platform/upstream/pytorch.git
5 years agoAdd visibility to registry class to fix ubsan error (#16792)
Bram Wasti [Fri, 8 Feb 2019 18:00:49 +0000 (10:00 -0800)]
Add visibility to registry class to fix ubsan error (#16792)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16792

fix

Reviewed By: ezyang

Differential Revision: D13970381

fbshipit-source-id: 763db24b8a98a2757a63b77c70c8c68ba47f31e6

5 years agoRemove Legacy entry point. (#16721)
Edward Yang [Fri, 8 Feb 2019 17:29:59 +0000 (09:29 -0800)]
Remove Legacy entry point. (#16721)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16721

The very key line is we have to set the stream to the default
stream before calling the allocator.  This is very interesting.
It shouldn't be necessary, but seemingly is!

Reviewed By: dzhulgakov

Differential Revision: D13943193

fbshipit-source-id: c21014917d9fe504fab0ad8abbc025787f559287

5 years agoDeduplicate instances caching allocator, so that we only have one instance. (#16720)
Edward Yang [Fri, 8 Feb 2019 17:29:59 +0000 (09:29 -0800)]
Deduplicate instances caching allocator, so that we only have one instance. (#16720)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16720

I'm taking the deduplication slowly because there is something here
that is causing problems, and I want to figure out what it is.

Reviewed By: dzhulgakov

Differential Revision: D13943194

fbshipit-source-id: cbc08fee5862fdcb393b9dd5b1d2ac7250f77c4b

5 years agoDelete duplicate copy of THCCachingAllocator (round two). (#16615)
Edward Yang [Fri, 8 Feb 2019 17:29:58 +0000 (09:29 -0800)]
Delete duplicate copy of THCCachingAllocator (round two). (#16615)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16615

This is another go at landing https://github.com/pytorch/pytorch/pull/16226
Now that the caching allocator is moved to c10_cuda, we can
delete the duplicate copy from Caffe2.

The difference between this and the previous PR is that this
version faithfully maintains the binding code; in particular,
we end up with a SECOND copy of the caching allocator in
this patch.  I verified that this code does NOT cause a crash
in the workflow we canaried last time.

In further diffs, I plan to eliminate the second copy, and then
adjust the binding code.

Reviewed By: dzhulgakov

Differential Revision: D13901067

fbshipit-source-id: 66331fd4eadffd0a5defb3cea532d5cd07287872

5 years agoBump caffe2 docker images to 248 (#16863)
Junjie Bai [Fri, 8 Feb 2019 08:32:49 +0000 (00:32 -0800)]
Bump caffe2 docker images to 248 (#16863)

Summary:
Jenkins jobs update will be separate.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16863

Differential Revision: D13994672

Pulled By: bddppq

fbshipit-source-id: 5b27879dc6ac11a42016fe7835e9124345005ebb

5 years agoAlso register op schema when no kernels are registered
Sebastian Messmer [Fri, 8 Feb 2019 04:47:46 +0000 (20:47 -0800)]
Also register op schema when no kernels are registered

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16878

Reviewed By: bwasti

Differential Revision: D13997959

fbshipit-source-id: 7527a560b03f672f76e95d4f22ae28ce24698cc1

5 years agoDon't automatically handle context parameter (#16867)
Sebastian Messmer [Fri, 8 Feb 2019 04:47:45 +0000 (20:47 -0800)]
Don't automatically handle context parameter (#16867)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16867

Some caffe2 operators (example: BBoxTransform) have not just one template parameter which is the context, but might have multiple template parameters.
Because of this, we can't handle the context parameter inside the macro.

Reviewed By: bwasti

Differential Revision: D13995696

fbshipit-source-id: f55c3be913c8b125445a8d486846fc2fab587a63

5 years agoSupport onnxifi with partially shaped inferred net (#16877)
Yinghai Lu [Fri, 8 Feb 2019 04:41:18 +0000 (20:41 -0800)]
Support onnxifi with partially shaped inferred net (#16877)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16877

That's it.

Reviewed By: ipiszy

Differential Revision: D13997771

fbshipit-source-id: f512c7f30b4a4747aca335a0769712c2a2cc2206

5 years agoRobust determination of cudnn library and relevant conda packages. (#16859)
Pearu Peterson [Fri, 8 Feb 2019 04:27:40 +0000 (20:27 -0800)]
Robust determination of cudnn library and relevant conda packages. (#16859)

Summary:
This PR implements:
1. a fix to issue #12174 - determine the location of cudnn library using `ldconfig`
2. a fix to determine the installed conda packages (in recent versions of conda, the command `conda` is a Bash function that cannot be called within a python script, so using CONDA_EXE environment variable instead)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16859

Differential Revision: D14000399

Pulled By: soumith

fbshipit-source-id: 905658ecacb0ca0587a162fade436de9582d32ab

5 years agoSpecialize LengthsRangeFill and SparseLengthsWeightedSum in bound shape inference...
Yinghai Lu [Fri, 8 Feb 2019 04:08:39 +0000 (20:08 -0800)]
Specialize LengthsRangeFill and SparseLengthsWeightedSum in bound shape inference (#16869)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16869

TSIA.

Reviewed By: ipiszy, rdzhabarov

Differential Revision: D13994946

fbshipit-source-id: 7e507abc5a3c2834c92910e521387085c56e8b2e

5 years agoActivation histogram net observer with multiple histogram files as output (#16855)
Summer Deng [Fri, 8 Feb 2019 03:42:17 +0000 (19:42 -0800)]
Activation histogram net observer with multiple histogram files as output (#16855)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16855

Save the histogram of each net to a separate file

Reviewed By: jspark1105

Differential Revision: D13991610

fbshipit-source-id: a5be4e37a5e63567dcd7fdf99f451ee31bb350a5

5 years agoAllow dicts in C++ frontend (#16846)
David Riazati [Fri, 8 Feb 2019 02:21:30 +0000 (18:21 -0800)]
Allow dicts in C++ frontend (#16846)

Summary:
Fixes #16856
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16846

Differential Revision: D13991103

Pulled By: driazati

fbshipit-source-id: 4830dd6f707fa90429b5d3070eeda0bee53d2f2b

5 years agoSeparate elementwise level2 math functions (#16753)
Xiaomeng Yang [Fri, 8 Feb 2019 02:19:46 +0000 (18:19 -0800)]
Separate elementwise level2 math functions (#16753)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16753

Separate elementwise level2 math functions

i-am-not-moving-c2-to-c10

Reviewed By: houseroad

Differential Revision: D13954928

fbshipit-source-id: 1ca7a5d3da96e32510f502e5e4e79168854bee67

5 years agoFix (#2) ppc64le build break on git status --porcelain check (#16852)
Freddie Mendoza [Fri, 8 Feb 2019 02:15:44 +0000 (18:15 -0800)]
Fix (#2) ppc64le build break on git status --porcelain check (#16852)

Summary:
Add test/.hypothesis/ to .gitignore to pass git status --porcelain check in CI build
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16852

Differential Revision: D14000206

Pulled By: soumith

fbshipit-source-id: 5da99a4bb242c12aa35776f7254f6399a7fa6d8c

5 years agodoc updates for TorchScript (#16866)
Michael Suo [Fri, 8 Feb 2019 01:56:10 +0000 (17:56 -0800)]
doc updates for TorchScript (#16866)

Summary:
Some batched updates:
1. bool is a type now
2. Early returns are allowed now
3. The beginning of an FAQ section with some guidance on the best way to do GPU training + CPU inference
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16866

Differential Revision: D13996729

Pulled By: suo

fbshipit-source-id: 3b884fd3a4c9632c9697d8f1a5a0e768fc918916

5 years agoFix autodiff of nll_loss
Alex Şuhan [Fri, 8 Feb 2019 01:31:52 +0000 (17:31 -0800)]
Fix autodiff of nll_loss

