platform/upstream/pytorch.git
5 years agoJaliyae/samplers (#13870)
Jaliya Ekanayake [Thu, 29 Nov 2018 15:04:52 +0000 (07:04 -0800)]
Jaliyae/samplers (#13870)

Summary:
Make Samplers optionally accept new size in their reset() method. This helps dataloader or dataset to reset the sampler for an epoch or a chunk of data with different sizes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13870

Differential Revision: D13240120

Pulled By: soumith

fbshipit-source-id: 19c53f8be13c0fdcf504f0637b0d3e6009a8e599

5 years agoUse nn module tests in test_jit (#14238)
David Riazati [Thu, 29 Nov 2018 07:28:59 +0000 (23:28 -0800)]
Use nn module tests in test_jit (#14238)

Summary:
This PR adds weak modules for all activation modules and uses `test_nn` module tests to test weak modules that have been annotated with `weak_module` and therefore are in `torch._jit_internal._weak_types`

Also depends on #14379
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14238

Differential Revision: D13252887

Pulled By: driazati

fbshipit-source-id: e9638cf74089884a32b8f0f38396cf432c02c988

5 years agoUpdating submodules
svcscm [Thu, 29 Nov 2018 05:37:40 +0000 (21:37 -0800)]
Updating submodules

Reviewed By: yns88

fbshipit-source-id: f957056bb48c583738c5defaf3d1f01cd7df3915

5 years agoUpdating submodules
svcscm [Thu, 29 Nov 2018 05:07:02 +0000 (21:07 -0800)]
Updating submodules

Reviewed By: yns88

fbshipit-source-id: 9800251baaa09d9f7988eff340ef36e0ab11f579

5 years agoFix version.groups() (#14505)
Peter Goldsborough [Thu, 29 Nov 2018 04:25:21 +0000 (20:25 -0800)]
Fix version.groups() (#14505)

Summary:
Fixes https://github.com/pytorch/pytorch/issues/14502

fmassa soumith
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14505

Differential Revision: D13242386

Pulled By: goldsborough

fbshipit-source-id: faebae8795e1efd9c0ebc2294fe9648193d16624

5 years agoSupport Embedding + EmbeddingBag in Script + (Ignore flakey test) (#14509)
Elias Ellison [Thu, 29 Nov 2018 03:14:16 +0000 (19:14 -0800)]
Support Embedding + EmbeddingBag in Script + (Ignore flakey test) (#14509)

Summary:
Resubmitting PR #14415

The tests added for Embedding + EmbeddingBag had random numbers as input, which affected the random number generator & caused the flakey test to break.

Everything but the last two commits have already been accepted
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14509

Differential Revision: D13247917

Pulled By: eellison

fbshipit-source-id: ea6963c47f666c07687787e2fa82020cddc6aa15

5 years agopointwise_loss (#14134)
Elias Ellison [Thu, 29 Nov 2018 02:12:22 +0000 (18:12 -0800)]
pointwise_loss (#14134)

Summary:
Adding pointwise loss ops to weak_script
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14134

Differential Revision: D13209455

Pulled By: eellison

fbshipit-source-id: 87fc0222121f34a2f4edb24c2da2a11124b097d8

5 years agoMerge Caffe2 and PyTorch thread pool definitions (#14114)
James Sun [Thu, 29 Nov 2018 02:05:10 +0000 (18:05 -0800)]
Merge Caffe2 and PyTorch thread pool definitions (#14114)

Summary:
(1) Move Caffe2 thread pool to aten
(2) Use the same thread pool definition for PyTorch interpreter
(3) Make ivalue::Future thread-safe
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14114

Reviewed By: ilia-cher

Differential Revision: D13110451

Pulled By: highker

fbshipit-source-id: a83acb6a4bafb7f674e3fe3d58f7a74c68064fac

5 years agoEnsure that indices are on the same device as self
Sam Gross [Thu, 29 Nov 2018 01:51:01 +0000 (17:51 -0800)]
Ensure that indices are on the same device as self

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14504

Reviewed By: wat3rBro

Differential Revision: D13242200

Pulled By: colesbury

fbshipit-source-id: 82731cee808681ec612d406342070640eb26e519

5 years agoRemove Context dependency from Tensor class (#14269)
Dmytro Dzhulgakov [Wed, 28 Nov 2018 23:43:22 +0000 (15:43 -0800)]
Remove Context dependency from Tensor class (#14269)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14269

Removes reference to Context proper and instead adds a bool argument for async copy (the same as `copy_`)

For CopyFrom - I haven't tweaked all callsites yet. Instead I rely on a terrible hack that pointer to context is implicitly converted to bool when passed, haha :) It's not a good code and I propose to fix it in a follow up diff (maybe using clangr tooling).

Reviewed By: ezyang

Differential Revision: D13117981

fbshipit-source-id: 7cb1dc2ba6a4c50ac26614f45ab8318ea96e3138

5 years agoChange Tensor::CopyFrom to a simple double dispatch (#14268)
Dmytro Dzhulgakov [Wed, 28 Nov 2018 23:43:22 +0000 (15:43 -0800)]
Change Tensor::CopyFrom to a simple double dispatch (#14268)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14268

Removes the need for Context in Tensor by doing simple dispatch for CopyBytes. It'd eventually be subsumed by Roy Li's changes of proper copy_ op, but before that is done, let's get a clear logic of how copies are implemented and clean up some craft in CopyFrom implementation.

