platform/upstream/pytorch.git
5 years agoImplement torch.tril_indices and torch.triu_indices (#12653) (#14904)
Shen Li [Wed, 12 Dec 2018 23:18:57 +0000 (15:18 -0800)]
Implement torch.tril_indices and torch.triu_indices (#12653) (#14904)

Summary:
This is an optimized implementation that does the following:

1. created an empty Tensor of correct size.
2. fill the Tensor with correct values.

The following three designs to fill in the Tensor result in roughly the same performance. Hence, the 2nd option is taken for simpler code, and to return contiguous tensors.

1. Sequential: fill row coordinates first, then columns. This results in two for-loop and more arithmetic operations.
2. Interleaved: fill in index coordinates one by one, which jumps between the two output Tensor rows in every iteration.
3. Transpose: create a n X 2 Tensor, fill the Tensor sequentially, and then transpose it.

<img width="352" alt="screen shot 2018-12-10 at 3 54 39 pm" src="https://user-images.githubusercontent.com/16999635/49769172-07bd3580-fc94-11e8-8164-41839185e9f9.png">

NOTE:

This implementation returns a 2D tensor, instead of a tuple of two tensors. It means that users will not be able to do the following:

```python
x = torch.ones(3, 3)
i = torch.tril_indices(3, 3)
x[i]  # need to first convert the 2D tensor into a tuple of two 1D tensors.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14904

Reviewed By: zou3519

Differential Revision: D13433027

Pulled By: mrshenli

fbshipit-source-id: 41c876aafcf584832d7069f7c5929ffb59e0ae6a

5 years agoMinor documentation mistake (#15068)
Imran [Wed, 12 Dec 2018 23:15:45 +0000 (15:15 -0800)]
Minor documentation mistake (#15068)

Summary:
keepdim is a optional parameter for torch.max()
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15068

Differential Revision: D13437745

Pulled By: zou3519

fbshipit-source-id: b5198c7d4ae17758cd136f6e5aecc6cb5838f174

5 years agoAdd script standard library documentation + cleanup (#14912)
David Riazati [Wed, 12 Dec 2018 20:25:40 +0000 (12:25 -0800)]
Add script standard library documentation + cleanup (#14912)

Summary:
Documents what is supported in the script standard library.

* Adds `my_script_module._get_method('forward').schema()` method to get function schema from a `ScriptModule`
* Removes `torch.nn.functional` from the list of builtins. The only functions not supported are `nn.functional.fold` and `nn.functional.unfold`, but those currently just dispatch to their corresponding aten ops, so from a user's perspective it looks like they work.
* Allow printing of `IValue::Device` by getting its string representation
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14912

Differential Revision: D13385928

Pulled By: driazati

fbshipit-source-id: e391691b2f87dba6e13be05d4aa3ed2f004e31da

5 years agoMove adaptive avg pooling 2d to ATen native (#14714)
Immanuel Alexander [Wed, 12 Dec 2018 20:09:47 +0000 (12:09 -0800)]
Move adaptive avg pooling 2d to ATen native (#14714)

Summary:
adaptive_avg_pool1d, adaptive_avg_pool2d, and adaptive_avgpool3d are neural network functions that are currently implemented in our legacy THNN (CPU) / THCUNN (CUDA) libraries.  It is generally better if these live in our new library ATen, since it is more feature complete and reduces cognitive overhead.

This change moves currently to adaptive_avg_pool1d and adaptive_avg_pool2d to ATen.

timed relevant cpu tests with this change:
```
[ialex@devgpu064.ash5 ~/pytorch] time python test/test_nn.py
test_AdaptiveAvgPool1d (__main__.TestNN)
test_AdaptiveAvgPool1d_cuda (__main__.TestNN)
test_AdaptiveAvgPool2d_single (__main__.TestNN)
test_AdaptiveAvgPool2d_single_cuda (__main__.TestNN)
test_AdaptiveAvgPool2d_tuple (__main__.TestNN)
test_AdaptiveAvgPool2d_tuple_cuda (__main__.TestNN)
test_AdaptiveAvgPool2d_tuple_none (__main__.TestNN)
test_AdaptiveAvgPool2d_tuple_none_cuda (__main__.TestNN)
test_AdaptiveAvgPool3d_single (__main__.TestNN)
test_AdaptiveAvgPool3d_single_cuda (__main__.TestNN)
test_AdaptiveAvgPool3d_tuple (__main__.TestNN)
test_AdaptiveAvgPool3d_tuple_cuda (__main__.TestNN)
test_AdaptiveAvgPool3d_tuple_none (__main__.TestNN)
test_AdaptiveAvgPool3d_tuple_none_cuda (__main__.TestNN)
test_adaptive_log_softmax (__main__.TestNN)
test_adaptive_pooling_input_size (__main__.TestNN)
test_adaptive_pooling_size_none (__main__.TestNN)
.s.s.s.s.s.s.s...
----------------------------------------------------------------------
Ran 17 tests in 6.273s

OK (skipped=7)

real 0m7.164s
user 3m1.289s
sys 0m0.905s
```

compared to master:
```
[ialex@devgpu064.ash5 ~/pytorch] time python test/test_nn.py
test_AdaptiveAvgPool1d (__main__.TestNN)
test_AdaptiveAvgPool1d_cuda (__main__.TestNN)
test_AdaptiveAvgPool2d_single (__main__.TestNN)
test_AdaptiveAvgPool2d_single_cuda (__main__.TestNN)
test_AdaptiveAvgPool2d_tuple (__main__.TestNN)
test_AdaptiveAvgPool2d_tuple_cuda (__main__.TestNN)
test_AdaptiveAvgPool2d_tuple_none (__main__.TestNN)
test_AdaptiveAvgPool2d_tuple_none_cuda (__main__.TestNN)
test_AdaptiveAvgPool3d_single (__main__.TestNN)
test_AdaptiveAvgPool3d_single_cuda (__main__.TestNN)
test_AdaptiveAvgPool3d_tuple (__main__.TestNN)
test_AdaptiveAvgPool3d_tuple_cuda (__main__.TestNN)
test_AdaptiveAvgPool3d_tuple_none (__main__.TestNN)
test_AdaptiveAvgPool3d_tuple_none_cuda (__main__.TestNN)
test_adaptive_log_softmax (__main__.TestNN)
test_adaptive_pooling_input_size (__main__.TestNN)
test_adaptive_pooling_size_none (__main__.TestNN)
.s.s.s.s.s.s.s...
----------------------------------------------------------------------
Ran 17 tests in 7.232s

OK (skipped=7)

real 0m8.065s
user 3m34.714s
sys 0m2.440s
```

also timed relevant cuda tests with this change:
```
[ialex@devgpu064.ash5 ~/pytorch] time python test/test_nn.py
test_AdaptiveAvgPool1d (__main__.TestNN)
test_AdaptiveAvgPool1d_cuda (__main__.TestNN)
test_AdaptiveAvgPool2d_single (__main__.TestNN)
test_AdaptiveAvgPool2d_single_cuda (__main__.TestNN)
test_AdaptiveAvgPool2d_tuple (__main__.TestNN)
test_AdaptiveAvgPool2d_tuple_cuda (__main__.TestNN)
test_AdaptiveAvgPool2d_tuple_none (__main__.TestNN)
test_AdaptiveAvgPool2d_tuple_none_cuda (__main__.TestNN)
test_AdaptiveAvgPool3d_single (__main__.TestNN)
test_AdaptiveAvgPool3d_single_cuda (__main__.TestNN)
test_AdaptiveAvgPool3d_tuple (__main__.TestNN)
test_AdaptiveAvgPool3d_tuple_cuda (__main__.TestNN)
test_AdaptiveAvgPool3d_tuple_none (__main__.TestNN)
test_AdaptiveAvgPool3d_tuple_none_cuda (__main__.TestNN)
test_adaptive_log_softmax (__main__.TestNN)
test_adaptive_pooling_input_size (__main__.TestNN)
test_adaptive_pooling_size_none (__main__.TestNN)
.................
----------------------------------------------------------------------
Ran 17 tests in 21.049s