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16851

Differential Revision: D13995046

Pulled By: wanchaol

fbshipit-source-id: 557c99f1d1825fa9b6031dd9fa8ba9b54205e8c4

5 years agoaten::_convolution now participates in shape analysis (#16837)
James Reed [Fri, 8 Feb 2019 01:22:00 +0000 (17:22 -0800)]
aten::_convolution now participates in shape analysis (#16837)

Summary:
During tracing, we record `aten::_convolution` rather than `aten::convolution`. The schema for the former was not present in the shape analysis pass, and resulted in some missing shape information.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16837

Differential Revision: D13993831

Pulled By: jamesr66a

fbshipit-source-id: ebb63bf628d81613258caf773a3af5930303ce5a

5 years agoEnable arg_ops_test/unique_ops_test on AMD/rocm (#16853)
peter.yeh@amd.com [Fri, 8 Feb 2019 00:10:50 +0000 (16:10 -0800)]
Enable arg_ops_test/unique_ops_test on AMD/rocm (#16853)

Summary:
Verified both tests are passing on rocm 2.1 env.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16853

Differential Revision: D13996279

Pulled By: bddppq

fbshipit-source-id: c0df610d7d9ca8d80ed2d1339cdadef59105a71c

5 years agoUpdate CI to recently released ROCm 2.1 release (#16808)
Johannes M Dieterich [Thu, 7 Feb 2019 22:17:14 +0000 (14:17 -0800)]
Update CI to recently released ROCm 2.1 release (#16808)

Summary:
* we do not need EAP packages any longer as the antistatic feature is now in the release
* consistently install the rccl package
* Skip one unit test that has regressed with 2.1
* Follow-up PRs will use 2.1 features once deployed on CI
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16808

Differential Revision: D13992645

Pulled By: bddppq

fbshipit-source-id: 37ca9a1f104bb140bd2b56d403e32f04c4fbf4f0

5 years agoUse bound shape inference in SparseNN tests (#16834)
Yinghai Lu [Thu, 7 Feb 2019 22:11:44 +0000 (14:11 -0800)]
Use bound shape inference in SparseNN tests (#16834)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16834

Inserting AdjustBatch ops will possibly change the names of the input/output, so we need to create a mapping and use the renamed names for external_inputs/outputs and input_shape_info for the onnxifi_net.

Reviewed By: ipiszy

Differential Revision: D13982731

fbshipit-source-id: c18b8a03d01490162929b2ca30c182d166001626

5 years agoAdd recognition for XLA device types.
Davide Libenzi [Thu, 7 Feb 2019 22:11:33 +0000 (14:11 -0800)]
Add recognition for XLA device types.

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16844

Differential Revision: D13988805

Pulled By: gchanan

fbshipit-source-id: 4e89d6d2cde8bdac41739efa65cc91569a360953

5 years agoFix and re-enable test case (#16643)
Sebastian Messmer [Thu, 7 Feb 2019 21:52:49 +0000 (13:52 -0800)]
Fix and re-enable test case (#16643)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16643

The test was disabled in D13908117 because it conflicted with another diff that was about to land.
Now fixed the merge conflict and re-landing it.

Reviewed By: ezyang

Differential Revision: D13911775

fbshipit-source-id: b790f1c3a3f207916eea41ac93bc104d011f629b

5 years agoC10_REGISTER_CAFFE2_OPERATOR: Macro for registering c2 kernels (#16548)
Sebastian Messmer [Thu, 7 Feb 2019 21:52:49 +0000 (13:52 -0800)]
C10_REGISTER_CAFFE2_OPERATOR: Macro for registering c2 kernels (#16548)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16548

With this macro, a caffe2 operator can now directly be registered with c10.
No need to write custom wrapper kernels anymore.

Differential Revision: D13877076

fbshipit-source-id: e56846238c5bb4b1989b79855fd44d5ecf089c9c

5 years agoFix Anaconda logins on binary builds
Jesse Hellemn [Thu, 7 Feb 2019 21:39:18 +0000 (13:39 -0800)]
Fix Anaconda logins on binary builds

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16848

Differential Revision: D13993614

Pulled By: pjh5

fbshipit-source-id: 16854b06d01460b78d9dbe7bd0341b7332984795

5 years agonew embedding label type in image input op (#16835)
Zhicheng Yan [Thu, 7 Feb 2019 21:08:06 +0000 (13:08 -0800)]
new embedding label type in image input op (#16835)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16835

We were using label type `multi_label_dense` to denote both 1) dense representation of integer label 2) embedding label of data type floating number.

This cause some issues as two cases have different assumption, such as for integer label, we will check whether label value is in [0, number_class - 1]. But such check should be skipped for `embedding label`.

Reviewed By: BIT-silence

Differential Revision: D13985048

fbshipit-source-id: 1202cdfeea806eb47647e3f4a1ed9c104f72ad2c

5 years agoUpdate ATen internals to use int64_t for dimension indexing (#16739)
Michael Antonov [Thu, 7 Feb 2019 20:42:38 +0000 (12:42 -0800)]
Update ATen internals to use int64_t for dimension indexing (#16739)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16739

Some code ATen locations seemed to use int, etc. inclorrectly where either
int64_t or size_t was required. Update them to use int64_t for dimension indexing where necessary.

Reviewed By: ezyang

Differential Revision: D13950124

fbshipit-source-id: aaf1cef783bf3c657aa03490f2616c35c816679f

5 years agoMake JIT attributes t_ and ts_ store Variable instead of Tensor (#16596)
Will Feng [Thu, 7 Feb 2019 19:58:50 +0000 (11:58 -0800)]
Make JIT attributes t_ and ts_ store Variable instead of Tensor (#16596)

Summary:
Discussed with zdevito and we want to use Variable (with `set_requires_grad(false)`) instead of Tensor in all parts of JIT, to eliminate the distinction and the conceptual overhead when trying to figure out which one to use.

This also helps with the Variable/Tensor merge work tracked at https://github.com/pytorch/pytorch/issues/13638, which will make common functions (such as `numel()` / `sizes()` / `dim()`) on Variable much faster when finished.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16596

Differential Revision: D13979971

Pulled By: yf225

fbshipit-source-id: c69119deec5bce0c22809081115f1012fdbb7d5a

5 years agoBetter error when using a constant tensor (#16724)
David Riazati [Thu, 7 Feb 2019 19:50:27 +0000 (11:50 -0800)]
Better error when using a constant tensor (#16724)

Summary:
Fixes #16284
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16724

Differential Revision: D13990531

Pulled By: driazati

fbshipit-source-id: adbf47a07eddb3813fbe1322944abfe5fcff89fa

5 years agoBackport the stable doc build on v1.0.1 to master (#16503)
Richard Zou [Thu, 7 Feb 2019 19:09:10 +0000 (11:09 -0800)]
Backport the stable doc build on v1.0.1 to master (#16503)

Summary:
List of changes:
- Always push the final state of the doc build docker for debugging purposes.
- Adds code for the stable doc build. This code is never actually run on master, only the v1.0.1 branch. There is a big note for this behavior.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16503

Differential Revision: D13972469

Pulled By: zou3519

fbshipit-source-id: 68f459650ef0de200a34edd43fc1372143923972

5 years agoRemove undefined tensor in jit script (#16379)
Wanchao Liang [Thu, 7 Feb 2019 18:32:02 +0000 (10:32 -0800)]
Remove undefined tensor in jit script (#16379)

Summary:
This PR is a follow up of #15460, it did the following things:

* remove the undefined tensor semantic in jit script/tracing mode
* change ATen/JIT schema for at::index and other index related ops with `Tensor?[]` to align with what at::index is really doing and to adopt `optional[tensor]` in JIT
* change python_print to correctly print the exported script
* register both TensorList and ListOfOptionalTensor in JIT ATen ops to support both
* Backward compatibility for `torch.jit.annotate(Tensor, None)`

List of follow ups:

* remove the undefined tensor semantic in jit autograd, autodiff and grad_of
* remove prim::Undefined fully

For easy reviews, please turn on `hide white space changes` in diff settings.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16379

Differential Revision: D13855677

Pulled By: wanchaol

fbshipit-source-id: 0e21c14d7de250c62731227c81bfbfb7b7da20ab

5 years agoSupport multiple inheritance in torch.distributions (#16772)
Fritz Obermeyer [Thu, 7 Feb 2019 09:33:41 +0000 (01:33 -0800)]
Support multiple inheritance in torch.distributions (#16772)

Summary:
This adds calls to `super().__init__()` in three classes in torch.distributions.