Note, that with these changes, one can probably can get rid of Context::CopyFromCPU/CopyToCPU, but it's a matter for follow up diffs.

This diff doesn't change the API of Tensor yet, but relies on the fact that passing `Context` to CopyFrom makes copy async if the device is CUDA and doesn't have any effect otherwise (that's how Context methods are implemented).

This doesn't change semantics of copy async implementation - as before it blindly calls cudaMemcpyAsync which probably means that it can be misused if invoked separately outside of operator body. I'll leave it for the follow up copy_ unification.

For Extend() we always do async copy - it makes sense as it's an in-place device-device operation and only any further op would be observable.

Note: there are now three ways of invoking copy in C2 code - templated CopyBytes, virtual CopyFromCPU/etc, and double-dispatch free method here. Hopefully we can get rid of the second one.

Also, please advise whether it's c10-worthy :)

Reviewed By: ezyang

Differential Revision: D13117987

fbshipit-source-id: a6772d6dcf3effaf06717da3a656fc9873b310b5

5 years agoUpdate Tensor doc (#14339)
albanD [Wed, 28 Nov 2018 23:25:09 +0000 (15:25 -0800)]
Update Tensor doc (#14339)

Summary:
Add to the Tensor doc info about `.device`, `.is_cuda`, `.requires_grad`, `.is_leaf` and `.grad`.
Update the `register_backward_hook` doc with a warning stating that it does not work in all cases.
Add support in the `_add_docstr` function to add docstring to attributes.

There is an explicit cast here but I am not sure how to handle it properly. The thing is that the doc field for getsetdescr is written as being a const char * (as all other doc fields in descriptors objects) in cpython online documentation. But in the code, it is the only one that is not const.
I assumed here that it is a bug in the code because it does not follow the doc and the convention of the others descriptors and so I cast out the const.
EDIT: the online doc I was looking at is for 3.7 and in that version both the code and the doc are const. For older versions, both are non const.
Please let me know if this should not be done. And if it should be done if there is a cleaner way to do it !
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14339

Differential Revision: D13243266

Pulled By: ezyang

fbshipit-source-id: 75b7838f7cd6c8dc72b0c61950e7a971baefaeeb

5 years agonccl fixes (#14195)
andersj [Wed, 28 Nov 2018 22:40:50 +0000 (14:40 -0800)]
nccl fixes (#14195)

Summary:
This has 4 changes

1) propagate USE_SYSTEM_NCCL. Previously it was ignored and cmake always did a FindPackage
2) respect SCCACHE_DISABLE in our caffe2 sccache wrapper for circleci
3) use SCCACHE_DISABLE when building nccl, because it triggers the same bug as when using CCACHE (already tracked in https://github.com/pytorch/pytorch/issues/13362). This was hidden because we weren't respecting USE_SYSTEM_NCCL, and were never building nccl ourselves in CI
4) In one particular CI configuration (caffe2, cuda 8, cudnn 7), force USE_SYSTEM_NCCL=1. Building the bundled nccl triggers a bug in nvlink. I've done some investigation, but this looks like a tricky, preexisting bug, so rather than hold up this diff I'm tracking it separately in https://github.com/pytorch/pytorch/issues/14486
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14195

Differential Revision: D13237502

Pulled By: anderspapitto

fbshipit-source-id: 1100ac1269c7cd39e2e0b3ba12a56a3ce8977c55

5 years agoClean up house on CUDAStream (#14247)
Edward Yang [Wed, 28 Nov 2018 21:59:59 +0000 (13:59 -0800)]
Clean up house on CUDAStream (#14247)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14247

Just a bunch of clean up to get the code in a good state before we
enshrine it in c10.

Billing of changes:
- Inline all "pointer" API functions into their real implementations,
  so we don't have a bunch of dead pointer functions hanging around.
- Replace all occurrences of int64_t with DeviceIndex, as appropriate
- Rename device field to device_index
- Add documentation for everything in CUDAStream.h
- Bring CUDAStream to API parity with Stream (e.g., support equality)
- Delete uncheckedSetCurrentCUDAStream, it didn't work anyway because
  StreamId to internal pointer conversion has a bunch of ways it can
  fail.  Just hope for the best!

Reviewed By: dzhulgakov

Differential Revision: D13141949

fbshipit-source-id: a02f34921e3d8294bd77c262bd05da07d1740a71

5 years agoMake clang-tidy shut up about Python C API macros.
Edward Yang [Wed, 28 Nov 2018 21:52:44 +0000 (13:52 -0800)]
Make clang-tidy shut up about Python C API macros.