OK

real 0m24.106s
user 0m20.890s
sys 0m4.026s
```

compared to master
```
[ialex@devgpu064.ash5 ~/pytorch] time python test/test_nn.py
test_AdaptiveAvgPool1d (__main__.TestNN)
test_AdaptiveAvgPool1d_cuda (__main__.TestNN)
test_AdaptiveAvgPool2d_single (__main__.TestNN)
test_AdaptiveAvgPool2d_single_cuda (__main__.TestNN)
test_AdaptiveAvgPool2d_tuple (__main__.TestNN)
test_AdaptiveAvgPool2d_tuple_cuda (__main__.TestNN)
test_AdaptiveAvgPool2d_tuple_none (__main__.TestNN)
test_AdaptiveAvgPool2d_tuple_none_cuda (__main__.TestNN)
test_AdaptiveAvgPool3d_single (__main__.TestNN)
test_AdaptiveAvgPool3d_single_cuda (__main__.TestNN)
test_AdaptiveAvgPool3d_tuple (__main__.TestNN)
test_AdaptiveAvgPool3d_tuple_cuda (__main__.TestNN)
test_AdaptiveAvgPool3d_tuple_none (__main__.TestNN)
test_AdaptiveAvgPool3d_tuple_none_cuda (__main__.TestNN)
test_adaptive_log_softmax (__main__.TestNN)
test_adaptive_pooling_input_size (__main__.TestNN)
test_adaptive_pooling_size_none (__main__.TestNN)
.................
----------------------------------------------------------------------
Ran 17 tests in 23.021s

OK

real 0m27.095s
user 0m20.121s
sys 0m3.668s
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14714

Differential Revision: D13384084

Pulled By: xnder

fbshipit-source-id: 344442103ccbbda72d3c010d2feea00e9985d226

5 years agoMove numa.{h, cc} to c10/util (#15024)
Jerry Zhang [Wed, 12 Dec 2018 20:06:09 +0000 (12:06 -0800)]
Move numa.{h, cc} to c10/util (#15024)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15024

Pull Request resolved: https://github.com/pytorch/pytorch/pull/14393

att

Reviewed By: dzhulgakov

Differential Revision: D13380559

fbshipit-source-id: abc3fc7321cf37323f756dfd614c7b41978734e4

5 years agoStop erroneously running aten::warn (#15124)
Richard Zou [Wed, 12 Dec 2018 19:32:05 +0000 (11:32 -0800)]
Stop erroneously running aten::warn (#15124)

Summary:
Fixes #15119. Before this PR, we were propagating constants through
aten::warn AND running it as a part of shape analysis.
This caused aten::warn to be run regardless of if it is
supposed to be run dynamically. This PR adds an exclusion for aten::warn
in constant propagation and shape analysis, similar to that of prim::RaiseException.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15124

Differential Revision: D13432815

Pulled By: zou3519

fbshipit-source-id: 15ab533ce2accb2da3fd4e569070c7979ce61708

5 years agoMove CUDAGuard, CUDAStream and CUDAGuardImpl to c10/cuda (#14248)
Edward Yang [Wed, 12 Dec 2018 19:19:03 +0000 (11:19 -0800)]
Move CUDAGuard, CUDAStream and CUDAGuardImpl to c10/cuda (#14248)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14248

This diff also introduces a horrifying hack to override CUDA's DeviceGuardImpl
with a HIPGuardImplMasqueradingAsCUDA, to accommodate PyTorch's current
behavior of pretending CUDA is HIP when you build with ROCm enabled.

Reviewed By: bddppq

Differential Revision: D13145293

fbshipit-source-id: ee0e207b6fd132f0d435512957424a002d588f02

5 years agoKill Type.storage. (#15075)
Gregory Chanan [Wed, 12 Dec 2018 18:55:22 +0000 (10:55 -0800)]
Kill Type.storage. (#15075)

Summary:
It's not used.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15075

Reviewed By: ezyang

Differential Revision: D13422487

Pulled By: gchanan

fbshipit-source-id: 272aa0a10e96f3ffb97d571490b517f972b9dcf7

5 years agofix infinite loop when get_max_threads is nonzero but num_threads is 1
Brennan Vincent [Wed, 12 Dec 2018 17:58:54 +0000 (09:58 -0800)]
fix infinite loop when get_max_threads is nonzero but num_threads is 1

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/15114

Differential Revision: D13431891

Pulled By: umanwizard

fbshipit-source-id: f968b8e50cf776c346d4a28d72b12e7856c95839

5 years agoEnsure there aren't variables in checked_tensor_unwrap, checked_tenso… (#15105)
Gregory Chanan [Wed, 12 Dec 2018 17:55:42 +0000 (09:55 -0800)]
Ensure there aren't variables in checked_tensor_unwrap, checked_tenso… (#15105)

Summary:
…r_list_unwrap.

These functions use unsafeGetTensorImpl(), which doesn't work with Variables (in a silent way that may blow up later).
So let's do early checking.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15105

Reviewed By: ezyang

Differential Revision: D13429149

Pulled By: gchanan

fbshipit-source-id: b85f6f5b7cdb9a6dd0c40205b924c840a3920ba0

5 years agoAdd better support for bools in the graph fuser (#15057)
Richard Zou [Wed, 12 Dec 2018 17:37:10 +0000 (09:37 -0800)]
Add better support for bools in the graph fuser (#15057)

Summary:
Fixes #15038.

aten::_cast_Float(tensor, non_blocking) support was added in #14336.
Its second argument is a bool, but because we don't support generating values
of type bool in the fuser codegen, the codegen errored out.

aten::_cast_Float in the fuser never actually uses its non_blocking
argument, so another way to fix this would be to have a special op for a
fused cast but I thought that we might have fusible ops that do take
bool arguments in the future so this would be good to have.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15057

Differential Revision: D13432091

Pulled By: zou3519

fbshipit-source-id: 455fe574f5f080aca9a112e346b841a2534a8dc3

5 years agofix some tests that I accidentally disabled (#15077)
Brennan Vincent [Wed, 12 Dec 2018 16:49:04 +0000 (08:49 -0800)]
fix some tests that I accidentally disabled (#15077)

Summary:
While moving these scenarios into `_test_dim_ops` I accidentally left an empty loop in the actual tests, causing them to do nothing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15077

Differential Revision: D13428759

Pulled By: umanwizard

fbshipit-source-id: 08f53068981d9192c1408878b168e9053f4dc92e

5 years agoDon't setup x86_64-linux-gnu-gcc as an sccache wrapper. (#15078)
Edward Yang [Wed, 12 Dec 2018 15:57:54 +0000 (07:57 -0800)]
Don't setup x86_64-linux-gnu-gcc as an sccache wrapper. (#15078)

Summary:
When I do this setup in a local Docker development environment,
I get the following error:

    x86_64-linux-gnu-gcc: error trying to exec 'cc1plus': execvp: No such file or directory

Somehow, gcc seems to get confused when it gets run from the wrong
directory.  Best not to do it.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15078

Differential Revision: D13432143

Pulled By: ezyang

fbshipit-source-id: b18e15f493503a4c8205c85f92a214e49762a7bc

5 years agoUse c10::to_string that works cross platform (#15117)
Junjie Bai [Wed, 12 Dec 2018 10:56:37 +0000 (02:56 -0800)]
Use c10::to_string that works cross platform (#15117)

Summary:
Fix master breakage introduced in #15108
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15117

Differential Revision: D13430568

Pulled By: bddppq

fbshipit-source-id: ce10bc552f085d1bf0afbc13119991bee014ac95

5 years agoAdd EmptyNameScope to allow you jump out from current scope. (#14631)
Zhiping Xiu [Wed, 12 Dec 2018 09:32:28 +0000 (01:32 -0800)]
Add EmptyNameScope to allow you jump out from current scope. (#14631)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14631

adding a empty name scope to allow people jump out from current namescope.

This could be useful when you want to access blob from parent or sibling scope.

 Facebook:

e.g: we encoutered a potential usecase in D13124249 (it's a large diff, please search by EmptyNameScope in that diff), we need to access to a blob declared in root namescope from a device namescope (device namescope has been used by parallel_GPU API). `EmptyNameScope` can help us do that with ease.

I referenced to `EmptyDeviceScope` D6103412 while implementing this one.

