11:48 -0700)]
Fix documentation for unfold(dimension=..., ...), fixes #18793 (#19020)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19020
ghimport-source-id: 8f31e51b79daba11939aa7992450984054713b9c

Differential Revision: D14851890

Pulled By: ezyang

fbshipit-source-id: 8498e86a63633fdfd9ecae9b7f85b773b75fe27a

5 years agoDebugging: Increase process reporting for apt/dpkg. (#18880)
Edward Yang [Tue, 9 Apr 2019 18:34:37 +0000 (11:34 -0700)]
Debugging: Increase process reporting for apt/dpkg. (#18880)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18880
ghimport-source-id: b43a33c12df379ec75c1fd4c713c1fc723a763e1

Differential Revision: D14856296

Pulled By: ezyang

fbshipit-source-id: 30691eb14dddfe998b2605b416aaa1b14d1b6ad5

5 years agoAdd torch.__config__.show(), reporting detailed version of all libraries. (#18579)
Edward Yang [Tue, 9 Apr 2019 18:09:31 +0000 (11:09 -0700)]
Add torch.__config__.show(), reporting detailed version of all libraries. (#18579)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18579
ghimport-source-id: 65124c95e49423de4ad1008c65e75057fea09b94

Differential Revision: D14778507

Pulled By: ezyang

fbshipit-source-id: 1e4bb79f4800a116ce8fb7af2fefbd34da8d102c

5 years agoFix torch::nn::init::orthogonal_ with CNNs (#18915)
Omegastick [Tue, 9 Apr 2019 17:36:13 +0000 (10:36 -0700)]
Fix torch::nn::init::orthogonal_ with CNNs (#18915)

Summary:
Fixes #18518

I changed the C++ API torch::nn::init::orthogonal_ implementation to match the Python implementation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18915

Differential Revision: D14851833

Pulled By: ezyang

fbshipit-source-id: 45b5e9741582777c203e9ebed564ab3ac1f94baf

5 years agomove nightlies to 1.1.0xxx
Soumith Chintala [Tue, 9 Apr 2019 17:09:58 +0000 (10:09 -0700)]
move nightlies to 1.1.0xxx

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/19069

Differential Revision: D14854600

Pulled By: soumith

fbshipit-source-id: 85c703bddbd47c1b3914d58ab9521ed22ddeb62a

5 years agoadd an utility function to check whether it's in the middle of onnx export or not
Lu Fang [Tue, 9 Apr 2019 17:01:48 +0000 (10:01 -0700)]
add an utility function to check whether it's in the middle of onnx export or not

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/19050

Reviewed By: yinghai

Differential Revision: D14849878

Pulled By: houseroad

fbshipit-source-id: a0a4a57f5f9f315ba1334edfccc9284a8099d17f

5 years agoremove interned_string.h dep (#19061)
Lu Fang [Tue, 9 Apr 2019 16:56:34 +0000 (09:56 -0700)]
remove interned_string.h dep (#19061)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19061

remove the deps on interned_string.h

Reviewed By: BIT-silence

Differential Revision: D14850078

fbshipit-source-id: 07e6ad72a7de369049ea56f32b72276fb4c59b32

5 years agoadd logging to make the saving action visible (#19042)
Liang Xiong [Tue, 9 Apr 2019 16:25:03 +0000 (09:25 -0700)]
add logging to make the saving action visible (#19042)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19042

show the model saving step in the log.

Reviewed By: kennyhorror

Differential Revision: D14809385

fbshipit-source-id: c7a1e50ff92bb45b16b1c501d9325b304b07fbd3

5 years agoNamedtuple return for gels, triangular_solve, and test refactor (#17195)
Xiang Gao [Tue, 9 Apr 2019 16:10:42 +0000 (09:10 -0700)]
Namedtuple return for gels, triangular_solve, and test refactor (#17195)

Summary:
Partial fix of: https://github.com/pytorch/pytorch/issues/394
- `gels` and `triangular_solve` now returns namedtuple
- refactor test for namedtuple API for better coverage and maintainability
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17195