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14480

Reviewed By: goldsborough

Differential Revision: D13235001

fbshipit-source-id: cd7f00b12ed3d9ef0fb0d7bd6c428e21561ec1b6

5 years agoMake TensorImpl/StorageImpl safer (#14429)
Sebastian Messmer [Wed, 28 Nov 2018 21:37:31 +0000 (13:37 -0800)]
Make TensorImpl/StorageImpl safer (#14429)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14429

- forbid copying
- make final what ought to be

Reviewed By: dzhulgakov

Differential Revision: D13223125

fbshipit-source-id: e6176cc916d4cd8370c835f243ca90d5c3124c4a

5 years agoHandle copying intrusive_ptr_target correctly (#14428)
Sebastian Messmer [Wed, 28 Nov 2018 21:37:31 +0000 (13:37 -0800)]
Handle copying intrusive_ptr_target correctly (#14428)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14428

See in-code comment

Reviewed By: ezyang

Differential Revision: D13223126

fbshipit-source-id: 1e87e6112bbcca6377ca04ef2ba25ef937931061

5 years agoRevert D13219647: [pytorch][PR] Support Embedding + EmbeddingBag in Script
Edward Yang [Wed, 28 Nov 2018 21:36:40 +0000 (13:36 -0800)]
Revert D13219647: [pytorch][PR] Support Embedding + EmbeddingBag in Script

Differential Revision:
D13219647

Original commit changeset: c90706aa6fbd

fbshipit-source-id: d189e717ba0773de43d633876bc3a688830a9303

5 years agoRemove StorageImpl::type() (#14139)
Sebastian Messmer [Wed, 28 Nov 2018 21:30:36 +0000 (13:30 -0800)]
Remove StorageImpl::type() (#14139)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14139

This seems neither be used nor implemented. Also, it is a c10->aten dependency which we don't want.

Reviewed By: ezyang

Differential Revision: D13112298

fbshipit-source-id: 0407c4c3ac9b02bbd6fca478336cb6a6ae334930

5 years agoAdd XBlobGetMutableTensor that returns Tensor (#14424)
Jerry Zhang [Wed, 28 Nov 2018 21:24:30 +0000 (13:24 -0800)]
Add XBlobGetMutableTensor that returns Tensor (#14424)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14424

Pull Request resolved: https://github.com/pytorch/pytorch/pull/14136

Since now Tensor is a shared_ptr, it doesn't make sense to have Tensor* around anymore,
so we want to change Tensor* to Tensor in the interface.
We added functions that work with `Tensor` instead of `Tensor*` in this diff.

To remove Tensor*, we'll do following
```
auto* Y = Ouptut(0);
Y->mutable_data...
```
-->
```
auto Y = Output(0);
Y.mutable_data...
```

But to run clangr codemod, we'll keep both APIs in different names, e.g. `Output` and `XOutput`, and do the refactor and then delete the old method and rename the new method into the old one.
For example for `Output`, we'll first codemod the callsites from `Output` to `XOutput`, then delete the old `Output` and rename `XOutput` to `Output` in the end.

Reviewed By: smessmer

Differential Revision: D12934074

fbshipit-source-id: d0e85f6ef8d13ed4e7a7505faa5db292a507d54c

5 years agoAdd timeout kwarg to init_process_group (#14435)
Pieter Noordhuis [Wed, 28 Nov 2018 19:32:47 +0000 (11:32 -0800)]
Add timeout kwarg to init_process_group (#14435)

Summary:
This applies to the gloo backend only. Timeout support for the NCCL and
MPI backends is tracked in issues #14371 and #14372 respectively.

When creating a new process group (either the global one or any subgroup
created through `new_group`) you can specify a timeout keyword
argument (of type datetime.timedelta). This timeout applies to all
collective operations executed against that process group, such that any
operation taking longer than the timeout will throw a runtime error.
Using a different, better catchable error type is tracked in #14433.

This fixes #14376.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14435

Differential Revision: D13234317

Pulled By: pietern

fbshipit-source-id: 973993b67994dc64861c0977cbb6f051ec9d87f6

5 years agoAdd support for HIP to DispatchStub. (#14413)
Edward Yang [Wed, 28 Nov 2018 19:05:36 +0000 (11:05 -0800)]
Add support for HIP to DispatchStub. (#14413)

Summary:
I feel a bit bad writing this patch, because there isn't really
any reason not to use the normal dispatch mechanism for CUDA
and HIP here (so we have *yet another dispatcher*), but I don't
really want to sign up to rewrite DispatchStub to deduplicate the
dispatcher right now.

Need to natively add support for HIP here, as I don't want to
have to HIPify files which are not in a CUDA directory.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14413

Differential Revision: D13220358

Pulled By: ezyang

fbshipit-source-id: cc61218322589a1dc2ab8eb9d5ddd3c616f6b712

5 years agoSupport Embedding + EmbeddingBag in Script (#14415)
Elias Ellison [Wed, 28 Nov 2018 18:50:26 +0000 (10:50 -0800)]
Support Embedding + EmbeddingBag in Script (#14415)

Summary:
Add support for Embedding and EmbeddingBag in script. Both functions require with torch.no_grad(), which we don't have any plans to support in the near future. To work around this, I added a embedding_renorm function without derivatives.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14415