This is needed when `Distribution` and `Transform` objects are used with multiple inheritance, as e.g. combined with `torch.nn.Module`s. For example
```py
class MyModule(torch.distributions.Transform, torch.nn.Module):
    ...
```
cc  martinjankowiak esling who have wanted to use this pattern, e.g. in #16756
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16772

Differential Revision: D13978633

Pulled By: soumith

fbshipit-source-id: 8bc6cca1747cd74d32135ee2fe588bba2ea796f1

5 years agoRemove redundant wrappers in torch.distributions (#16807)
vishwakftw [Thu, 7 Feb 2019 09:10:54 +0000 (01:10 -0800)]
Remove redundant wrappers in torch.distributions (#16807)

Summary:
Changelog:
- Remove torch.distributions.multivariate_normal._batch_diag : same functionality is provided by torch.diagonal
- Remove torch.distributions.lowrank_multivariate_normal._batch_vector_diag : same functionality is provided by torch.diag_embed
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16807

Differential Revision: D13985550

Pulled By: soumith

fbshipit-source-id: 25c7d00c52ff7f85e431134e9ce0d5dda453667b

5 years agoInsert AdjustBatchSizeOp into the predict_net. (#16811)
Ying Zhang [Thu, 7 Feb 2019 08:33:29 +0000 (00:33 -0800)]
Insert AdjustBatchSizeOp into the predict_net. (#16811)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16811

As the title. The AdjustBatch ops will be inserted before and after the Onnxifi op to:
1) adjust batch/seq sizes to the ideal batch/seq size before these tensors are processed by the Onnxifi op;
2) adjust batch size to the original batch size for batches generated by the Onnxifi op.

Reviewed By: yinghai

Differential Revision: D13967711

fbshipit-source-id: 471b25ae6a60bf5b7ebee1de6449e0389b6cafff

5 years agoUnify gpu_support variable in python tests (#16748)
rohithkrn [Thu, 7 Feb 2019 08:21:21 +0000 (00:21 -0800)]
Unify gpu_support variable in python tests (#16748)

Summary:
Assign `has_gpu_support = has_cuda_support or has_hip_support` and make according changes in python tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16748

Differential Revision: D13983132

Pulled By: bddppq

fbshipit-source-id: ca496fd8c6ae3549b736bebd3ace7fa20a6dad7f

5 years agoUpdate Docker file section in README.md (#16812)
Mohana Rao [Thu, 7 Feb 2019 07:33:40 +0000 (23:33 -0800)]
Update Docker file section in README.md (#16812)

Summary:
Emphasize on the fact that docker build should be triggered from pytorch repo directory.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16812

Differential Revision: D13985531

Pulled By: soumith

fbshipit-source-id: c6511d1e81476eb795b37fb0ad23e8951dbca617

5 years agoTensorIterator cuda launch configs update (#16224)
Jie [Thu, 7 Feb 2019 07:05:49 +0000 (23:05 -0800)]
TensorIterator cuda launch configs update (#16224)

Summary:
Update launch configs for TensorIterator gpu_reduce_kernel. Enable flexible
block dimension to improve efficiency for reduction cases with small fast
dimension.

Previously TensorIterator launches blocks with fixed 32x16 threads.
For cases like:

  import torch
  torch.randn(2**20, 4, device='cuda').sum(0)

The fixed launch config does handle coalesced memory access efficiently.

Updated launch configure enables flexible block dimension. Combining with
improved reduction scheme (using flexible vertical / horizontal reduction
instead of limited warp / block reduction in the old code), it ensures optimal
memory access pattern even with reduction on dimension with small stride.

Possible future improvements:
1. Precise dynamic shared memory allocation.
2. Using warp shuffle for vertical (block_y) reduction.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16224

Differential Revision: D13806753

Pulled By: soumith

fbshipit-source-id: 37e45c7767b5748cf9ecf894fad306e040e2f79f

5 years agoDefine layer_norm schema in caffe2 (#16535)
Sebastian Messmer [Thu, 7 Feb 2019 05:14:21 +0000 (21:14 -0800)]
Define layer_norm schema in caffe2 (#16535)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16535

There is now no need anymore to define the layer norm schema in a central location.
It can just be defined in caffe2 next to the kernel implementation.

Reviewed By: ezyang

Differential Revision: D13869503

fbshipit-source-id: c478153f8fd712ff6d507c794500286eb3583149

5 years agoAutomatically register c10 ops with JIT (#16534)
Sebastian Messmer [Thu, 7 Feb 2019 05:14:20 +0000 (21:14 -0800)]
Automatically register c10 ops with JIT (#16534)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16534

All c10 ops from the c10 dispatcher are now automatically registered with JIT

Reviewed By: dzhulgakov

Differential Revision: D13869275

fbshipit-source-id: 5ab5dec5b983fe661f977f9d29d8036768cdcab6

5 years agoAdd AdjustBatch Op (#16676)
Yinghai Lu [Thu, 7 Feb 2019 03:12:32 +0000 (19:12 -0800)]
Add AdjustBatch Op (#16676)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16676

This op is used for changing batch size (first dimension) of the tensor.

Reviewed By: bertmaher, ipiszy

Differential Revision: D13929200

fbshipit-source-id: 4f2c3faec072d468be8301bf00c80d33adb3b5b3

5 years agoBring back running pytorch tests in rocm CI
bddppq [Thu, 7 Feb 2019 01:52:12 +0000 (17:52 -0800)]
Bring back running pytorch tests in rocm CI

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16829

Differential Revision: D13982323

Pulled By: bddppq

fbshipit-source-id: 6ffadb96b9e2ebd64a29e38674a51401dfb211db

5 years agoRename DynamicType -> TensorType (#16787)
Zachary DeVito [Thu, 7 Feb 2019 01:22:47 +0000 (17:22 -0800)]
Rename DynamicType -> TensorType (#16787)