Reviewed By: yinghai

Differential Revision: D13272240

fbshipit-source-id: d4cde5abcc2336e456b6c6ef086266ef94d86da8

5 years agoRemove linker and dlopen flags that allowed undefined symbols in rocm build (#15091)
bddppq [Wed, 12 Dec 2018 07:20:31 +0000 (23:20 -0800)]
Remove linker and dlopen flags that allowed undefined symbols in rocm build (#15091)

Summary:
Previously the undefined symbols were caused by disabled_modules in tools/amd_build/disabled_features.json (now it's cleared).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15091

Differential Revision: D13429595

Pulled By: bddppq

fbshipit-source-id: b341e83f9e5a8d16440a364e837b045a8a4fd6e1

5 years agoFix serialization (#15033)
Peter Goldsborough [Wed, 12 Dec 2018 06:38:14 +0000 (22:38 -0800)]
Fix serialization (#15033)

Summary:
Fixes a bug where (de-)/serializing a hierarchy of submodules where one submodule doesn't have any parameters, but its submodules do, doesn't get properly loaded. This had to do with the fact that the old protobuf format couldn't store empty parameters.

Fixes https://github.com/pytorch/pytorch/issues/14891

soumith ezyang ebetica
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15033

Differential Revision: D13411322

Pulled By: goldsborough

fbshipit-source-id: 2ef73b2aa93fa9e46b1cbe1fd47d9f134d6016d5

5 years agoUpdate the output format for benchmark_helper. It outputs the dimensi… (#15108)
Fei Sun [Wed, 12 Dec 2018 06:22:42 +0000 (22:22 -0800)]
Update the output format for benchmark_helper. It outputs the dimensi… (#15108)

Summary:
…on first and all the values in the next line. This way, it can output arbitrary blob
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15108

Reviewed By: llyfacebook

Differential Revision: D13429346

Pulled By: sf-wind

fbshipit-source-id: 5e0bba2a46fbe8d997dfc3d55a698484552e3af8

5 years agoPre-commit flake8/clang-tidy (#15102)
Zachary DeVito [Wed, 12 Dec 2018 06:15:20 +0000 (22:15 -0800)]
Pre-commit flake8/clang-tidy (#15102)

Summary:
Provide a pre-commit hook that does flake8 and clang tidy checks. Enables the clang-tidy script to run in parallel to make it fast enough to be used in a pre-commit hook.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15102

Reviewed By: soumith

Differential Revision: D13429629

Pulled By: zdevito

fbshipit-source-id: bd52fe5652f29b033de8d9926d78350b2da4c2fc

5 years agoadd gloo support for gather on GPU (#14916)
Jane Wang [Wed, 12 Dec 2018 05:03:13 +0000 (21:03 -0800)]
add gloo support for gather on GPU (#14916)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14916

as titled

Reviewed By: pietern

Differential Revision: D13267832

fbshipit-source-id: 3b89d08af93f74941f17ff892c33fc2a4a023c19

5 years agoFix include paths for UndefinedTensorImpl.h
Sebastian Messmer [Wed, 12 Dec 2018 04:40:33 +0000 (20:40 -0800)]
Fix include paths for UndefinedTensorImpl.h

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14818

Reviewed By: ezyang

Differential Revision: D13348042

fbshipit-source-id: 11bdfc755767ce9d0a6fa95b2cf49d50adde8d60

5 years agoMove UndefinedTensorImpl to c10 (meh) (#14817)
Sebastian Messmer [Wed, 12 Dec 2018 04:40:33 +0000 (20:40 -0800)]
Move UndefinedTensorImpl to c10 (meh) (#14817)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14817

unfortunately, we still need this.

Reviewed By: ezyang

Differential Revision: D13348041

fbshipit-source-id: e8dcc89f5c71bd1ea2c9813990dac6e58e63b1fd

5 years agoFix include paths for TensorImpl.h
Sebastian Messmer [Wed, 12 Dec 2018 04:40:32 +0000 (20:40 -0800)]
Fix include paths for TensorImpl.h

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14816

Reviewed By: ezyang

Differential Revision: D13348040

fbshipit-source-id: a7204d89c2dd277d13093b0ed862f40b53dee82f

5 years agoMove TensorImpl to c10 (yay!)
Sebastian Messmer [Wed, 12 Dec 2018 04:40:32 +0000 (20:40 -0800)]
Move TensorImpl to c10 (yay!)

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14795

Reviewed By: ezyang

Differential Revision: D13336856

fbshipit-source-id: 5375d0e42312ff7564f4df06210a5e49542d59e3

5 years agoAdd at::scalar_tensor factory function, use it instead of Type.scalar… (#15074)
Gregory Chanan [Wed, 12 Dec 2018 04:35:37 +0000 (20:35 -0800)]
Add at::scalar_tensor factory function, use it instead of Type.scalar… (#15074)

Summary:
…_tensor.

This is part of a long series of paring down the Type interface.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15074

Differential Revision: D13421482

Pulled By: gchanan

fbshipit-source-id: 84010ee71fef2cb74d32d5de7858d8ed9f36b885

5 years agoMake ATen HIPify out-of-place, but still reuse CUDA names. (#14866)
Edward Yang [Wed, 12 Dec 2018 03:11:02 +0000 (19:11 -0800)]
Make ATen HIPify out-of-place, but still reuse CUDA names. (#14866)

Summary:
```
    This diff changes the HIPification of ATen to be out-of-place.
    We now have the following mappings:

    - ATen/cuda => ATen/hip
    - ATen/native/cuda => ATen/native/hip
    - ATen/native/sparse/cuda => ATen/native/sparse/hip
    - THC => THH
    - THCUNN => THHUNN

    The build system is adjusted to know about these new build paths,
    and HIPify is taught how to adjust include paths and
    THC_GENERIC_FILE appropriately.  ATen_hip is now built as
    the ATen_hip library, rather than reusing ATen_cuda.

    However, despite these new filepaths, none of the identifiers in ATen
    have actually changed.  So, e.g., THHGeneral.h still defines functions
    named THC_blahblah, and HIP still shows up as CUDA in PyTorch itself.
    We'll tackle this in a subsequent PR; this diff is just to get the files
    out-of-place.

    Minor extra improvements:

    - Don't edit tmp_install when hipifying
    - HIP no longer builds native_cudnn_cpp; it was unnecessary
    - Caffe2_HIP_INCLUDES is now Caffe2_HIP_INCLUDE, for consistency
      with all the other variables.
    - HIP build now properly respects ATEN_CUDA_FILES_GEN_LIB (it
      did not previously.)
    - You can now override file extension matching in pyHIPIFY
      by explicitly specifying its full name in the matching list.
      This is used so we can HIPify CMakeLists.txt in some situations.

    A little bit of string and ceiling wax:

    - gen.py grows a --rocm flag so that it knows to generate CUDA
      files which actually refer to the HIP headers (e.g., THH.h)
      We'll get rid of this eventually and generate real HIP files,
      but not for this PR.
    - Management of HIP dependencies is now completely deleted
      from the ATen CMakeLists.txt.  The old code was dead (because
      it was shoveled in ATen_CUDA_DEPENDENCY_LIBS and promptly
      ignored by the Caffe2 build system) and didn't actually work.
```

Stacked on https://github.com/pytorch/pytorch/pull/14849 review last commit only
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14866

Differential Revision: D13419475

Pulled By: ezyang

fbshipit-source-id: cb4c843df69a1d8369314c9fab1b7719520fa3db

5 years agoAdd error type to raise statement
Daniel Ingram [Wed, 12 Dec 2018 01:38:58 +0000 (17:38 -0800)]
Add error type to raise statement

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/15039

Differential Revision: D13419566

Pulled By: zou3519

fbshipit-source-id: f67a3aebce937e3e640e91e81eb3e184cfdf269c

5 years agoRemove deprecated variable_tensor_functions (#15003)
Peter Goldsborough [Wed, 12 Dec 2018 00:36:25 +0000 (16:36 -0800)]
Remove deprecated variable_tensor_functions (#15003)

Summary:
Removing the deprecated functions in `torch/csrc/variable_tensor_functions.h` (like `torch::CPU`) and corresponding implementations from `torch/csrc/torch.cpp` from master after the release.

ezyang gchanan soumith
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15003

Differential Revision: D13418086

Pulled By: goldsborough

fbshipit-source-id: a0accdf6f7b0efa1ec07ac7b74b86ff2da37543f

5 years agoadd gloo scatter support on GPU (#14917)
Jane Wang [Wed, 12 Dec 2018 00:13:31 +0000 (16:13 -0800)]
add gloo scatter support on GPU (#14917)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14917

as titled

Reviewed By: pietern

Differential Revision: D13271560

fbshipit-source-id: 0187a3390f8ebd72a2c074e7a651432159d427c0

5 years agore-enable copy of python files, but be careful that the copy is only … (#14982)
Zachary DeVito [Wed, 12 Dec 2018 00:11:09 +0000 (16:11 -0800)]
re-enable copy of python files, but be careful that the copy is only … (#14982)

Summary:
…done once

This allow no-op build to work correctly even when BUILD_CAFFE2_OPS is on.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14982

Differential Revision: D13413960

Pulled By: zdevito

fbshipit-source-id: 6e5412a8c375af8a47c76f548cdd31cff15f3853

5 years agoSplit off fuser tests in test_jit.py to their own test case (#15072)
Richard Zou [Tue, 11 Dec 2018 22:50:33 +0000 (14:50 -0800)]
Split off fuser tests in test_jit.py to their own test case (#15072)

Summary:
This PR creates TestFuser inside test_jit.py to be a home for graph fuser
specific tests.