Differential Revision: D14851875

Pulled By: ezyang

fbshipit-source-id: 9b2cba95564269d2c3a15324ba48751d68ed623c

5 years agoConvert all tabs to spaces, add CI. (#18959)
Edward Yang [Tue, 9 Apr 2019 15:02:30 +0000 (08:02 -0700)]
Convert all tabs to spaces, add CI. (#18959)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18959
ghimport-source-id: a934163fa34cb2019732d5f49dc7290c376bf156

Differential Revision: D14831246

Pulled By: ezyang

fbshipit-source-id: beb92dc4ee8c82f4c8259c081dd72e477fe7a9d0

5 years agoFix BN tests for >= 8 GPU test environments (#19049)
Shen Li [Tue, 9 Apr 2019 15:01:18 +0000 (08:01 -0700)]
Fix BN tests for >= 8 GPU test environments (#19049)

Summary:
DDP does not support replicating BN layers within a process. Existing BN tests fail if the test environment has more than 8 GPUs. This is fixed by explicitly setting each process to use a single replica.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19049

Differential Revision: D14845286

Pulled By: mrshenli

fbshipit-source-id: 937dda5081d415ece48b21f2781b6b4e008dd42f

5 years agodo not use constexpr with CUDA >= 9.2 compiler on Windows. (#18986)
Shuichi KITAGUCHI [Tue, 9 Apr 2019 15:00:18 +0000 (08:00 -0700)]
do not use constexpr with CUDA >= 9.2 compiler on Windows. (#18986)

Summary:
Define `AT_CPP14_CONSTEXPR` from `constexpr` to empty on Windows with CUDA >= 9.2 as workaround.

Discussed in #18425.

When using CUDA 10.1 on Windows, I faced following errors:
~~~
D:/data/source/pytorch\c10/util/ArrayRef.h(144): error: variable in constexpr function does not have automatic storage duration
          detected during instantiation of "const T &c10::ArrayRef<T>::front() const [with T=at::Tensor]"
D:/data/source/pytorch/aten/src\ATen/DeviceGuard.h(30): here
~~~

From documentation of CUDA Toolkit v10.1.105, compiler supports `constexpr` and relaxing requirements (in C++14), but compilation failed.

I suppose this could be compiler bug and require this workaround.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18986

Differential Revision: D14821836

Pulled By: ezyang

fbshipit-source-id: 9800da2fe7291e7c09e8e5e882adebab08d83ae3

5 years agoAdd torch/lib/protobuf to gitignore, fixes #18700 (#19019)
Edward Yang [Tue, 9 Apr 2019 14:29:42 +0000 (07:29 -0700)]
Add torch/lib/protobuf to gitignore, fixes #18700 (#19019)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19019
ghimport-source-id: 84d36f8d27912d1d094d5672154b82187dd88761

Differential Revision: D14846615

Pulled By: ezyang

fbshipit-source-id: e402557ec321c85be3b28c8602b680246c8eecfe

5 years agoAutomatic update of fbcode/onnx to 971311db58f2fa8306d15e1458b5fd47dbc8d11c (#19046)
Lu Fang [Tue, 9 Apr 2019 06:12:58 +0000 (23:12 -0700)]
update of fbcode/onnx to 971311db58f2fa8306d15e1458b5fd47dbc8d11c (#19046)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19046

Previous import was 079c2639f9bb79b1774d1e3bfa05b0c093816ca7

Included changes:
- **[971311db](https://github.com/onnx/onnx/commit/971311db)**: use ONNX_NAMESPACE::to_string instead of std::to_string (#1915) <Lu Fang>
- **[65227446](https://github.com/onnx/onnx/commit/65227446)**: Remove all the experimental ops (#1909) <Lu Fang>
- **[bdb28f29](https://github.com/onnx/onnx/commit/bdb28f29)**: opset converter backward compatibility support for opset versions 9 and 8 (#1847) <Peyman Manikashani>
- **[47692338](https://github.com/onnx/onnx/commit/47692338)**: Create CODEOWNERS for automatic reviewer assignment for PRs (#1910) <Prasanth Pulavarthi>
- **[8121c731](https://github.com/onnx/onnx/commit/8121c731)**: Revert "quantization support in onnx (#1872)" (#1911) <Lu Fang>
- **[4cfa5426](https://github.com/onnx/onnx/commit/4cfa5426)**: quantization support in onnx (#1872) <Ke Zhang>
- **[030bbb80](https://github.com/onnx/onnx/commit/030bbb80)**: Update LICENSE formatting and clarify # of WG chairs (#1907) <Prasanth Pulavarthi>