Reviewed By: wanchaol

Differential Revision: D13219647

Pulled By: eellison

fbshipit-source-id: c90706aa6fbd48686eb10f3efdb65844be7b8717

5 years agofix build error from D13188595 (#14481)
Jongsoo Park [Wed, 28 Nov 2018 18:39:46 +0000 (10:39 -0800)]
fix build error from D13188595 (#14481)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14481

Fix build error in mode/opt

Reviewed By: dskhudia

Differential Revision: D13234688

fbshipit-source-id: 6c8515c45f75e7b88713a303f22990ad85d68beb

5 years agoRevert D13144472: [fix] condition blob in while_op test changes data type
Raghavendra Thodime [Wed, 28 Nov 2018 18:39:31 +0000 (10:39 -0800)]
Revert D13144472: [fix] condition blob in while_op test changes data type

Differential Revision:
D13144472

Original commit changeset: af4d920a3148

fbshipit-source-id: 74d9f69fc66964b5e68b4b2cd2fd2be1f63e9d69

5 years agoFix the build issue in setup.py due to cmake version type x.x.x.x vio… (#14331)
Jiong Gong [Wed, 28 Nov 2018 18:35:28 +0000 (10:35 -0800)]
Fix the build issue in setup.py due to cmake version type x.x.x.x vio… (#14331)

Summary:
See https://github.com/pytorch/pytorch/issues/13226
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14331

Differential Revision: D13234639

Pulled By: orionr

fbshipit-source-id: 87880057e84242e4af5ad6bf87e08831aa2c5459

5 years agoUpdate OpenMP cmake setting for xcode 9 compiler(AppleClang 9.0) (#14473)
JerryShih [Wed, 28 Nov 2018 17:26:25 +0000 (09:26 -0800)]
Update OpenMP cmake setting for xcode 9 compiler(AppleClang 9.0) (#14473)

Summary:
Original PR: https://github.com/pytorch/pytorch/pull/11563
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14473

Differential Revision: D13234208

Pulled By: ezyang

fbshipit-source-id: 7d874c63659e93728af239ecdfb85547613e52ad

5 years agoRevert D13166626: [pytorch][PR] ignore generated caffe2 docs and virtualenvs
Edward Yang [Wed, 28 Nov 2018 15:38:04 +0000 (07:38 -0800)]
Revert D13166626: [pytorch][PR] ignore generated caffe2 docs and virtualenvs

Differential Revision:
D13166626

Original commit changeset: 4f11228d8b5d

fbshipit-source-id: ff301f1791ca8a390767ae43cde8637dcd044d0c

5 years agoMake `mean` function work across multiple dimensions. (#14252)
Brennan Vincent [Wed, 28 Nov 2018 14:50:49 +0000 (06:50 -0800)]
Make `mean` function work across multiple dimensions. (#14252)

Summary:
Multi-dimensional `sum` is already implemented, and it's trivial to implement `mean` in terms of `sum`, so just do it.

Bonus: Fix incomplete language in the `torch.sum` documentation which doesn't take into account multiple dimensions when describing `unsqueeze` (at the same time as introducing similar language in `torch.mean`).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14252

Differential Revision: D13161157

Pulled By: umanwizard

fbshipit-source-id: c45da692ba83c0ec80815200c5543302128da75c

5 years agoFix half tensor printing plus speedup large tensor printing (#14418)
Francisco Massa [Wed, 28 Nov 2018 14:11:08 +0000 (06:11 -0800)]
Fix half tensor printing plus speedup large tensor printing (#14418)

Summary:
Fixes https://github.com/pytorch/pytorch/issues/14344 and https://github.com/pytorch/pytorch/issues/6863

The slowdown was due to the fact that we were only summarizing the tensor (for computing the number of digits to print) if its first dimension was larger than the threshold. It now goes over all the dimensions.

Some quick runtime analysis:

Before this PR:
```python
In [1]: import torch; a = torch.rand(1, 1700, 34, 50)

In [2]: %timeit str(a)
13.6 s ± 84.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
```