This was a useful exercise because now that all the fuser tests are in
one place, I can spot redundant and bitrotting tests for cleanup in a
future PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15072

Differential Revision: D13421458

Pulled By: zou3519

fbshipit-source-id: 80b1a7712feff75a0c186d1664601c4edbbca694

5 years agoSupress warnings on generated tests
David Riazati [Tue, 11 Dec 2018 21:49:59 +0000 (13:49 -0800)]
Supress warnings on generated tests

Summary: Removes all warnings spew for the TestJitGenerated tests

Differential Revision: D13420919

fbshipit-source-id: f251c12f923088ccc5daa2984c15003a67cbd1c1

5 years agoIssue 14984: Remove divide by zero error in index_put_ (#14986)
Josef Lindman Hörnlund [Tue, 11 Dec 2018 21:36:00 +0000 (13:36 -0800)]
Issue 14984: Remove divide by zero error in index_put_ (#14986)

Summary:
No check for zero index tensor was done in the accumulate=True (serial) case in the new TensorIterator code since https://github.com/pytorch/pytorch/pull/13420.

https://github.com/pytorch/pytorch/issues/14984
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14986

Differential Revision: D13417861

Pulled By: colesbury

fbshipit-source-id: e6ed1af8f708b53a35803fc157ed1f043169ec89

5 years agoUpdate onnx coverage script for more accurate result (#15029)
zrphercule [Tue, 11 Dec 2018 21:12:23 +0000 (13:12 -0800)]
Update onnx coverage script for more accurate result (#15029)

Summary:
The coverage of scalar-input test cases were not accurate. This patch fixed that.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15029

Differential Revision: D13419764

Pulled By: zrphercule

fbshipit-source-id: a14a5cbef432bea8c9126156f5deb1125e1aeb47

5 years agotox.ini -> .flake8 (#15065)
Michael Suo [Tue, 11 Dec 2018 21:12:20 +0000 (13:12 -0800)]
tox.ini -> .flake8 (#15065)

Summary:
We were only using this file to configure flake8, and fbcode linters do not recognize tox.ini which causes spurious linter warnings.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15065

Differential Revision: D13420774

Pulled By: suo

fbshipit-source-id: e43a46befa36862c8b3c0a90074aec6a66531492

5 years agosilence unreachable code warnings (#15036)
Roy Li [Tue, 11 Dec 2018 21:06:11 +0000 (13:06 -0800)]
silence unreachable code warnings (#15036)

Summary:
Stack:
&nbsp;&nbsp;&nbsp;&nbsp;:black_circle:&nbsp; **#15036 silence unreachable code warnings**&nbsp;&nbsp;[:yellow_heart:](https://our.intern.facebook.com/intern/diff/D13411100/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15036

Differential Revision: D13414712

Pulled By: li-roy

fbshipit-source-id: d4aa84571fa94c66f3c5bfa9575a10c6ee398f9e

5 years agoimprove deep equality check in alias annotation test (#15031)
Michael Suo [Tue, 11 Dec 2018 19:44:27 +0000 (11:44 -0800)]
improve deep equality check in alias annotation test (#15031)

Summary:
Previously we were returning true if either IValue wasn't a tensor, which…is bad
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15031

Differential Revision: D13409759

Pulled By: suo

fbshipit-source-id: f8bdcd05d334c1276ce46f55812065d358c1ff5d

5 years agoFix race condition in ThreadPool::workOnTasksUntilCompleted (#14833)
James Sun [Tue, 11 Dec 2018 19:14:50 +0000 (11:14 -0800)]
Fix race condition in ThreadPool::workOnTasksUntilCompleted (#14833)

Summary:
Resolves #14704
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14833

Differential Revision: D13405211

Pulled By: highker

fbshipit-source-id: 8552d51eeb5d3af0ed66c461e5ddfeb9ae2926bd

5 years agoFix CMakeLists.txt for Int8 python bindings (#15047)
TerryTsao [Tue, 11 Dec 2018 18:41:37 +0000 (10:41 -0800)]
Fix CMakeLists.txt for Int8 python bindings (#15047)

Summary:
Currently in caffe2, one cannot properly fetch the content of Int8 blobs.

Upon digging the source code, it turns out that the relevant source code is not being compiled. Adding the source to CMakeLists.txt fixes this issue.

First time ever doing a pull request. Please let me know if there's any rule I should follow. Thanks.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15047

Differential Revision: D13417583

Pulled By: bddppq

fbshipit-source-id: dd39575971a3012635edbf97a045d80e4b62a8eb

5 years agoInstall cpp tests when built (#15000)
Orion Reblitz-Richardson [Tue, 11 Dec 2018 17:59:28 +0000 (09:59 -0800)]
Install cpp tests when built (#15000)

Summary:
This is broken out of https://github.com/pytorch/pytorch/pull/13733/

We want to install cpp tests so they can ultimately be runnable from that location for Caffe2 tests run from PyTorch builds.

cc pjh5 yf225 anderspapitto
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15000

Reviewed By: pjh5

Differential Revision: D13416253

Pulled By: orionr

fbshipit-source-id: 51280be0a22557a742f90c9f303c58c35cbd4a38

5 years agoStashing checkpointing RNG states based on devices of arg tensors (#14518)
Michael Carilli [Tue, 11 Dec 2018 17:46:25 +0000 (09:46 -0800)]
Stashing checkpointing RNG states based on devices of arg tensors (#14518)

Summary:
This PR intends to address apaszke's concerns in https://github.com/pytorch/pytorch/pull/14253#issuecomment-441740016.  Preserving the rng state is now controlled by a kwarg rather than a global state, hopefully in a python 2.7-compatible way.

Additionally, the checkpointing function stashes and restores the RNG states of
1. devices associated with all input tensor args to run_fn as well as
2. the current device.

I could easily change this to only save and restore the RNG states associated 1. alone.  This would simplify the logic to create a [deduplicated, ordered](https://github.com/pytorch/pytorch/compare/master...mcarilli:checkpointing_rng_touchup?expand=1#diff-58da227fc9b1d56752b7dfad90428fe0R37) list of devices considered active.