Reviewed By: yinghai

Differential Revision: D14843284

fbshipit-source-id: 96c1c79abb62beff227a9fc8b2af9382c4673755

5 years agoFix default CXX for Windows in cpp_extensions.py (#19052)
peter [Tue, 9 Apr 2019 06:10:51 +0000 (23:10 -0700)]
Fix default CXX for Windows in cpp_extensions.py (#19052)

Summary:
Fixes https://github.com/pytorch/pytorch/issues/19017.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19052

Differential Revision: D14846702

Pulled By: soumith

fbshipit-source-id: b0e4dadaa749da0fa2d0405a1a064820d094220a

5 years agofix the onnx ci
Lu Fang [Tue, 9 Apr 2019 06:03:56 +0000 (23:03 -0700)]
fix the onnx ci

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/19048

Reviewed By: yinghai

Differential Revision: D14844917

Pulled By: houseroad

fbshipit-source-id: 30719e05a443981284dedf34a9e51213271aa934

5 years agoAdd gelu op (#18992)
Xiaomeng Yang [Tue, 9 Apr 2019 04:55:43 +0000 (21:55 -0700)]
Add gelu op (#18992)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18992

Add gelu op

Reviewed By: houseroad

Differential Revision: D14814811

fbshipit-source-id: 00f126b8b83763c57ebbf28fbd2de5a8fab6d491

5 years agoAdd MKL-DNN Tensor (#17748)
jgong5 [Tue, 9 Apr 2019 04:30:50 +0000 (21:30 -0700)]
Add MKL-DNN Tensor (#17748)

Summary:
This is a minimalist PR to add MKL-DNN tensor per discussion from Github issue: https://github.com/pytorch/pytorch/issues/16038

Ops with MKL-DNN tensor will be supported in following-up PRs to speed up imperative path.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17748

Reviewed By: dzhulgakov

Differential Revision: D14614640

Pulled By: bddppq

fbshipit-source-id: c58de98e244b0c63ae11e10d752a8e8ed920c533

5 years agodetect C++ ABI flag for cpp extensions from available runtime information (#18994)
Soumith Chintala [Tue, 9 Apr 2019 00:43:57 +0000 (17:43 -0700)]
detect C++ ABI flag for cpp extensions from available runtime information (#18994)

Summary:
Previously, when a user built PyTorch from source, but set the version string manually to be binary-formatted, it would've simply used CXX11_ABI=0 incorrectly.

We have this information available at runtime with `torch._C._GLIBCXX_USE_CXX11_ABI`, so this PR improves the situation by simply using that information.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18994

Differential Revision: D14839393

Pulled By: soumith

fbshipit-source-id: ca92e0810b29ffe688be82326e02a64a5649a3ad

5 years agoFix momentum setting in BatchNorm forward pass. (#18764)
Spandan Tiwari [Mon, 8 Apr 2019 23:21:30 +0000 (16:21 -0700)]
Fix momentum setting in BatchNorm forward pass. (#18764)

Summary:
This is a fix for issue https://github.com/pytorch/pytorch/issues/18525. The issue is related not only to ONNX export, but can manifest in other scenarios.
An existing test point in test/onnx/test_operators.py has been updated to cover this scenario as well.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18764

Reviewed By: zrphercule

Differential Revision: D14735166

Pulled By: houseroad

fbshipit-source-id: 5a737c648f64355929ff31eb12bd4869e744768d

5 years agoadd android build workflow to pytorch CI jobs (#18919)
Jiakai Liu [Mon, 8 Apr 2019 23:19:51 +0000 (16:19 -0700)]
add android build workflow to pytorch CI jobs (#18919)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18919
ghimport-source-id: 3f0ce4334c899d262403d88bd8bd7513e99570f0

Reviewed By: kostmo

Differential Revision: D14800728

Pulled By: ljk53

fbshipit-source-id: fec2e34c192181b8fa31c9a30f60c9bf7388f083

5 years agoExport C10 operator in PyTorch Model (#18210)
Lu Fang [Mon, 8 Apr 2019 23:01:30 +0000 (16:01 -0700)]
Export C10 operator in PyTorch Model (#18210)

Summary:
Almost there, feel free to review.

these c10 operators are exported to _caffe2 domain.