Summary:
```
import json
from subprocess import check_call
from pprint import pprint
renames = {
    'c10::TensorType': 'DimentionedTensorType',
    'c10::DynamicType': 'TensorType',
    'c10::TensorTypePtr': 'DimentionedTensorTypePtr',
    'c10::DynamicTypePtr': 'TensorTypePtr',
    'c10::TypeKind::DynamicType': 'TensorType',
    'c10::TypeKind::TensorType': 'DimentionedTensorType',
}

entries = json.loads(open('compile_commands.json', 'r').read())

build = None
sources = []

for e in entries:
    name = e['file']
    if not ('jit' in name or 'ATen/core' in name):
        continue
    build = e['directory']
    sources.append(name)

args = ['clang-rename', '-i', '-force', '-pl']
for name in sorted(renames.keys()):
    args += ['-qualified-name={}'.format(name), '-new-name={}'.format(renames[name])]

for source in sources:
    cmd = args + [source]
    pprint(args)
    check_call(cmd, cwd=build)
    check_call(['git', 'stash', 'push', '-m', 'rename'])
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16787

Differential Revision: D13974132

Pulled By: zdevito

fbshipit-source-id: 8368fd53e17cff83707bbe77f2d7aad74f8ce60e

5 years agoUse bound shape inference in onnxifi transform (#16598)
Yinghai Lu [Thu, 7 Feb 2019 00:13:24 +0000 (16:13 -0800)]
Use bound shape inference in onnxifi transform (#16598)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16598

ATT.

Reviewed By: bertmaher, rdzhabarov

Differential Revision: D13893698

fbshipit-source-id: 8d2ad9814fe76924a46b450eb7ebd3601fbdbbc7

5 years agoimprove error message (#16719)
Soumith Chintala [Wed, 6 Feb 2019 23:46:39 +0000 (15:46 -0800)]
improve error message (#16719)

Summary:
Fixes https://github.com/pytorch/pytorch/issues/16712
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16719

Differential Revision: D13978688

Pulled By: ezyang

fbshipit-source-id: 61f8fa4c54c6969a58550e32e18be2eb9254ced7

5 years agoint8 SpatialBN (#16796)
Jongsoo Park [Wed, 6 Feb 2019 23:14:17 +0000 (15:14 -0800)]
int8 SpatialBN (#16796)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16796

SpatialBN int8 version

Reviewed By: dskhudia

Differential Revision: D13971224

fbshipit-source-id: e55fd608c161069daaa4e62c618bc14b01f32cb7

5 years agocall istringstream clear after str (#16820)
Jongsoo Park [Wed, 6 Feb 2019 23:10:07 +0000 (15:10 -0800)]
call istringstream clear after str (#16820)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16820

Sometimes parsing histogram was not working correctly due to changes in D13633256
We need to call istringstream clear after str

Reviewed By: csummersea

Differential Revision: D13977509

fbshipit-source-id: ce3e8cb390641d8f0b5c9a7d6d6daadffeddbe11

5 years agoReplace resize_dim() with set_sizes_and_strides() (#16732)
Narine Kokhlikyan [Wed, 6 Feb 2019 22:29:35 +0000 (14:29 -0800)]
Replace resize_dim() with set_sizes_and_strides() (#16732)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16732

Use set_sizes_and_strides instead of resize_dim with.

Reviewed By: ezyang

Differential Revision: D13947867

fbshipit-source-id: 067b096b1fde14b039690992a5fe3ace386b2789

5 years agono EIGEN engine for DeformConv (#16785)
Jongsoo Park [Wed, 6 Feb 2019 19:52:23 +0000 (11:52 -0800)]
no EIGEN engine for DeformConv (#16785)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16785

There's no EIGEN engine implemented for DeformConv but unit test was checking it.

Reviewed By: BIT-silence

Differential Revision: D13967306

fbshipit-source-id: e29c19f59f5700fc0501c59f45d60443b87ffedc

5 years agoformat deform_conv_test.py (#16786)
Jongsoo Park [Wed, 6 Feb 2019 19:52:23 +0000 (11:52 -0800)]
format deform_conv_test.py (#16786)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16786

Format to prepare D13967306

Reviewed By: BIT-silence

Differential Revision: D13967317

fbshipit-source-id: 2de895f8474b04c55ba067fbf788c553dc010c60

5 years agoFix/Improve bound shape inference with real net tests (#16597)
Yinghai Lu [Wed, 6 Feb 2019 18:23:01 +0000 (10:23 -0800)]
Fix/Improve bound shape inference with real net tests (#16597)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16597

This diff fixes some bugs in shape inference for `SparseLengthsSumFused8BitRowwise`. And added input shape inference for `Concat` when `add_axis=1`.

Reviewed By: bertmaher

Differential Revision: D13892452

fbshipit-source-id: 6cd95697a6fabe6d78a5ce3cb749a3a1e51c68e7

5 years agoTypofix (#16800)
Edward Yang [Wed, 6 Feb 2019 18:19:37 +0000 (10:19 -0800)]
Typofix (#16800)

Summary:
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16800

Differential Revision: D13972592

Pulled By: ezyang

fbshipit-source-id: 45c352ac6090c8060bf75f44dec7205556986d88

5 years agocaffe2 | MSVS compatibility fixes (#16765)
Oleg Bogdanov [Wed, 6 Feb 2019 17:40:00 +0000 (09:40 -0800)]
caffe2 | MSVS compatibility fixes (#16765)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16765

Code changes required to build caffe2 for windows with toolchain used by FB.

Reviewed By: orionr

Differential Revision: D13953258

fbshipit-source-id: 651823ec9d81ac70e32d4cce5bc2472434104733

5 years agoFallback sum/add to CPU if needed (#15267)
Gu, Jinghui [Wed, 6 Feb 2019 17:25:42 +0000 (09:25 -0800)]
Fallback sum/add to CPU if needed (#15267)

Summary:
Fallback sum/add to CPU if needed
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15267

Differential Revision: D13935064

Pulled By: yinghai

fbshipit-source-id: eb228683d00a0462a1970f849d35365bc98340d6

5 years agoAutomatic update of fbcode/onnx to 822d8df0a2a32233c6022f50a158817a0f19bdc7 (#16791)
Lu Fang [Wed, 6 Feb 2019 17:17:37 +0000 (09:17 -0800)]
update of fbcode/onnx to 822d8df0a2a32233c6022f50a158817a0f19bdc7 (#16791)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16791

Previous import was bfa8b335ab6d1ed7b688dc2ec96421a3fe9e644c

Included changes:
- **[822d8df](https://github.com/onnx/onnx/commit/822d8df)**: allow removed experimental ops in the checker for now (#1792) <Lu Fang>

Reviewed By: MisterTea

Differential Revision: D13970103

fbshipit-source-id: 5feaaa6c65ba10901eeba0b63724d7e451e9b642

5 years agoAdding torch/lib64 in .gitignore for ppc64le CI build to pass (#16782)
Freddie Mendoza [Wed, 6 Feb 2019 17:02:18 +0000 (09:02 -0800)]
Adding torch/lib64 in .gitignore for ppc64le CI build to pass (#16782)

Summary:
Adding torch/lib64 in .gitignore so that a git status --porcelain
check during CI build and test passes for ppc64le. During build
torch/lib64 is created and contains third-party libraries. This
should be ignored by the porcelain check
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16782

Differential Revision: D13972794

Pulled By: ezyang

fbshipit-source-id: 5459c524eca42d396ac46e756a327980b4b1fa53

5 years agoRevert D13854304: [redo][c10] LayerNorm Registration Example
Edward Yang [Wed, 6 Feb 2019 16:17:55 +0000 (08:17 -0800)]
Revert D13854304: [redo][c10] LayerNorm Registration Example

Differential Revision:
D13854304

Original commit changeset: ec463ce22721

fbshipit-source-id: 4262b9a2ef486e1c7c0283ea021331ac97cc5f56

5 years agoRevert D13855525: [c10] Expose RoIAlign to torch
Edward Yang [Wed, 6 Feb 2019 16:17:54 +0000 (08:17 -0800)]
Revert D13855525: [c10] Expose RoIAlign to torch

Differential Revision:
D13855525

Original commit changeset: cfee7bb1544d

fbshipit-source-id: 0b4124b78c4082b52e592a1275069c879a9aed39

5 years agoRevert D13856086: [c10] Expose GenerateProposals to torch
Edward Yang [Wed, 6 Feb 2019 16:17:53 +0000 (08:17 -0800)]
Revert D13856086: [c10] Expose GenerateProposals to torch

Differential Revision:
D13856086

Original commit changeset: a4873646a71a

fbshipit-source-id: 79b634426404236ddbc407d3796a350ad3dae5ca

5 years agoRevert D13864292: [c10] Expose BBoxTransform to pytorch
Edward Yang [Wed, 6 Feb 2019 16:17:53 +0000 (08:17 -0800)]
Revert D13864292: [c10] Expose BBoxTransform to pytorch

Differential Revision:
D13864292

Original commit changeset: 1f57664e7834

fbshipit-source-id: 37663b7e8213185ecaa5c219076fc7de64704549

5 years agoRevert D13865221: [c10] Expose BoxWithNMSLimit
Edward Yang [Wed, 6 Feb 2019 16:17:52 +0000 (08:17 -0800)]
Revert D13865221: [c10] Expose BoxWithNMSLimit

Differential Revision:
D13865221

Original commit changeset: 8a3f1d420183

fbshipit-source-id: 0057be9619b660dcad8c01bae67b54400127577e

5 years agoRevert D13866214: [c10] Expose HeatmapMaxKeypoints to torch
Edward Yang [Wed, 6 Feb 2019 16:17:52 +0000 (08:17 -0800)]
Revert D13866214: [c10] Expose HeatmapMaxKeypoints to torch

Differential Revision:
D13866214

Original commit changeset: 2ca79037fc07

fbshipit-source-id: d2c653f4f32cf0ea76875888f3523c0dc7db9960

5 years agoFix pip list format in collect_env (#16798)
Rodrigo Berriel [Wed, 6 Feb 2019 15:41:42 +0000 (07:41 -0800)]
Fix pip list format in collect_env (#16798)

Summary:
Since pip 18.0 (2018-07-22), `legacy` is no longer a valid choice for `pip list --format` as can be seen in the [Release Notes](https://pip.pypa.io/en/stable/news/#id62). Therefore, the options now are: `columns`, `freeze` and `json`. With `legacy`, this is how it looked like:

```
[...]
Versions of relevant libraries:
[pip3] numpy (1.16.1)
[pip3] torch (1.0.1)
[pip3] torchvision (0.2.1)
[...]
```

Changing to `freeze`, this is how it looks like:

```
[...]
Versions of relevant libraries:
[pip3] numpy==1.16.1
[pip3] torch==1.0.1
[pip3] torchvision==0.2.1
[...]
```

Currently, this is what happens:

```
[...]
Versions of relevant libraries:
[pip] Could not collect
[...]
```
The `freeze` option is also available in old pip, so this change is backwards compatible. Also, if we would like to keep the old style, which I think it is not necessary, I could easily change that.

 ---

In case anyone wants to know how `columns` looks like (I prefer `freeze`):

```
[...]
Versions of relevant libraries:
[pip3] numpy               1.16.1
[pip3] torch               1.0.1
[pip3] torchvision         0.2.1
[...]
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16798

Differential Revision: D13971793

Pulled By: soumith

fbshipit-source-id: 3721d9079a2afa245e1185f725598901185ea4cd

5 years agodisable default system-wide detection of gflags, glog, opencv, lmdb, leveldb (#16789)
Soumith Chintala [Wed, 6 Feb 2019 13:09:09 +0000 (05:09 -0800)]
disable default system-wide detection of gflags, glog, opencv, lmdb, leveldb (#16789)

Summary:
They can instead by enable by env flags USE_* (as always).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16789

Differential Revision: D13971789

Pulled By: soumith

fbshipit-source-id: d5eac9be677114be3fb15b43080faa0efdfff8ee

5 years agofix BUILD_CAFFE2_OPS
Zachary DeVito [Wed, 6 Feb 2019 06:36:48 +0000 (22:36 -0800)]
fix BUILD_CAFFE2_OPS

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16783

Differential Revision: D13965061

Pulled By: zdevito

fbshipit-source-id: 6fe710ca51e2f338873b56f23256668ca3fe2032

5 years agoRemove unnecessary typing import. (#16777)
Edward Yang [Wed, 6 Feb 2019 05:09:06 +0000 (21:09 -0800)]
Remove unnecessary typing import. (#16777)

Summary:
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16777

Differential Revision: D13969679

Pulled By: ezyang

fbshipit-source-id: d4728797a5927ae32628621c654eadb93c0e7682

5 years agoFix alias analysis for fork/wait (#16671)
Michael Suo [Wed, 6 Feb 2019 04:37:30 +0000 (20:37 -0800)]
Fix alias analysis for fork/wait (#16671)

Summary:
(review top commit only).

As expected, fork/wait introduces some corner cases into the alias analysis. The comments inline should describe the changes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16671

Differential Revision: D13963219

Pulled By: suo

fbshipit-source-id: 2bec6fc03a4989cf309fbb9473f3f2ffe2c31431

5 years agochanges to apply xla patch (#16781)
Ailing Zhang [Wed, 6 Feb 2019 02:59:45 +0000 (18:59 -0800)]
changes to apply xla patch (#16781)

Summary:
This PR will let xla tests passes after https://github.com/pytorch/xla/pull/183 is in.

Will add back the branch filters once it's ready.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16781

Differential Revision: D13968976

Pulled By: ailzhang

fbshipit-source-id: df3b173336b3247aa56ef723569a1f68cdfa56e0

5 years agoTensor construction codemod (#16568)
Jerry Zhang [Wed, 6 Feb 2019 02:46:38 +0000 (18:46 -0800)]
Tensor construction codemod (#16568)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16568

In caffe2/caffe2/operators and caffe2/caffe2/fb/operators
(Resize + mutable_data) and (ResizeLike + mutable_data)
motivation: https://github.com/pytorch/pytorch/pull/12407

Reviewed By: dzhulgakov

Differential Revision: D13863416

fbshipit-source-id: 90ad3971850b89bf4b2ac81e9fa59d3bc43dc1c9

5 years agoWarn when tracing legacy constructors
David Riazati [Wed, 6 Feb 2019 02:22:17 +0000 (18:22 -0800)]
Warn when tracing legacy constructors

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16770

Differential Revision: D13963581

Pulled By: driazati

fbshipit-source-id: 8f8cdfc455ba65be370fd952fc5e5c233525d002

5 years agoUse torch.zeros for nn.LSTM
David Riazati [Wed, 6 Feb 2019 01:52:07 +0000 (17:52 -0800)]
Use torch.zeros for nn.LSTM

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16779

Differential Revision: D13963577

Pulled By: driazati

fbshipit-source-id: dc9edc3d2096760737ecbe4b3dd441ed2d53f4ad

5 years agoSet SCCACHE_IDLE_TIMEOUT=1200 (#16728)
Roy Li [Tue, 5 Feb 2019 23:17:22 +0000 (15:17 -0800)]
Set SCCACHE_IDLE_TIMEOUT=1200 (#16728)

Summary:
Doubling the sccache timeout from default of 600.

the asan build of #16645 will fail without this change.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16728

Differential Revision: D13963727

Pulled By: li-roy

fbshipit-source-id: 3614d75c1b46d663fa05b84f99d8a099283a8e64

5 years agoDocument hip-clang and its __HIP__ macro (#16771)
Johannes M Dieterich [Tue, 5 Feb 2019 22:53:16 +0000 (14:53 -0800)]
Document hip-clang and its __HIP__ macro (#16771)

Summary:
In #16085 , we introduced initial hip-clang bring-up code. Document the use of the __HIP__ macro now.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16771

Differential Revision: D13961538

Pulled By: ezyang

fbshipit-source-id: 67f6226abcbe62e2f4efc291c84652199c464ca6

5 years agoRename IntList to IntArrayRef. (#16751)
Edward Yang [Tue, 5 Feb 2019 22:39:43 +0000 (14:39 -0800)]
Rename IntList to IntArrayRef. (#16751)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16751

This was made more complicated by the fact that ivalue::IntList
is a thing.  So I had to fix all of the sites where we referring
to IValue post facto.