I'm wondering if the [get_device_states](https://github.com/pytorch/pytorch/compare/master...mcarilli:checkpointing_rng_touchup?expand=1#diff-58da227fc9b1d56752b7dfad90428fe0R32) and [set_device_states](https://github.com/pytorch/pytorch/compare/master...mcarilli:checkpointing_rng_touchup?expand=1#diff-58da227fc9b1d56752b7dfad90428fe0R47) functions are general enough to reside elsewhere (presumably torch/random.py).  I'm also wondering if the check on [torch.cuda._initialized](https://github.com/pytorch/pytorch/compare/master...mcarilli:checkpointing_rng_touchup?expand=1#diff-58da227fc9b1d56752b7dfad90428fe0R47) would be better placed within `get_device_states`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14518

Differential Revision: D13356210

Pulled By: ezyang

fbshipit-source-id: afa4cc21ce7862142d5cb1dec3750018df222039

5 years agoUpdating submodules
svcscm [Tue, 11 Dec 2018 15:38:23 +0000 (07:38 -0800)]
Updating submodules

Reviewed By: cdelahousse

fbshipit-source-id: d39b31f12ab2ab570548f3e8a65949332a64a0ff

5 years agoSwitch Int8Softmax, Int8Relu, and Int8LeakyRelu to QNNPACK (#14933)
Marat Dukhan [Tue, 11 Dec 2018 08:46:55 +0000 (00:46 -0800)]
Switch Int8Softmax, Int8Relu, and Int8LeakyRelu to QNNPACK (#14933)

Summary:
Int8Softmax: 4x-5x speedup compared to previous implementation
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14933

Differential Revision: D13406820

Pulled By: Maratyszcza

fbshipit-source-id: ea8cbe1b861ddb7ff1b851d06d52c6fd6d04ed01

5 years agoAdjust the API call to deserilize the tensorproto (#14132)
Lingyi Liu [Tue, 11 Dec 2018 06:49:47 +0000 (22:49 -0800)]
Adjust the API call to deserilize the tensorproto (#14132)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14132

as title

Reviewed By: jerryzh168

Differential Revision: D13110697

fbshipit-source-id: 822c9079de11951f90aec3d26f0e4108847e7dac

5 years agouse datatype dependent tolerance in data parallel tests
Natalia Gimelshein [Tue, 11 Dec 2018 06:48:16 +0000 (22:48 -0800)]
use datatype dependent tolerance in data parallel tests

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14856

Differential Revision: D13413560

Pulled By: soumith

fbshipit-source-id: b3a0cfe93477ed332e6eaa2e39ef5f4cc8b36481

5 years agoUpdate pooling.py (#14998)
paland3 [Tue, 11 Dec 2018 06:34:17 +0000 (22:34 -0800)]
Update pooling.py (#14998)

Summary:
Strange line in the documentation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14998

Differential Revision: D13413235

Pulled By: soumith

fbshipit-source-id: 80d05ec1185719b785f0aac914bc2369c1174f2f

5 years agoClean up casting ops (#14947)
Zachary DeVito [Tue, 11 Dec 2018 06:10:11 +0000 (22:10 -0800)]
Clean up casting ops (#14947)

Summary:
This removes FloatToInt style names replacing it with just the destination
name (e.g. FloatToInt -> Float). This makes it more consistent with the
syntax and makes it easier to add type conversions (just add a new
prim::Int op, for instance).

None of these ops get serialized so this should not effect loading of
old models.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14947

Differential Revision: D13408409

Pulled By: zdevito

fbshipit-source-id: d773fe863f14d9de893f686832769f8cc8903a8e

5 years agoshare code between adagrad and rowwise adagrad tests (#14692)
Jongsoo Park [Tue, 11 Dec 2018 06:08:04 +0000 (22:08 -0800)]
share code between adagrad and rowwise adagrad tests (#14692)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14692

Remove some code duplication

Reviewed By: chocjy

Differential Revision: D13296731

fbshipit-source-id: 5924e037ca64fc4b89234be922bc5ca47fb8bd32

5 years agoTBB task graph (#15041)
Ilia Cherniavskii [Tue, 11 Dec 2018 05:30:53 +0000 (21:30 -0800)]
TBB task graph (#15041)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15041

Adding an alternative implementation of a task graph based on TBB

Reviewed By: dmudiger

Differential Revision: D13412517

fbshipit-source-id: f5efedd680bbe0072bf38d504e5682ab51dd630f

5 years agoEnable more caffe2 fp16 rocm tests (#15040)
bddppq [Tue, 11 Dec 2018 05:25:45 +0000 (21:25 -0800)]
Enable more caffe2 fp16 rocm tests (#15040)

Summary:
cc rohithkrn petrex
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15040

Reviewed By: houseroad

Differential Revision: D13413068

Pulled By: bddppq

fbshipit-source-id: b2967f16f8da0b9e80083138fb8632c14e9e9b63

5 years agoEnable the build of tests in ATen/core (#15032)
Lu Fang [Tue, 11 Dec 2018 05:22:44 +0000 (21:22 -0800)]
Enable the build of tests in ATen/core (#15032)

Summary:
Otherwise they won't build
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15032

Reviewed By: yinghai

Differential Revision: D13409801

Pulled By: houseroad

fbshipit-source-id: 95464aa8f3604835997ba1bb7f3c3e51485d1686

5 years agoMore scaffolding for LegacyTHDispatch. (#14852)
Gregory Chanan [Tue, 11 Dec 2018 03:51:27 +0000 (19:51 -0800)]
More scaffolding for LegacyTHDispatch. (#14852)

Summary:
1) at::functions are now also exposed in the at::legacy::th namespace and we move relevant calls over to use them (to avoid merge conflicts)
2) LegacyTHDispatch now handles device-type initialization
3) We generate derived LegacyTHDispatchers, e.g. THLegacyCPULongDispatcher, although they are currently empty.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14852

Reviewed By: ezyang

Differential Revision: D13360852

Pulled By: gchanan

fbshipit-source-id: af6705aeba3593ea5dba9bfc62890e5257bc81f8

5 years agoBack out "Revert D13043261: [caffe2] Task graph and task future abstractions in executor"
Ilia Cherniavskii [Tue, 11 Dec 2018 03:18:06 +0000 (19:18 -0800)]
Back out "Revert D13043261: [caffe2] Task graph and task future abstractions in executor"

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/15030

Reviewed By: bddppq

Differential Revision: D13408998

fbshipit-source-id: 9eb675e09fbc4829eab34df7aa660a0590816feb

5 years agoTensor construction codemod - 2/3 (#14836)
Jerry Zhang [Tue, 11 Dec 2018 03:16:18 +0000 (19:16 -0800)]
Tensor construction codemod - 2/3 (#14836)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14836

Codemod generated with clangr shard mode, 25 files per diff,
motivation: https://github.com/pytorch/pytorch/pull/12407

Reviewed By: bddppq

Differential Revision: D13335176

fbshipit-source-id: 8d89510670e2cf70559d2f75e68f7181feb0b6d9

5 years agoFixing reading of FBGEMM from env variables
Jesse Hellemn [Tue, 11 Dec 2018 02:16:42 +0000 (18:16 -0800)]
Fixing reading of FBGEMM from env variables

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/15023

Reviewed By: orionr

Differential Revision: D13406778

Pulled By: pjh5

fbshipit-source-id: 2265f01170fb7969cbdf4e44ca6ef183f5d8017d

5 years agoAlignas Array struct (#14920)
Syed Tousif Ahmed [Tue, 11 Dec 2018 01:53:33 +0000 (17:53 -0800)]
Alignas Array struct (#14920)

Summary:
This PR aligns the Array struct such that cuda vector performance improvements can be utilized.

I tested this by using it on our Philox header. Note how the vector store instruction gets used for cuda vector types and when using alignas on Array, vs when not using alignas on Array.

With cuda vector type (uint4, uint2, float4): https://godbolt.org/z/UaWOmR
With alignas: https://godbolt.org/z/Eeh0t5
Without alignas: https://godbolt.org/z/QT63gq
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14920

Differential Revision: D13406751

Pulled By: soumith

fbshipit-source-id: 685b1010ef1f576dde30c278b1e9b642f87c843d

5 years agoIntegrate rocBLAS fp16 api into Caffe2 (#14882)
rohithkrn [Tue, 11 Dec 2018 01:25:46 +0000 (17:25 -0800)]
Integrate rocBLAS fp16 api into Caffe2 (#14882)

Summary:
This PR integrates rocBLAS half and mixed precision APIs in to Caffe2.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14882

Differential Revision: D13407840

Pulled By: bddppq

fbshipit-source-id: 75cb0d74da066776fa66575f1d255e879d36121e

5 years agoFix old tensor CopyFrom usage in boolean mask operator
Junjie Bai [Tue, 11 Dec 2018 01:19:15 +0000 (17:19 -0800)]
Fix old tensor CopyFrom usage in boolean mask operator

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/15025

Differential Revision: D13407323

Pulled By: bddppq

fbshipit-source-id: 1bc1d28ad0c6c71d25d788549be18917e393ee50

5 years agounit test with multiple omp threads (#14958)
Jongsoo Park [Tue, 11 Dec 2018 01:16:32 +0000 (17:16 -0800)]
unit test with multiple omp threads (#14958)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14958

Test with multiple threads

Reviewed By: jianyuh

Differential Revision: D13394791

fbshipit-source-id: 931a6c3bda15ebc816807e537dd0841c383e7a6f

5 years agoRemove partially initialized Tensor in Deserialization (#14197)
Jerry Zhang [Tue, 11 Dec 2018 01:13:51 +0000 (17:13 -0800)]
Remove partially initialized Tensor in Deserialization (#14197)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14197

Pull Request resolved: https://github.com/pytorch/pytorch/pull/13642

Previously we pass in a patially initialized Tensor to Deserialize and it will fill
it with the result of deserialization of a tensor proto. Now we want it to return
a Tensor directly since it's just a shared pointer to TensorImpl.