After this PR

```python
In [1]: import torch; a = torch.rand(1, 1700, 34, 50)

In [2]: %timeit str(a)
2.08 ms ± 395 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [3]: b = a.cuda()

In [4]: %timeit str(b)
8.39 ms ± 45.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14418

Reviewed By: weiyangfb

Differential Revision: D13226950

Pulled By: soumith

fbshipit-source-id: 19eb4b855db4c8f891d0925a9c56ae8a2824bb23

5 years agotorch.sparse.sum() (#12430)
Wei Yang [Wed, 28 Nov 2018 10:16:56 +0000 (02:16 -0800)]
torch.sparse.sum() (#12430)

Summary:
- to fix #12241
- add `_sparse_sum()` to ATen, and expose as `torch.sparse.sum()`, not support `SparseTensor.sum()` currently
- this PR depends on #11253, and will need to be updated upon it lands
- [x] implement forward
- [x] implement backward
- performance [benchmark script](https://gist.github.com/weiyangfb/f4c55c88b6092ef8f7e348f6b9ad8946#file-sparse_sum_benchmark-py):
  - sum all dims is fastest for sparse tensor
  - when input is sparse enough nnz = 0.1%, sum of sparse tensor is faster than dense in CPU, but not necessary in CUDA
  - CUDA backward is comparable (<2x) between `sum several dims` vs `sum all dims` in sparse
  - CPU backward uses binary search is still slow in sparse, takes `5x` time in `sum [0, 2, 3] dims` vs `sum all dims`
    - optimize CUDA backward for now
      - using thrust for sort and binary search, but runtime not improved
  - both of CPU and CUDA forward are slow in sparse (`sum several dims` vs `sum all dims`), at most `20x` slower in CPU, and `10x` in CUDA
    - improve CPU and CUDA forward kernels

(nnz, sizes, sum_dims, keepdim, sum all or dims, bk=backward) | CPU (sparse vs dense) | CUDA(sparse vs dense)
-- | -- | --
(1000,   [1000, 1000, 2, 2], [0, 1], False, sumAll) | 8.77 µs vs 72.9 µs | 42.5 µs vs 108 µs
(1000,   [1000, 1000, 2, 2], [0, 1], False, sumD) | 112 µs vs 4.47 ms | 484 µs vs 407 µs
(1000,   [1000, 1000, 2, 2], [0, 1], False, sumAll, bk) | 141 µs vs 148 µs | 647 µs vs 231 µs
(1000,   [1000, 1000, 2, 2], [0, 1], False, sumD, bk) | 235 µs vs 1.23 ms | 781 µs vs 213 µs
(1000,   [1000, 1000, 2, 2], [2, 3], False, sumD) | 48.5 µs vs 360 µs | 160 µs vs 2.03 ms
(1000,   [1000, 1000, 2, 2], [2, 3], False, sumD, bk) | 258 µs vs 1.22 ms | 798 µs vs 224 µs
(1000,   [1000, 1000, 2, 2], [0, 2, 3], False, sumD) | 204 µs vs 882 µs | 443 µs vs 133 µs
(1000,   [1000, 1000, 2, 2], [0, 2, 3], False, sumD, bk) | 709 µs vs 1.15 ms | 893 µs vs 202 µs
(10000,   [1000, 1000, 2, 2], [0, 1], False, sumAll) | 39.8 µs vs 81 µs | 42.4 µs vs 113 µs
(10000,   [1000, 1000, 2, 2], [0, 1], False, sumD) | 747 µs vs 4.7 ms | 2.4 ms vs 414 µs
(10000,   [1000, 1000, 2, 2], [0, 1], False, sumAll, bk) | 1.04 ms vs 126 µs | 5.03 ms vs 231 µs
(10000,   [1000, 1000, 2, 2], [0, 1], False, sumD, bk) | 1.12 ms vs 1.24 ms | 5.99 ms vs 213 µs
(10000,   [1000, 1000, 2, 2], [2, 3], False, sumD) | 133 µs vs 366 µs | 463 µs vs 2.03 ms
(10000,   [1000, 1000, 2, 2], [2, 3], False, sumD, bk) | 1.56 ms vs 1.22 ms | 6.11 ms vs 229 µs
(10000,   [1000, 1000, 2, 2], [0, 2, 3], False, sumD) | 1.53 ms vs 799 µs | 824 µs vs 134 µs
(10000,   [1000, 1000, 2, 2], [0, 2, 3], False, sumD, bk) | 5.15 ms vs 1.09 ms | 7.02 ms vs 205 µs

- after improving CPU and CUDA forward kernels
  - in `(1000,   [1000, 1000, 2, 2], [0, 2, 3], False, sumD)` forward, CPU takes ~~`171 µs`~~, in which `130 µs` is spent on `coalesce()`, for CUDA, total time is ~~`331 µs`~~, in which `141 µs` is spent on `coalesce()`, we need to reduce time at other places outside `coalesce()`.
  - after a few simple tweaks, now in the forward, it is at most `10x` slower in CPU, and `7x` in CUDA. And time takes in `sum dense dims only [2, 3]` is `~2x` of `sum all dims`. Speed of `sum all sparse dims [0, 1]` is on bar with `sum all dims`

(nnz,   sizes, sum_dims, keepdim, sum all or dims, bk=backward) | CPU (sparse vs dense) | CUDA(sparse vs dense)
-- | -- | --
(1000,   [1000, 1000, 2, 2], [0, 1], False, sumAll) | 7 µs vs 69.5 µs | 31.5 µs vs 61.6 µs
(1000,   [1000, 1000, 2, 2], [0, 1], False, sumD) | 11.3 µs vs 4.72 ms | 35.2 µs vs 285 µs
(1000,   [1000, 1000, 2, 2], [0, 1], False, sumAll, bk) | 197 µs vs 124 µs | 857 µs vs 134 µs
(1000,   [1000, 1000, 2, 2], [0, 1], False, sumD, bk) | 124 µs vs 833 µs | 796 µs vs 106 µs
(1000,   [1000, 1000, 2, 2], [2, 3], False, sumD) | 20.5 µs vs 213 µs | 39.4 µs vs 1.24 ms
(1000,   [1000, 1000, 2, 2], [2, 3], False, sumD, bk) | 131 µs vs 830 µs | 881 µs vs 132 µs
(1000,   [1000, 1000, 2, 2], [0, 2, 3], False, sumD) | 95.8 µs vs 409 µs | 246 µs vs 87.2 µs
(1000,   [1000, 1000, 2, 2], [0, 2, 3], False, sumD, bk) | 624 µs vs 820 µs | 953 µs vs 124 µs
(10000,   [1000, 1000, 2, 2], [0, 1], False, sumAll) | 45.3 µs vs 72.9 µs | 33.9 µs vs 57.2 µs
(10000,   [1000, 1000, 2, 2], [0, 1], False, sumD) | 81.4 µs vs 4.49 ms | 39.7 µs vs 280 µs
(10000,   [1000, 1000, 2, 2], [0, 1], False, sumAll, bk) | 984 µs vs 111 µs | 6.41 ms vs 121 µs
(10000,   [1000, 1000, 2, 2], [0, 1], False, sumD, bk) | 1.45 ms vs 828 µs | 6.77 ms vs 113 µs
(10000,   [1000, 1000, 2, 2], [2, 3], False, sumD) | 74.9 µs vs 209 µs | 37.7 µs vs 1.23 ms
(10000,   [1000, 1000, 2, 2], [2, 3], False, sumD, bk) | 1.48 ms vs 845 µs | 6.96 ms vs 132 µs
(10000,   [1000, 1000, 2, 2], [0, 2, 3], False, sumD) | 1.14 ms vs 411 µs | 252 µs vs 87.8 µs
(10000,   [1000, 1000, 2, 2], [0, 2, 3], False, sumD, bk) | 4.53 ms vs 851 µs | 7.12 ms vs 128 µs

- time takes in CUDA backward of sparse is super long with large variance (in case of nnz=10000, it normally takes 6-7ms). To improve backward of sparse ops, we will need to debug at places other than CUDA kernels. here is a benchmark of `torch.copy_()`:
```
>>> d = [1000, 1000, 2, 2]
>>> nnz = 10000
>>> I = torch.cat([torch.randint(0, d[0], size=(nnz,)),
               torch.randint(0, d[1], size=(nnz,))], 0).reshape(2, nnz)
>>> V = torch.randn(nnz, d[2], d[3])
>>> size = torch.Size(d)
>>> S = torch.sparse_coo_tensor(I, V, size).coalesce().cuda()
>>> S2 = torch.sparse_coo_tensor(I, V, size).coalesce().cuda().requires_grad_()
>>> data = S2.clone()
>>> S.copy_(S2)
>>> y = S * 2
>>> torch.cuda.synchronize()
>>> %timeit y.backward(data, retain_graph=True); torch.cuda.synchronize()
7.07 ms ± 3.06 ms per loop (mean ± std. dev. of 7 runs, 1000 loops each)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12430