The following codemods were run, in this order:

```
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntList IntArrayRef
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntArrayRef::create IntList::create
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in ivalue::IntArrayRef ivalue::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in Tag::IntArrayRef Tag::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in isIntArrayRef isIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in toIntArrayRef toIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'Shared<IntArrayRef>' 'Shared<IntList>'
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'intrusive_ptr<IntArrayRef>' 'intrusive_ptr<IntList>'
```

Some manual fixups were done afterwards; they can be reviewed separately
at https://github.com/pytorch/pytorch/pull/16752

Reviewed By: dzhulgakov

Differential Revision: D13954363

fbshipit-source-id: b5c40aacba042402155a2f5a229fa6db7992ac64

5 years agodict values(), keys(), and len() (#16629)
David Riazati [Tue, 5 Feb 2019 21:48:52 +0000 (13:48 -0800)]
dict values(), keys(), and len() (#16629)

Summary:
Adds some operations for dicts to match Python and tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16629

Differential Revision: D13961144

Pulled By: driazati

fbshipit-source-id: b31f27a4320ff62cd118b508fb0a13056535dc7c

5 years agoAutomatic update of fbcode/onnx to bfa8b335ab6d1ed7b688dc2ec96421a3fe9e644c (#16767)
Lu Fang [Tue, 5 Feb 2019 21:13:16 +0000 (13:13 -0800)]
update of fbcode/onnx to bfa8b335ab6d1ed7b688dc2ec96421a3fe9e644c (#16767)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16767

Previous import was 875f7bbe537b9d6931d065977c192eaaf61e1179

Included changes:
- **[bfa8b33](https://github.com/onnx/onnx/commit/bfa8b33)**: [ONNXIFI]Add extension of onnxSetIOAndRunGraph (#1781) <Rui Zhu>

Reviewed By: zrphercule

Differential Revision: D13959349

fbshipit-source-id: 4876d00a3f7033cf9d89554f8b4789acd6881f72

5 years agoFix commit races on binary CI on master PR-merges (#16773)
Jesse Hellemn [Tue, 5 Feb 2019 20:56:56 +0000 (12:56 -0800)]
Fix commit races on binary CI on master PR-merges (#16773)

Summary:
There is no way to test this until it is merged.

On master jobs that run after a PR is merged, there is no CIRCLE_PR_NUMBER so the binary builds clone pytorch/pytorch/master, which races.

Based off of https://circleci.com/docs/2.0/env-vars/ and the circleci checkout code
```
git config --global url."ssh://git@github.com".insteadOf "https://github.com" || true
git config --global gc.auto 0 || true

if [ -e /home/circleci/project/.git ]
then
  cd /home/circleci/project
  git remote set-url origin "$CIRCLE_REPOSITORY_URL" || true
else
  mkdir -p /home/circleci/project
  cd /home/circleci/project
  git clone "$CIRCLE_REPOSITORY_URL" .
fi

if [ -n "$CIRCLE_TAG" ]
then
  git fetch --force origin "refs/tags/${CIRCLE_TAG}"
else
  git fetch --force origin "master:remotes/origin/master"
fi

if [ -n "$CIRCLE_TAG" ]
then
  git reset --hard "$CIRCLE_SHA1"
  git checkout -q "$CIRCLE_TAG"
elif [ -n "$CIRCLE_BRANCH" ]
then
  git reset --hard "$CIRCLE_SHA1"
  git checkout -q -B "$CIRCLE_BRANCH"
fi

git reset --hard "$CIRCLE_SHA1"
```
I believe we do no use git tags
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16773

Differential Revision: D13962132

Pulled By: pjh5

fbshipit-source-id: c62d2139f38ff39ecda1509b0bcd8bd102828e40

5 years agoExpose HeatmapMaxKeypoints to torch (#16528)
Bram Wasti [Tue, 5 Feb 2019 20:30:31 +0000 (12:30 -0800)]
Expose HeatmapMaxKeypoints to torch (#16528)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16528

..

Reviewed By: smessmer

Differential Revision: D13866214

fbshipit-source-id: 2ca79037fc070bade5542345af5ce09f88beda44

5 years agoExpose BoxWithNMSLimit (#16529)
Bram Wasti [Tue, 5 Feb 2019 20:30:31 +0000 (12:30 -0800)]
Expose BoxWithNMSLimit (#16529)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16529

..

Reviewed By: smessmer

Differential Revision: D13865221

fbshipit-source-id: 8a3f1d420183ed5ae51b3c9e4eb6e033078c7ae4

5 years agoExpose BBoxTransform to pytorch (#16530)
Bram Wasti [Tue, 5 Feb 2019 20:30:31 +0000 (12:30 -0800)]
Expose BBoxTransform to pytorch (#16530)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16530

..

Reviewed By: smessmer

Differential Revision: D13864292

fbshipit-source-id: 1f57664e78347e72c0087aa3d825a6a9517c1945

5 years agoExpose GenerateProposals to torch (#16477)
Bram Wasti [Tue, 5 Feb 2019 20:30:29 +0000 (12:30 -0800)]
Expose GenerateProposals to torch (#16477)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16477

expose generateproposals to torch

Reviewed By: smessmer

Differential Revision: D13856086

fbshipit-source-id: a4873646a71a6b6c01740d21729e827f4b36588f

5 years agoExpose RoIAlign to torch (#16476)
Bram Wasti [Tue, 5 Feb 2019 20:30:29 +0000 (12:30 -0800)]
Expose RoIAlign to torch (#16476)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16476

enable calling roialign (caffe2) from torch frontend

Reviewed By: smessmer

Differential Revision: D13855525

fbshipit-source-id: cfee7bb1544dc58df4231604ba01d61ca905ae3f

5 years agoLayerNorm Registration Example (#16478)
Bram Wasti [Tue, 5 Feb 2019 20:30:29 +0000 (12:30 -0800)]
LayerNorm Registration Example (#16478)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16478

This diff includes an example registration of a caffe2 op in torch.  A previous attempt ran into a static initialization order bug.

Reviewed By: smessmer

Differential Revision: D13854304

fbshipit-source-id: ec463ce2272126d08a5163d1599361ee5b718bbc

5 years agoEnable undefined at::Tensor to be passed as Output (#16730)
Bram Wasti [Tue, 5 Feb 2019 20:30:28 +0000 (12:30 -0800)]
Enable undefined at::Tensor to be passed as Output (#16730)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16730

with Jerry's new updates Tensor must be defined -- as a result I've needed to update the shim for caffe2 ops being used in PyTorch

Reviewed By: smessmer

Differential Revision: D13946950

fbshipit-source-id: 6f77877c61a743f82bdfc2ad04d6ab583000cc18

5 years agoAdd XLA / TPU device type, backend type and type id (#16763)
Alex Şuhan [Tue, 5 Feb 2019 20:20:21 +0000 (12:20 -0800)]
Add XLA / TPU device type, backend type and type id (#16763)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16763

Replicate the easy bits in https://github.com/pytorch/pytorch/pull/15153 with TPU / XLA instead of MSNPU. Also don't initialize the storage for XLA tensors for now.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16585

Reviewed By: ezyang

Differential Revision: D13912118

Pulled By: gchanan

fbshipit-source-id: 4889177e2478768fb281ed075b71146d1d850bd9

5 years agoPreserve method parameter names (#16750)
Zachary DeVito [Tue, 5 Feb 2019 20:16:56 +0000 (12:16 -0800)]
Preserve method parameter names (#16750)

Summary:
Fixes #16591

This uses uniqueBaseName so that parameters do not end up with suffixes. It changes next_id to be per-base-name rather than global to fix jittering issues when re-importing a re-numbered graph.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16750