Reviewed By: dzhulgakov

Differential Revision: D12874357

fbshipit-source-id: 12b80a763375da23cfa64a74d6bc186d8d03b94f

5 years agoRevert D13043261: [caffe2] Task graph and task future abstractions in executor
Junjie Bai [Mon, 10 Dec 2018 23:56:37 +0000 (15:56 -0800)]
Revert D13043261: [caffe2] Task graph and task future abstractions in executor

Differential Revision:
D13043261

Original commit changeset: d89424354aea

fbshipit-source-id: b307e3281c4d83b60ba2bfadcbcf69afb7a41412

5 years agoapply() for ScriptModules (#14655)
James Reed [Mon, 10 Dec 2018 23:35:11 +0000 (15:35 -0800)]
apply() for ScriptModules (#14655)

Summary:
This can be use to initialize state that is not necessarily eligible for serialization/is implementation-specific. Concretely, I'm going to use this to pack the weight matrices for quantized Linear modules according to the FBGEMM APIs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14655

Differential Revision: D13404438

Pulled By: jamesr66a

fbshipit-source-id: 2d327cef5520fdd716b5b1b29effd60a049e8a4a

5 years agoSimplify THPPointer implementation for Storage. (#14897)
Edward Yang [Mon, 10 Dec 2018 23:16:27 +0000 (15:16 -0800)]
Simplify THPPointer implementation for Storage. (#14897)

Summary:
We've virtualized the destructor for storage, so we
no longer have to forward to a particular backend.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14897

Differential Revision: D13399216

Pulled By: ezyang

fbshipit-source-id: 531d29c3f278477cfa8759f30ab4f304d695b659

5 years agoDisable getNumGPUs rewrite (#14993)
Edward Yang [Mon, 10 Dec 2018 23:10:23 +0000 (15:10 -0800)]
Disable getNumGPUs rewrite (#14993)

Summary:
cc iotamudelta

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14993

Differential Revision: D13405804

Pulled By: ezyang

fbshipit-source-id: c4aa9ed29ee2a4f3abf76c1e0fa8babfd738db35

5 years agoFix include path for WrapDimMinimal.h
Sebastian Messmer [Mon, 10 Dec 2018 23:06:30 +0000 (15:06 -0800)]
Fix include path for WrapDimMinimal.h

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14794

Reviewed By: dzhulgakov

Differential Revision: D13336842

fbshipit-source-id: ca49a9fd1d409d8a75e43eeb9b9b02c305ebb79a

5 years agoMove WrapDimMinimal to c10
Sebastian Messmer [Mon, 10 Dec 2018 23:06:30 +0000 (15:06 -0800)]
Move WrapDimMinimal to c10

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14793

Reviewed By: ezyang

Differential Revision: D13336841

fbshipit-source-id: 4365a799e1856cc68dd94a273e97663fee5f51db

5 years agoStop disabling maybeOverlappingIndices (#14999)
Edward Yang [Mon, 10 Dec 2018 22:52:16 +0000 (14:52 -0800)]
Stop disabling maybeOverlappingIndices (#14999)

Summary:
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
cc iotamudelta
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14999

Differential Revision: D13405754

Pulled By: ezyang

fbshipit-source-id: 98459496494390ad1115b4f1f6738d53c14f0745

5 years agoadd gloo allgather support on GPU (#14576)
Jane Wang [Mon, 10 Dec 2018 22:29:41 +0000 (14:29 -0800)]
add gloo allgather support on GPU (#14576)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14576

as titled

Reviewed By: pietern

Differential Revision: D13266063

fbshipit-source-id: e262f77d63724a7504a7112907bbfba49612fe75

5 years agoTask graph and task future abstractions in executor
Ilia Cherniavskii [Mon, 10 Dec 2018 22:21:24 +0000 (14:21 -0800)]
Task graph and task future abstractions in executor

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14116

Reviewed By: dmudiger

Differential Revision: D13043261

fbshipit-source-id: d89424354aea14d1d14eb8320fb3aa34908a4e81

5 years agocaffe2/caffe2/contrib/script (#15007)
Jerry Zhang [Mon, 10 Dec 2018 22:17:43 +0000 (14:17 -0800)]
caffe2/caffe2/contrib/script (#15007)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15007

Pull Request resolved: https://github.com/pytorch/pytorch/pull/14979

att

Reviewed By: dzhulgakov

Differential Revision: D13286191

fbshipit-source-id: b8a6bc7aea44487aea4dcf7f44c858fd30c6293c

5 years agos/Torch Script/TorchScript/g (#15011)
Michael Suo [Mon, 10 Dec 2018 21:43:11 +0000 (13:43 -0800)]
s/Torch Script/TorchScript/g (#15011)

Summary:
pls
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15011

Differential Revision: D13404158

Pulled By: suo

fbshipit-source-id: e906281463d65c86e4e9073eb0c0a26f4f29e307

5 years agoImprove the docs of interpolate(align_corners=) (#14806)
Yuxin Wu [Mon, 10 Dec 2018 20:48:11 +0000 (12:48 -0800)]
Improve the docs of interpolate(align_corners=) (#14806)

Summary:
ailzhang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14806

Reviewed By: ailzhang

Differential Revision: D13366332

Pulled By: ppwwyyxx

fbshipit-source-id: 08fcea95d5c86b11cdfe464fdd9daa50050871f1

5 years agoImprove build time of register_symbols.cpp without compiler hacks (#14911)
Giuseppe Ottaviano [Mon, 10 Dec 2018 19:54:45 +0000 (11:54 -0800)]
Improve build time of register_symbols.cpp without compiler hacks (#14911)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14911

In optimized modes the compiler tries to inline all the
`unordered_map::operator[]` calls, creating a massive amount of code
which takes several minutes to optimize. Instead, create a table of
PODs and populate the maps using a simple loop.

Reviewed By: soumith, luciang

Differential Revision: D13382948

fbshipit-source-id: b6752921e0f7213595d26b39e4397f6a3897960b

5 years agoDelete defunct THP_API.h header. (#14899)
Edward Yang [Mon, 10 Dec 2018 18:44:13 +0000 (10:44 -0800)]
Delete defunct THP_API.h header. (#14899)

Summary:
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14899

Differential Revision: D13383687

Pulled By: ezyang

fbshipit-source-id: f2a08a769cc3775ba55f9c58d622a83df622d816

5 years agoDisable test_leaf_variable_sharing on ASAN runs
Edward Yang [Mon, 10 Dec 2018 18:40:25 +0000 (10:40 -0800)]
Disable test_leaf_variable_sharing on ASAN runs

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/15001

Reviewed By: orionr

Differential Revision: D13399119

fbshipit-source-id: 6b1d098e55a67b1f5bc6d08a8ee3c1be8234a654

5 years agoRevert D13306052: [pytorch][PR] Allow converting CharTensor to np arrays
Edward Yang [Mon, 10 Dec 2018 18:29:43 +0000 (10:29 -0800)]
Revert D13306052: [pytorch][PR] Allow converting CharTensor to np arrays

Differential Revision:
D13306052

Original commit changeset: 202d038f139c

fbshipit-source-id: 11f6bdd687f8ea5ce2e5f28f48d19449a5c403eb

5 years agoNon-INTERFACE AT_LINK_STYLE is dead code (#14822)
Edward Yang [Mon, 10 Dec 2018 17:32:55 +0000 (09:32 -0800)]
Non-INTERFACE AT_LINK_STYLE is dead code (#14822)

Summary:
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14822

Differential Revision: D13355574

Pulled By: ezyang

fbshipit-source-id: a7173084f8735424619b2e393df2715a05918b44

5 years agoSupport torch.load with encoding (#14743)
SsnL [Mon, 10 Dec 2018 16:05:06 +0000 (08:05 -0800)]
Support torch.load with encoding (#14743)

Summary:
Addresses a common compatibility issue when loading Py2 checkpoints in Py3 regarding to bytes.