Differential Revision: D12878313

Pulled By: weiyangfb

fbshipit-source-id: e16dc7681ba41fdabf4838cf05e491ca9108c6fe

5 years agoEnsure FP16 rowwise Adagrad can be run
Jiyan Yang [Wed, 28 Nov 2018 10:13:21 +0000 (02:13 -0800)]
Ensure FP16 rowwise Adagrad can be run

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/12317

Reviewed By: hyuen

Differential Revision: D10190778

fbshipit-source-id: 720a9aaa4e6b1736023d8c6326a613e4ea592b31

5 years agouse fbgemm's im2col fusion and thread partitioning (#14350)
Jongsoo Park [Wed, 28 Nov 2018 09:11:19 +0000 (01:11 -0800)]
use fbgemm's im2col fusion and thread partitioning (#14350)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14350

acc32 for now. Will have a separate diff for acc16 but that will need another out processing that does sparse convolution without im2col.

Reviewed By: dskhudia

Differential Revision: D13188595

fbshipit-source-id: e8faee46c7ea43e4a600aecb8b8e93e6c860a8c8

5 years agoPT1 Stable Release Distributed Documentation (#14444)
Teng Li [Wed, 28 Nov 2018 08:31:34 +0000 (00:31 -0800)]
PT1 Stable Release Distributed Documentation (#14444)

Summary:
The doc covers pretty much all we have had on distributed for PT1 stable release, tracked in https://github.com/pytorch/pytorch/issues/14080

Tested by previewing the sphinx generated webpages. All look good.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14444

Differential Revision: D13227675

Pulled By: teng-li

fbshipit-source-id: 752f00df096af38dd36e4a337ea2120ffea79f86

5 years agoRevert D13192230: [pytorch][PR] [jit] Use nn module tests in test_jit
David Riazati [Wed, 28 Nov 2018 08:21:01 +0000 (00:21 -0800)]
Revert D13192230: [pytorch][PR] [jit] Use nn module tests in test_jit

Differential Revision:
D13192230

Original commit changeset: 36488960b6c9

fbshipit-source-id: 63b68bd909b9ef0548f52c986c84f549aecb8909

5 years agoFixed SyncParam/QueueReduction/SyncReduction test for 2+ GPUs (#14452)
Teng Li [Wed, 28 Nov 2018 05:56:25 +0000 (21:56 -0800)]
Fixed SyncParam/QueueReduction/SyncReduction test for 2+ GPUs (#14452)

Summary:
Fixed: https://github.com/pytorch/pytorch/issues/14445

Also bumped up timeout to 30 seconds, since on 8-GPU machines, DDP test will take more than 15 seconds sometimes.