TODO:

- [x] let the onnx checker pass
- [x] test tensor list as argument
- [x] test caffe2 backend and converter
- [x] check the c10 schema can be exported to onnx
- [x] refactor the test case to share some code
- [x] fix the problem in ONNX_ATEN_FALLBACK
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18210

Reviewed By: zrphercule

Differential Revision: D14600916

Pulled By: houseroad

fbshipit-source-id: 2592a75f21098fb6ceb38c5d00ee40e9e01cd144

5 years agoFix interpolate tracing (#19034)
Zachary DeVito [Mon, 8 Apr 2019 21:56:26 +0000 (14:56 -0700)]
Fix interpolate tracing (#19034)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19034
ghimport-source-id: 874e0b0a8685184416152a77fc1850d9a06516ae

Differential Revision: D14837282

Pulled By: zdevito

fbshipit-source-id: b0ed82b607c288a54eecec3d6ed62c4626e5a563

5 years agoFix default dtype in shape analysis (#18968)
Elias Ellison [Mon, 8 Apr 2019 21:44:45 +0000 (14:44 -0700)]
Fix default dtype in shape analysis (#18968)

Summary:
Fix for https://github.com/pytorch/pytorch/issues/18823

Previously we were setting the dtype to Float when in torchscript the default is double. When the problem in https://github.com/pytorch/pytorch/issues/17662 gets landed, we will have to reevalute (and this test will fail).

We should still be consistent in shape_analysis in the meantime.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18968

Differential Revision: D14837939

Pulled By: eellison

fbshipit-source-id: 32383b55c14bdc7753e26dec33c39ab10124c255

5 years agoRenamed bool tensors into byte tensors (#19021)
Iurii Zdebskyi [Mon, 8 Apr 2019 20:46:52 +0000 (13:46 -0700)]
Renamed bool tensors into byte tensors (#19021)

Summary:
Renamed bool tensors into byte tensors to represent the correct type in generated code
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19021

Differential Revision: D14835188

Pulled By: izdeby

fbshipit-source-id: 0252d2c69dab35ac2f076cf9a87423463e902c76

5 years agoHandle None indexing in TorchScript (#18615)
Thomas Viehmann [Mon, 8 Apr 2019 20:35:34 +0000 (13:35 -0700)]
Handle None indexing in TorchScript (#18615)

Summary:
t[None], t[None, 1:, None] and friends for unsqueezing

Fixes: #12810
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18615

Differential Revision: D14837039

Pulled By: wanchaol

fbshipit-source-id: ab3862c41629f087b0a46b7c59c93dac4018e6fe

5 years agoTurn on mkldnn in most builds except rocm
Junjie Bai [Mon, 8 Apr 2019 20:09:11 +0000 (13:09 -0700)]
Turn on mkldnn in most builds except rocm

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/18965

Differential Revision: D14836931

Pulled By: bddppq

fbshipit-source-id: 463a9bc5043a1f3194158f7bbfae3b71c6cd4b20

5 years agoRemove dead code in module.cpp (#19022)
David Riazati [Mon, 8 Apr 2019 20:01:09 +0000 (13:01 -0700)]
Remove dead code in module.cpp (#19022)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19022
ghimport-source-id: cdf694c1b426eb9f82d4c148c9f2c2cfc180cedd