E.g.,
[1] https://github.com/pytorch/pytorch/issues/5994,
[2] https://github.com/CSAILVision/places365/issues/25,
[3] https://discuss.pytorch.org/t/how-to-load-a-saved-model-trained-on-pytorch-0-3-1-python-2-7-on-pyorch-1-0-python-3-7/31212
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14743

Reviewed By: weiyangfb

Differential Revision: D13350888

Pulled By: soumith

fbshipit-source-id: 2df4e828a8b70509118a355307ca3ebe51e108f6

5 years agoConvert int8 numpy array to CharTensor (#14700)
SsnL [Mon, 10 Dec 2018 15:36:06 +0000 (07:36 -0800)]
Convert int8 numpy array to CharTensor (#14700)

Summary:
When rewriting `default_collate`, I noticed that `from_numpy` and `as_tensor` and `tensor` all do not work on `np.int8` arrays.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14700

Reviewed By: weiyangfb

Differential Revision: D13305297

Pulled By: soumith

fbshipit-source-id: 2937110f65ed714ee830d50098db292238e9b2a9

5 years agoAllow converting CharTensor to np arrays (#14710)
SsnL [Mon, 10 Dec 2018 15:33:26 +0000 (07:33 -0800)]
Allow converting CharTensor to np arrays (#14710)

Summary:
The other direction of #14700

cc soumith
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14710

Reviewed By: weiyangfb

Differential Revision: D13306052

Pulled By: soumith

fbshipit-source-id: 202d038f139cf05e01069ff8d05268c66354c983

5 years agopre-pack operation of dnnlowp conv with 16-bit accumulation (#14881)
Jongsoo Park [Mon, 10 Dec 2018 09:06:17 +0000 (01:06 -0800)]
pre-pack operation of dnnlowp conv with 16-bit accumulation (#14881)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14881

This diff allows us to pre-quantize and pre-pack weight matrix used in DNNLOWP_ACC16 .
The intended use pattern is run Int8ConvPackWeight in init_net that generates a packed weight and Int8Conv with DNNLOWP_ACC16 engine uses the the packed weight.

Reviewed By: csummersea

Differential Revision: D13374662

fbshipit-source-id: dd02b9a4eb7af1fe208aa857fcd0b445e6e395af

5 years agoRespect -q of setup.py (#14972)
Zachary DeVito [Mon, 10 Dec 2018 06:45:18 +0000 (22:45 -0800)]
Respect -q of setup.py (#14972)

Summary:
1. Changes the prints along the 'rebuild' pathway to respect the '-q' flag of setup.py
A clean rebuild now only prints:

    [zdevito@devgpu172.prn2 /data/users/zdevito/pytorch] python setup.py -q rebuild develop
    [0/1] Install the project...
    -- Install configuration: "RelWithDebInfo"
    ninja: no work to do.
    ninja: no work to do.
    ninja: no work to do.
    ninja: no work to do.
    ninja: no work to do.
    ninja: no work to do.

2. Deletes apparently dead calls to `generate_code`. Now that CMake builds these files,
it appears that it is getting called twice and the second version is never used.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14972

Reviewed By: soumith

Differential Revision: D13396330

Pulled By: zdevito

fbshipit-source-id: 83c45143bbc6a6d2c1cfee929291ec059f2b5dc3

5 years ago_get_device_index supports parsing device strings
SsnL [Mon, 10 Dec 2018 05:10:39 +0000 (21:10 -0800)]
_get_device_index supports parsing device strings

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14929

Reviewed By: weiyangfb

Differential Revision: D13394498

Pulled By: soumith

fbshipit-source-id: 948c6118abdf6c1e1a8a17709333954cafb2345e

5 years agoremove mingfeima mkldnn reference from README, as no longer necessary (#14975)
Soumith Chintala [Mon, 10 Dec 2018 04:41:44 +0000 (20:41 -0800)]
remove mingfeima mkldnn reference from README, as no longer necessary (#14975)

Summary: we now get mkldnn automatically from third_party/ideep

Differential Revision: D13396480

Pulled By: soumith

fbshipit-source-id: 20f819ba4b78cbe9c7d0baeab1c575669cbf6c20

5 years agofixing some rebuild issues (#14969)
Zachary DeVito [Mon, 10 Dec 2018 00:29:38 +0000 (16:29 -0800)]
fixing some rebuild issues (#14969)

Summary:
This fixes rebuild issues with the ninja part of the build. With this patch all ninja files will now report `nothing to do` if nothing has changed assuming `BUILD_CAFFE2_OPS=0`.

1. This only does the python file processing for caffe2 when BUILD_CAFFE2_OPS=1, this part of the build file is written in such a way that it is always required to rerun and can take substantial time to move files around in the no-op build. In the future this part should be rewritten to use a faster method of copying the files or should treat copying the files as part of the build rules and only run when the files are out of date.

2. This points `sleef` to a patched version that fixes a dead build output that is causing everything to relink all the time. See https://github.com/shibatch/sleef/pull/231#partial-pull-merging for the upstream change.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14969

Reviewed By: soumith

Differential Revision: D13395998

Pulled By: zdevito

fbshipit-source-id: ca85b7be9e99c5c578103c144ef0f2c3b927e724

5 years agoRemove deprecated info argument in btrifact (#14935)
vishwakftw [Sun, 9 Dec 2018 23:53:34 +0000 (15:53 -0800)]
Remove deprecated info argument in btrifact (#14935)

Summary:
As specified in title.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14935

Differential Revision: D13394449

Pulled By: soumith

fbshipit-source-id: 569d59414f3a1a43ea641bded4b5433eb53e3490

5 years agoadd fix for CUDA 10 (#14971)
Soumith Chintala [Sun, 9 Dec 2018 23:52:25 +0000 (15:52 -0800)]
add fix for CUDA 10 (#14971)

Summary:
Linux binaries-only fix for CUDA10
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14971

Differential Revision: D13395932

Pulled By: soumith

fbshipit-source-id: a72d6ab6b98c6c936e6391d55d2e4e45b9f1e6dd

5 years agoFix mismatched test_{full,ones,zeros}_like onnx expect files (#14956)
Your Name [Sun, 9 Dec 2018 16:55:26 +0000 (08:55 -0800)]
Fix mismatched test_{full,ones,zeros}_like onnx expect files (#14956)

Summary:
master broken #14903
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14956

Differential Revision: D13395363

Pulled By: bddppq

fbshipit-source-id: 31f0913843292e557807fd5a976f8907fa6cae4b

5 years agofix auto grad summing for IfOp where intermediate output needs renaming (#14772)
Yiming Wu [Sun, 9 Dec 2018 16:23:36 +0000 (08:23 -0800)]
fix auto grad summing for IfOp where intermediate output needs renaming (#14772)

Summary:
fix auto grad summing for IfOp where intermediate output needs renaming.

Bug before this diff:
- we only renames the output of IfOp without changing the subnet ops output
- this results in blob not found error

the unittest provides an example
this diff fix that for IfOp
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14772

Differential Revision: D13327090

Pulled By: harouwu

fbshipit-source-id: ec40ee88526ace3619c54551e223dd71158a02f8

5 years agoExport ones_like, zeros_like and full_like using ONNX ConstantLike op. (#14903)
Spandan Tiwari [Sun, 9 Dec 2018 06:46:03 +0000 (22:46 -0800)]
Export ones_like, zeros_like and full_like using ONNX ConstantLike op. (#14903)

Summary:
This PR does the following:
1) Updates the ONNX export for `torch.zeros_like` and `torch.full_like` ops to use ONNX op `ConstantLike`. This reduces the export of experimental op `ConstantFill`, which may possibly be removed in future, see https://github.com/onnx/onnx/pull/1434).
2) It also adds export support for `torch.ones_like`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14903

Differential Revision: D13383700

Pulled By: houseroad

fbshipit-source-id: 566d00a943e9497172fcd5a034b638a650ab13a2

5 years agoCanonicalize all includes in PyTorch. (#14849)
Edward Yang [Sun, 9 Dec 2018 03:32:01 +0000 (19:32 -0800)]
Canonicalize all includes in PyTorch. (#14849)

Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.