Tested on 8 GPU machines:
```
tengli@learnfair062:~/pytorch/test$ python test_c10d.py --verbose
test_dist_broadcast_coalesced_gloo (__main__.DistributedDataParallelTest) ... ok
test_dist_broadcast_coalesced_nccl (__main__.DistributedDataParallelTest) ... skipped 'Test skipped due to known issues'
test_fp16 (__main__.DistributedDataParallelTest) ... ok
test_gloo_backend (__main__.DistributedDataParallelTest) ... ok
test_nccl_backend (__main__.DistributedDataParallelTest) ... ok
test_queue_reduction (__main__.DistributedDataParallelTest) ... ok
test_sync_params_no_buffers (__main__.DistributedDataParallelTest) ... ok
test_sync_params_with_buffers (__main__.DistributedDataParallelTest) ... ok
test_sync_reduction (__main__.DistributedDataParallelTest) ... ok
test_set_get (__main__.FileStoreTest) ... ok
test_set_get (__main__.PrefixFileStoreTest) ... ok
test_set_get (__main__.PrefixTCPStoreTest) ... ok
test_allgather_basics (__main__.ProcessGroupGlooTest) ... ok
test_allgather_checks (__main__.ProcessGroupGlooTest) ... ok
test_allreduce_basics (__main__.ProcessGroupGlooTest) ... ok
test_allreduce_basics_cuda (__main__.ProcessGroupGlooTest) ... ok
test_allreduce_checks (__main__.ProcessGroupGlooTest) ... ok
test_allreduce_stress (__main__.ProcessGroupGlooTest) ... ok
test_allreduce_stress_cuda (__main__.ProcessGroupGlooTest) ... ok
test_broadcast_basics (__main__.ProcessGroupGlooTest) ... ok
test_broadcast_basics_cuda (__main__.ProcessGroupGlooTest) ... ok
test_broadcast_checks (__main__.ProcessGroupGlooTest) ... ok
test_broadcast_stress (__main__.ProcessGroupGlooTest) ... ok
test_broadcast_stress_cuda (__main__.ProcessGroupGlooTest) ... ok
test_gather_basics (__main__.ProcessGroupGlooTest) ... ok
test_gather_checks (__main__.ProcessGroupGlooTest) ... ok
test_reduce_basics (__main__.ProcessGroupGlooTest) ... ok
test_reduce_checks (__main__.ProcessGroupGlooTest) ... ok
test_scatter_basics (__main__.ProcessGroupGlooTest) ... ok
test_scatter_checks (__main__.ProcessGroupGlooTest) ... ok
test_send_recv_all_to_all (__main__.ProcessGroupGlooTest) ... ok
test_timeout_kwarg (__main__.ProcessGroupGlooTest) ... ok
test_allgather_ops (__main__.ProcessGroupNCCLTest) ... ok
test_allreduce_ops (__main__.ProcessGroupNCCLTest) ... ok
test_barrier (__main__.ProcessGroupNCCLTest) ... ok
test_broadcast_ops (__main__.ProcessGroupNCCLTest) ... ok
test_reduce_ops (__main__.ProcessGroupNCCLTest) ... ok
test_common_errors (__main__.RendezvousEnvTest) ... ok
test_nominal (__main__.RendezvousEnvTest) ... ok
test_common_errors (__main__.RendezvousFileTest) ... ok
test_nominal (__main__.RendezvousFileTest) ... ok
test_common_errors (__main__.RendezvousTCPTest) ... ok
test_nominal (__main__.RendezvousTCPTest) ... ok
test_unknown_handler (__main__.RendezvousTest) ... ok
test_address_already_in_use (__main__.TCPStoreTest) ... ok
test_set_get (__main__.TCPStoreTest) ... ok

----------------------------------------------------------------------
Ran 46 tests in 162.980s

OK (skipped=1)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14452

Differential Revision: D13230652

Pulled By: teng-li

fbshipit-source-id: 88580fe55b3a4fbc7a499ca3b591958f11623bf8

5 years agoUse nn module tests in test_jit (#14238)
David Riazati [Wed, 28 Nov 2018 05:17:51 +0000 (21:17 -0800)]
Use nn module tests in test_jit (#14238)

Summary:
This PR adds weak modules for all activation modules and uses `test_nn` module tests to test weak modules that have been annotated with `weak_module` and therefore are in `torch._jit_internal._weak_types`

Also depends on #14379
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14238

Differential Revision: D13192230

Pulled By: driazati

fbshipit-source-id: 36488960b6c91448b38c0fa65422539a93af8c5e

5 years agocheck for invalid ranges in torch.arange
Brian Vaughan [Wed, 28 Nov 2018 04:31:18 +0000 (20:31 -0800)]
check for invalid ranges in torch.arange

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13915

Differential Revision: D13222110

Pulled By: nairbv

fbshipit-source-id: fcff1ad058fbf792d0fdf4aa75d77f22e3b7483b

5 years agoroll along multiple dimensions
Brian Vaughan [Wed, 28 Nov 2018 04:28:11 +0000 (20:28 -0800)]
roll along multiple dimensions

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13874

Differential Revision: D13223669

Pulled By: nairbv

fbshipit-source-id: 1678d52529c326fa4a0614d0994b1820ad12bc04

5 years agoAdd poisson_nll_loss to script
David Riazati [Wed, 28 Nov 2018 03:37:20 +0000 (19:37 -0800)]
Add poisson_nll_loss to script

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14420