Differential Revision: D13960282

Pulled By: zdevito

fbshipit-source-id: 2156f581d9b95d77bf1f1252074e800b19116555

5 years agoadd xla tests to enabled-configs (#16761)
Ailing Zhang [Tue, 5 Feb 2019 20:05:56 +0000 (12:05 -0800)]
add xla tests to enabled-configs (#16761)

Summary:
This should enable xla tests thus let master xla tests pass.
As usual, I will add the branch filters back before landing.
Thanks ezyang !
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16761

Differential Revision: D13959746

Pulled By: ailzhang

fbshipit-source-id: 7384da281d093d16edccb4283c74e47ac659eeff

5 years agoFix logging top commit of pytorch + builder in binaries for long summaries (#16766)
Jesse Hellemn [Tue, 5 Feb 2019 19:25:30 +0000 (11:25 -0800)]
Fix logging top commit of pytorch + builder in binaries for long summaries (#16766)

Summary:
I'll test with this really long summary.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce risus sem, mattis vitae commodo vitae, mattis vel ex. Integer nec consectetur ligula, sit amet ultricies risus. Suspendisse potenti. Donec aliquet quam ante. Donec porttitor justo ligula, ut vestibulum erat facilisis a. Nullam eget lobortis nisi. Aenean quis sem id ante eleifend condimentum nec a lacus. Sed sed dolor augue. Proin feugiat, tellus in eleifend cursus, libero nulla lacinia erat, et efficitur dui odio ut ex. In et sem purus. Proin dictum scelerisque magna, nec feugiat dolor lobortis id. Proin ante urna, ultrices in semper et, pulvinar et dui. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Mauris ullamcorper neque a pharetra rhoncus.

Aliquam vel semper felis. Integer id massa erat. Morbi leo eros, varius sed viverra eu, dictum nec purus. Fusce vitae mollis sem, non fringilla nulla. Donec tincidunt luctus dolor. Morbi lobortis, magna quis viverra bibendum, lacus tortor pulvinar risus, eu porta tellus nulla vitae dolor. Sed tincidunt, turpis quis facilisis malesuada, nulla eros lobortis lorem, a fermentum mi nisl non quam. Pellentesque vehicula, nisl non eleifend viverra, tellus neque accumsan tellus, id ultricies lacus mi sed sapien. Proin rutrum ultrices quam sit amet euismod. Maecenas vel faucibus libero, nec efficitur mi. Proin felis augue, elementum eget vestibulum non, euismod sed urna. Curabitur purus nisi, interdum nec rutrum id, faucibus nec sapien. Integer consectetur interdum elit, volutpat vulputate velit. Integer et ultricies magna. Fusce blandit lorem urna, quis sodales sapien porttitor in. Nulla nec sodales sem.

Morbi consequat massa sit amet fringilla pretium. Nunc maximus vitae neque auctor pharetra. Morbi gravida feugiat urna, eu sagittis est pulvinar eget. Maecenas ut fermentum ante, eget malesuada neque. In ut maximus magna. Donec nec finibus sapien. Quisque viverra erat lobortis, rhoncus augue sed, hendrerit dui. Donec in feugiat augue, a ultrices justo. Pellentesque rutrum augue sed nulla auctor, a venenatis risus aliquam. Nullam ipsum justo, dictum sit amet elementum eu, eleifend a turpis. Proin ut tellus ut urna volutpat fermentum ac aliquam tellus.

Quisque ultricies est id eros dictum ultrices. Cras eu urna interdum, eleifend felis vitae, vulputate nulla. Cras tincidunt, mi sodales imperdiet tristique, diam odio convallis ligula, ac vulputate enim sapien eu tellus. Phasellus eleifend finibus sapien id ullamcorper. Donec aliquet eleifend consectetur. Proin in nulla venenatis, egestas neque quis, blandit sem. Suspendisse pellentesque arcu vel ligula fermentum maximus. Aliquam non ipsum ut ante pharetra finibus.

Nunc rhoncus purus sit amet risus congue venenatis. Integer id vestibulum neque, et fermentum elit. Nunc sit amet tortor quis mi aliquam vestibulum et in mauris. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Maecenas mollis hendrerit nulla, non tempus neque pharetra ac. Proin commodo bibendum velit, consectetur pretium metus sollicitudin eget. Aliquam malesuada semper tempor. Ut vel vulputate dolor, eu faucibus mauris. Nam commodo quis dolor sit amet eleifend. Phasellus eget massa odio. Donec tempor est at ante finibus lobortis. Suspendisse porttitor imperdiet ultrices. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

Nullam id dignissim magna, non suscipit odio. Vestibulum vel maximus erat, suscipit ullamcorper tellus. Fusce egestas augue lorem, in ultricies est vehicula ac. Integer pretium, ex in elementum varius, nisi turpis posuere lectus, nec posuere ligula mi ac ligula. Donec vehicula dolor ut ex elementum, quis scelerisque tellus molestie. Mauris euismod magna ac ornare cursus. Vivamus dapibus quam nec tellus aliquam elementum.

Phasellus ultricies quis augue ut fringilla. Suspendisse eu molestie eros. Suspendisse potenti. Curabitur varius sodales maximus. Etiam nec rutrum est. Sed vulputate suscipit elit, eu condimentum mauris pretium eget. Curabitur convallis commodo dui. Aenean lectus orci, pretium non mi sit amet, commodo imperdiet dui. In hac habitasse platea dictumst. In et ex nisl. Duis justo tortor, finibus at augue vitae, fermentum hendrerit tellus. Donec malesuada justo a molestie posuere. Morbi nisl leo, feugiat ut faucibus ut, mattis id purus.

Vestibulum hendrerit lorem ligula, et ullamcorper nisl lacinia sed. Integer vitae lacinia nunc, sed interdum enim. Aliquam aliquet ipsum vitae eros ornare accumsan. Phasellus venenatis laoreet est, sed feugiat neque lobortis id. Proin pulvinar placerat leo lacinia vehicula. Duis accumsan semper lobortis. Donec elementum nunc non quam aliquam, rutrum fringilla justo interdum. Morbi pulvinar pellentesque massa vitae maximus. Cras condimentum aliquam massa, et pellentesque lorem dictum a. Vivamus at dignissim justo. Donec ligula dui, tempus vestibulum est vel, rutrum blandit arcu. Vivamus iaculis molestie neque in elementum. Sed convallis tempus quam non elementum. Nulla euismod lobortis ligula. Etiam ac mauris eget magna posuere ornare id vitae felis. Nunc efficitur lorem et euismod porttitor.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16766

Differential Revision: D13959962

Pulled By: pjh5

fbshipit-source-id: 9b71bdf981d4fda9d8951e2d183db81f349b7f81

5 years agoFix type-o in unsupported data type error message (#16537)
Richard J. Knight [Tue, 5 Feb 2019 18:24:48 +0000 (10:24 -0800)]
Fix type-o in unsupported data type error message (#16537)

Summary:
-In the case where an operator does not support a given data type
 an error message is emitted to alert the user, this message is
incorrectly structured. This commit adds to and rearranges the
error message to make it a little clearer.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16537

Differential Revision: D13958859

Pulled By: zou3519

fbshipit-source-id: 935fc3adcef2f969042b1db902c9ec004488ea9c

5 years agoMake tuple checks faster (#16657)
Adam Paszke [Tue, 5 Feb 2019 17:31:21 +0000 (09:31 -0800)]
Make tuple checks faster (#16657)

Summary:
As the comment indicates, the issue is only present in some versions of
Python 2, so we should be able to use heavily optimized PyTuple_Check in
most cases, and skip allocation of the strings, and unnecessary lookups
on object's type.

cc ezyang zasdfgbnm
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16657

Differential Revision: D13957854

Pulled By: ezyang

fbshipit-source-id: be32eb473ad77a0805e8247d8d583d673d4bdf25

5 years agoFixes selection of cuDNN algorithm (#15881)
Syed Tousif Ahmed [Tue, 5 Feb 2019 17:25:18 +0000 (09:25 -0800)]
Fixes selection of cuDNN algorithm (#15881)

Summary:
This PR updates the logic for using cudnnGet* and cudnnFind*. Current version of cudnn find and get (v7) returns a pair of best algorithm and the convDesc mathType. While we were using the returned algorithm, we didn't update the mathType. As a result, we ended up with a slow choice of algorithm and math type. Without this patch, we are seeing a 10x regression in group convolutions.