I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.

I used the following script to do the canonicalization:

```
  import subprocess
  import re
  import os.path

  files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
  for fn in files:
      if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
          continue
      if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
          continue
      with open(fn, 'r') as f:
          c = f.read()
      def fmt(p):
          return "#include <{}>".format(p)
      def repl(m):
          p = m.group(1)
          if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
              return fmt(p)
          if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
              return fmt(p)
          for root in ["aten/src", "torch/lib", ""]:
              for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
                  new_p = os.path.relpath(os.path.join(bad_root, p), root)
                  if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
                      return fmt(new_p)
          print("ERROR: ", fn, p)
          return m.group(0)
      new_c = re.sub(r'#include "([^"]+)"', repl, c)
      if new_c != c:
          print(fn)
          with open(fn, 'w') as f:
              f.write(new_c)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849

Reviewed By: dzhulgakov

Differential Revision: D13363445

Pulled By: ezyang

fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68

5 years agorace condition fix of calling mutable_data inside a openmp region (#14921)
Jongsoo Park [Sun, 9 Dec 2018 02:15:00 +0000 (18:15 -0800)]
race condition fix of calling mutable_data inside a openmp region (#14921)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14921

Fix race condition introduced in D13188595 .
Let's reminder ourselves "never call mutable_data from an OpenMP region!!!"

Reviewed By: jianyuh

Differential Revision: D13387692

fbshipit-source-id: 6a3aeedeeda55a9ede660de8f1f44d4eee76ae2b

5 years agoAdd crop argument, can crop rec as well, first resize and then crop
Fei Sun [Sat, 8 Dec 2018 19:12:40 +0000 (11:12 -0800)]
Add crop argument, can crop rec as well, first resize and then crop

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14894

Reviewed By: llyfacebook

Differential Revision: D13377604

Pulled By: sf-wind

fbshipit-source-id: 333d0d864e6c2dc85f405baa25ed58029d62750f

5 years agoSwitch Int8Sigmoid to QNNPACK (#14883)
Marat Dukhan [Sat, 8 Dec 2018 10:45:41 +0000 (02:45 -0800)]
Switch Int8Sigmoid to QNNPACK (#14883)

Summary:
50x-100x speedup compared to current version.
Also, fixes a bug in the current version when batch size exceeds 1 (current version processes only the first image in this case).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14883

Differential Revision: D13390655

Pulled By: Maratyszcza

fbshipit-source-id: 1b33a97bf2d0866d38faa2b42e64fd2859017898

5 years agoONNX changes to use int32_t (instead of enum) to store data type
Your Name [Sat, 8 Dec 2018 09:04:02 +0000 (01:04 -0800)]
ONNX changes to use int32_t (instead of enum) to store data type

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14926

Reviewed By: houseroad

Differential Revision: D13390642

Pulled By: bddppq

fbshipit-source-id: c2314b24d9384f188fda2b9a5cc16465ad39581e

5 years agoRemove at references from c10
Sebastian Messmer [Sat, 8 Dec 2018 08:26:14 +0000 (00:26 -0800)]
Remove at references from c10

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14432

Reviewed By: dzhulgakov

Differential Revision: D13223904

fbshipit-source-id: 43b06e33e088e7789ccea6d92267936fe30d8571

5 years agoImplement `std` for multiple dimensions on CPU devices. (#14535)
Brennan Vincent [Sat, 8 Dec 2018 04:13:31 +0000 (20:13 -0800)]
Implement `std` for multiple dimensions on CPU devices. (#14535)

Summary:
Tested on a tensor with 1 billion elements and 3 dimensions on a powerful, highly
multi-core Linux machine.

parallelized: All operations (e.g., `t.std(1)`) that could be done in the old code are now several times faster. All
new operations (e.g., `t.std((0,2))` are significantly faster than the NumPy equivalents.
`t.std((0, 1, 2))`, a new operation, is logically equivalent to the
old `t.std()`, but faster.

serial: The above comment about old operationos now being faster still
holds, but `t.std((t1, ..., tn))` is now a few
times slower than `t.std()`. If this turns out to be important, we can
special-case that to use the old algorithm.

The approach is to create a new method, `TensorIterator::foreach_reduced_elt`,
valid for `TensorIterator`s that represent a dimension reduction. This
method calls a supplied function for each element in the output,
supplying it with the input elements that correspond to that output.

Given that primitive, we can implement reductions like the following pseudocode:

If there is more than one output element:
```
PARALLEL FOR EACH element IN output:
    accumulator = identity
    SERIAL FOR EACH data_point IN element.corresponding_input:
        accumulator.update(data_point)
    element = accumulator.to_output()
```

If there is only one output element, we still want to parallelize, so we
do so along the *input* instead:

```
accumulators[n_threads]
PARALLEL FOR EACH input_chunk IN input.chunks():
    accumulators[thread_num()] = identity
    SERIAL FOR EACH data_point IN input_chunk:
        accumulators[thread_num()].update_with_data(data_point)
accumulator = identity
SERIAL FOR EACH acc in accumulators:
    accumulator.update_with_other_accumulator(acc)
output_element = accumulator.to_output()
```

Note that accumulators and data points do not have to be the same type
in general, since it might be necessary to track arbitrary amounts of
data at intermediate stages.

For example, for `std`, we use a parallel version of Welford's
algorithm, which requies us to track the mean, second moment, and number
of elements, so the accumulator type for `std` contains three pieces of
data.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14535

Differential Revision: D13283887

Pulled By: umanwizard

fbshipit-source-id: 8586b7bf00bf9f663c55d6f8323301e257f5ec3f

5 years agoAdd CAFFE2_API to video processing functions (#14900)
Orion Reblitz-Richardson [Sat, 8 Dec 2018 03:48:38 +0000 (19:48 -0800)]
Add CAFFE2_API to video processing functions (#14900)

Summary:
Extracted from https://github.com/pytorch/pytorch/pull/13733

Some tests were failing because these methods didn't have an export.

cc pjh5 yf225
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14900

Reviewed By: pjh5

Differential Revision: D13381130

Pulled By: orionr

fbshipit-source-id: 030536f8fb09765c09a7b0bd45400161053f2e18

5 years agoEnable unit tests known to work on ROCm (#14011)
Johannes M Dieterich [Sat, 8 Dec 2018 02:55:21 +0000 (18:55 -0800)]
Enable unit tests known to work on ROCm (#14011)

Summary:
* Enable unit tests known to work on ROCm.
* Disable a few that are known to be flaky for the time being.
* Use std::abs for Half
* No more special casing for ROCm in TensorMathReduce
* Document an important detail for a hardcoded block size w.r.t. ROCm in TensorMathReduce

ezyang bddppq for awareness
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14011

Differential Revision: D13387679

Pulled By: bddppq

fbshipit-source-id: 4177f2a57b09d866ccbb82a24318f273e3292f71

5 years agoAutomatic update of fbcode/onnx to aca8473a40cf43f01958c81b648efcee7f3a755a (#14865)
Lu Fang [Sat, 8 Dec 2018 01:24:01 +0000 (17:24 -0800)]
update of fbcode/onnx to aca8473a40cf43f01958c81b648efcee7f3a755a (#14865)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14865

Previous import was 42804705bdbf179d1a98394008417e1392013547

Included changes:
- **[aca8473](https://github.com/onnx/onnx/commit/aca8473)**: Add Erf operator for computing error function (#1675) <bddppq>
- **[3fc82ca](https://github.com/onnx/onnx/commit/3fc82ca)**: Add IsNaN operator. (#1656) <Pranav Sharma>
- **[0685f01](https://github.com/onnx/onnx/commit/0685f01)**: Add Sign Op (#1658) <Rui Zhu>
- **[2a8fae8](https://github.com/onnx/onnx/commit/2a8fae8)**: Fix unused var warning (#1669) <Yinghai Lu>
- **[e212833](https://github.com/onnx/onnx/commit/e212833)**: Update scan (#1653) <G. Ramalingam>

Reviewed By: zrphercule

Differential Revision: D13370727

fbshipit-source-id: 13a93d5acc8d4758f682278ea162ec9124ced22d