Reviewed By: eellison

Differential Revision: D14833409

Pulled By: driazati

fbshipit-source-id: 8914c7227add7f3e07f56b21a513ba7727fb6800

5 years agoConvert test_recursive_cse to use Filecheck inline annotations. (#19032)
Mikhail Zolotukhin [Mon, 8 Apr 2019 19:22:52 +0000 (12:22 -0700)]
Convert test_recursive_cse to use Filecheck inline annotations. (#19032)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19032
ghimport-source-id: 58a146542deb08dd3057d099167ba530a5e51400

Differential Revision: D14836689

Pulled By: ZolotukhinM

fbshipit-source-id: e65ca5f09193eb7c16c204aedd50c474ea31210c

5 years agoAdd a document 'How to Write Tests Using FileCheck' (#19005)
Mikhail Zolotukhin [Mon, 8 Apr 2019 19:06:55 +0000 (12:06 -0700)]
Add a document 'How to Write Tests Using FileCheck' (#19005)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19005
ghimport-source-id: f9c3eff54adc8eef3ead2c77be62c44d88d22a00

Differential Revision: D14826845

Pulled By: ZolotukhinM

fbshipit-source-id: 62cc3657ee89acc979403da15e39bd4cd09a866d

5 years agocaffe2 - Expose tensor filler util to Python (#18886)
Duc Ngo [Mon, 8 Apr 2019 18:48:42 +0000 (11:48 -0700)]
caffe2 - Expose tensor filler util to Python (#18886)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18886

Expose tensor filler util to Python and add a unit test (both C++/Python)

Reviewed By: salexspb

Differential Revision: D14784470

fbshipit-source-id: bb8e013d1755c27c166e87d5a8491a97c65d3d8d

5 years agocall build_android.sh from pytorch CI build script (#18918)
Jiakai Liu [Mon, 8 Apr 2019 17:54:59 +0000 (10:54 -0700)]
call build_android.sh from pytorch CI build script (#18918)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18918
ghimport-source-id: 98c63da263adbbc6ac74a69ac117740c852833cd

Reviewed By: dreiss

Differential Revision: D14800727

Pulled By: ljk53

fbshipit-source-id: 4d06f845bb34bcdb74b0602404f2a0782f8c8783

5 years agoType annotations for `util.data`. (#18963)
Jon Malmaud [Mon, 8 Apr 2019 16:45:49 +0000 (09:45 -0700)]
Type annotations for `util.data`. (#18963)

Summary:
I haven't had a chance to rigorously try these out yet so don't merge yet.
Closes #18725.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18963

Differential Revision: D14832897

Pulled By: ezyang

fbshipit-source-id: 4780e7a34126bc66ddbfd9d808dfc9e0edd77e68

5 years agoifdef guard some explicit pragma unrolls (#19018)
Johannes M Dieterich [Mon, 8 Apr 2019 16:44:08 +0000 (09:44 -0700)]
ifdef guard some explicit pragma unrolls (#19018)

Summary:
the ROCm compiler cannot and will not satisfy them, causing compile time warnings.

Reason being a runtime loop trip count.

Some warnings remain arising from other parts of the ROCm stack - tickets are filed and they will be resolved within these components.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19018

Differential Revision: D14832859

Pulled By: ezyang

fbshipit-source-id: 0d66e4aebe4e56af14dd5e2967d3c374a82be25c

5 years agoFix a dev mode bug in activation distribution observer (#19004)
Summer Deng [Mon, 8 Apr 2019 16:26:37 +0000 (09:26 -0700)]
Fix a dev mode bug in activation distribution observer (#19004)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19004

Handling the exception case when the data has min 3.40282e+38 max -3.40282e+38

Reviewed By: jspark1105

Differential Revision: D14822193

fbshipit-source-id: b9771d1584fdf8317f5b8c7f5806be5d27314386

5 years agoClean up some sparse code. (#18962)
Gregory Chanan [Mon, 8 Apr 2019 15:10:19 +0000 (08:10 -0700)]
Clean up some sparse code. (#18962)

Summary:
1) sparse_dispatches in native_parse was not used anymore, got rid of it.
2) got rid of overloaded sizes_ in SparseTensorImpl, which just uses the base implementation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18962

Differential Revision: D14811545

Pulled By: gchanan

fbshipit-source-id: 2fa60ef50456b5f605caa63beae1d8d2542fd527