Changelist:
- Changed the template arguments to be `perf_t` instead of `algo_t` to unify cudnnFind and cudnnGet. Both cudnnFind and cudnnGet have the same purpose and hence, it made sense to unify them and get rid of `getAlgorithm`.
- Used cudnnGet*_v7 everywhere cudnnGet* was being used.
- Removed all cudnn6 paths (This PR depends on https://github.com/pytorch/pytorch/pull/15851)

Differential Revision: D13957944

Pulled By: ezyang

fbshipit-source-id: a88c39d80ae37f2d686665622302b62b50fab404

5 years agoDon't throw in operator== for TypeMeta and ScalarType (#16736)
Adam Paszke [Tue, 5 Feb 2019 16:52:55 +0000 (08:52 -0800)]
Don't throw in operator== for TypeMeta and ScalarType (#16736)

Differential Revision: D13957847

Pulled By: ezyang

fbshipit-source-id: 3cc01538aab1bbb396c29ce61e0e95118f8d011f

5 years agologsumexp for multiple dimensions (#16475)
Brennan Vincent [Tue, 5 Feb 2019 16:27:04 +0000 (08:27 -0800)]
logsumexp for multiple dimensions (#16475)

Summary:
Move `logsumexp` and `max_values` to `TensorIterator` and use it to make `logsumexp` work for multiple dimensions.

Timings on a tensor of shape `(10,1000000,10)`, for each combination of (cpu, single-threaded cpu, gpu) and dimension:

**before**
208 ms ± 2.72 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
279 ms ± 5.07 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
199 ms ± 2.64 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
1.11 s ± 33.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
1.25 s ± 25.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
1.11 s ± 6.83 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
15.4 ms ± 1.02 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
132 ms ± 30.1 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
39.6 ms ± 19.1 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

**after**
199 ms ± 8.23 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
307 ms ± 8.73 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
207 ms ± 7.62 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
1.16 s ± 8.92 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
1.26 s ± 47.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
1.13 s ± 13.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
15.4 ms ± 868 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)
132 ms ± 27.6 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
39.6 ms ± 21.8 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16475

Differential Revision: D13855746

Pulled By: umanwizard

fbshipit-source-id: aaacc0b967c3f89073487e1952ae6f76b7bd7ad3

5 years agoRevert D13952085: [pytorch][PR] Fix static linkage cases and NO_DISTRIBUTED=1 + CUDA
Edward Yang [Tue, 5 Feb 2019 15:39:32 +0000 (07:39 -0800)]
Revert D13952085: [pytorch][PR] Fix static linkage cases and NO_DISTRIBUTED=1 + CUDA

Differential Revision:
D13952085

Original commit changeset: 410c4e117a44

fbshipit-source-id: fca59c37e71f8e61ae52867d5401b28fbacefe5a

5 years agoIntegrate PyTorch quantization APIs into ensemble export modules (#309)
James Reed [Tue, 5 Feb 2019 09:51:52 +0000 (01:51 -0800)]
Integrate PyTorch quantization APIs into ensemble export modules (#309)

Summary:
Pull Request resolved: https://github.com/pytorch/translate/pull/309

Pull Request resolved: https://github.com/pytorch/pytorch/pull/16481

This gives us a boolean flag `quantize` on the `BeamSearch` module that allows us to apply FBGEMM quantization to a pretrained PyTorch model and export this to PyTorch native runtime.

Reviewed By: jmp84

Differential Revision: D13514776

fbshipit-source-id: 3f7cbff0782aae54c9623ad1ea7e66d7f49e2b32

5 years agoFork/join parallelism for ensemble export modules (#310)
James Reed [Tue, 5 Feb 2019 09:51:52 +0000 (01:51 -0800)]
Fork/join parallelism for ensemble export modules (#310)

Summary:
Pull Request resolved: https://github.com/pytorch/translate/pull/310

This adds fork/join parallelism to the EncoderEnsemble and DecoderBatchedStepEnsemble models. Note that when run in Python, these calls are no-op, and similarly we remove these calls before exporting to ONNX. But when we run in the PyTorch native runtime, we will now have the opportunity to run these sections in parallel.

Benchmark validation is pending me slogging through FBLearner Flow issues, as usual

Reviewed By: jmp84

Differential Revision: D13827861

fbshipit-source-id: 0cb9df6e10c0ba64a6b81fa374e077bce90f1d5b

5 years agoAdd an API to set the number of threads in C10 thread pool (#16669)
James Reed [Tue, 5 Feb 2019 08:03:53 +0000 (00:03 -0800)]
Add an API to set the number of threads in C10 thread pool (#16669)

Summary:
Tested locally on machine translation service
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16669

Differential Revision: D13927858

Pulled By: jamesr66a

fbshipit-source-id: efcb8c21e0c2f76ac37967e6f52967da515595c3

5 years agoTry to turn off zero-out of tensors fully
Dmytro Dzhulgakov [Tue, 5 Feb 2019 07:56:00 +0000 (23:56 -0800)]
Try to turn off zero-out of tensors fully

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16601

Reviewed By: ezyang

Differential Revision: D13893776

fbshipit-source-id: 3190258f2591540dc54ad8504ac6ded998bef384

5 years agoTensor method rename size()->numel() - 2/3 (#16745)
Jerry Zhang [Tue, 5 Feb 2019 07:51:49 +0000 (23:51 -0800)]
Tensor method rename size()->numel() - 2/3 (#16745)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16745

Codemod generated with clangr shard mode, 25 files per diff,

Reviewed By: dzhulgakov

Differential Revision: D13944353

fbshipit-source-id: 25c2ca22204706544ee67e59c663bf495f2b4f6b

5 years agoTensor method rename size()->numel() - 3/3 (#16747)
Jerry Zhang [Tue, 5 Feb 2019 07:51:34 +0000 (23:51 -0800)]
Tensor method rename size()->numel() - 3/3 (#16747)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16747

Codemod generated with clangr shard mode, 25 files per diff,

Reviewed By: dzhulgakov

Differential Revision: D13944380

fbshipit-source-id: 2167e2092ab27d31a4d5ef6cfa4b65d192f597a8

5 years agoTensor method rename size()->numel() - 1/3
Jerry Zhang [Tue, 5 Feb 2019 07:26:07 +0000 (23:26 -0800)]
Tensor method rename size()->numel() - 1/3

Summary: Codemod generated with clangr shard mode, 25 files per diff,

Reviewed By: dzhulgakov

Differential Revision: D13944296

fbshipit-source-id: 67e97c2cf45889d25f2cb3e2203cecba03c8a3aa

5 years agoBug fix in l2 quantization (#16749)
Summer Deng [Tue, 5 Feb 2019 06:28:49 +0000 (22:28 -0800)]
Bug fix in l2 quantization (#16749)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16749

Use global quantization options in l2 quantization

Reviewed By: jspark1105

Differential Revision: D13951378

fbshipit-source-id: d4e356149587e5d2d09a6937c7fa1aa131957fd6