Differential Revision: D13220726

Pulled By: driazati

fbshipit-source-id: 6c08a0050075beafcc8ba413c9603b273870c70c

5 years agoAdd boolean dispatch for function overloading (#14425)
David Riazati [Wed, 28 Nov 2018 03:33:47 +0000 (19:33 -0800)]
Add boolean dispatch for function overloading (#14425)

Summary:
This PR allows to overload functions based on the value of a parameter (so long as it is a constant). See max_pool1d for an example usage.

This is the first step in enabling the use of max_pool functions for the standard library that can return `Tensor` or `Tuple[Tensor, Tensor]` based on the `return_indices` flag. This will give the JIT identical results to the Python versions of the functions.

Fixes #14081
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14425

Differential Revision: D13222104

Pulled By: driazati

fbshipit-source-id: 8cb676b8b13ebcec3262234698edf4a7d7dcbbe1

5 years agofix enable_cpu_fuser
Zachary DeVito [Wed, 28 Nov 2018 03:11:47 +0000 (19:11 -0800)]
fix enable_cpu_fuser

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14440

Differential Revision: D13226354

Pulled By: zdevito

fbshipit-source-id: e4ed023eece8b5b670a4a27d24a8688907b36b90

5 years agoMove Affine grid to C++ (#14392)
Elias Ellison [Wed, 28 Nov 2018 02:36:05 +0000 (18:36 -0800)]
Move Affine grid to C++ (#14392)

Summary:
Port AffineGrid to C++, because script does not support compiling Function classes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14392

Differential Revision: D13219698

Pulled By: eellison

fbshipit-source-id: 3ddad8a84c72010b5a6c6f7f9712be614202faa6

5 years agoAllow building libraries with setuptools that dont have abi suffix (#14130)
Peter Goldsborough [Wed, 28 Nov 2018 01:33:54 +0000 (17:33 -0800)]
Allow building libraries with setuptools that dont have abi suffix (#14130)

Summary:
When using `setuptools` to build a Python extension, setuptools will automatically add an ABI suffix like `cpython-37m-x86_64-linux-gnu` to the shared library name when using Python 3. This is required for extensions meant to be imported as Python modules. When we use setuptools to build shared libraries not meant as Python modules, for example libraries that define and register TorchScript custom ops, having your library called `my_ops.cpython-37m-x86_64-linux-gnu.so` is a bit annoying compared to just `my_ops.so`, especially since you have to reference the library name when loading it with `torch.ops.load_library` in Python.

This PR fixes this by adding a `with_options` class method to the `torch.utils.cpp_extension.BuildExtension` which allows configuring the `BuildExtension`. In this case, the first option we add is `no_python_abi_suffix`, which we then use in `get_ext_filename` (override from `setuptools.build_ext`) to throw away the ABI suffix.

I've added a test `setup.py` in a `no_python_abi_suffix_test` folder.

Fixes https://github.com/pytorch/pytorch/issues/14188

t-vi fmassa soumith
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14130

Differential Revision: D13216575

Pulled By: goldsborough

fbshipit-source-id: 67dc345c1278a1a4ee4ca907d848bc1fb4956cfa

5 years agoFix clang tidy errors
Wanchao Liang [Wed, 28 Nov 2018 01:28:55 +0000 (17:28 -0800)]
Fix clang tidy errors

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14427

Differential Revision: D13222381

Pulled By: wanchaol

fbshipit-source-id: d90d210a810e95bf0eb404f9c1c304f4e6a3f61e

5 years agoHandling of pretty-printing methods (#14378)
Zachary DeVito [Wed, 28 Nov 2018 01:08:09 +0000 (17:08 -0800)]
Handling of pretty-printing methods (#14378)

Summary:
Stacked on #14176, review only the last commit.
* Print parameters to methods as self.weight rather than as extra inputs.
* Print entire set of methods out as a single string
* Update test code to test the module-at-a-time export/import
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14378

Differential Revision: D13198463

Pulled By: zdevito

fbshipit-source-id: 3fab02e8239cfd6f40d6ab6399047bd02cf0a8c8

5 years agoEliminate necessity of HIPify on AccumulateType.h (#14412)
Edward Yang [Wed, 28 Nov 2018 00:36:09 +0000 (16:36 -0800)]
Eliminate necessity of HIPify on AccumulateType.h (#14412)

Summary:
I'd like to NOT HIPify files that are not in a cuda/
directory, so hand-HIPify AccumulateType.h

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14412

Differential Revision: D13221801

Pulled By: ezyang

fbshipit-source-id: d1927cfc956e50a6a5e67168ac0e1ce56ecd1e0b

5 years agowhen BUILD_CAFFE2_OPS is OFF, torch-python needs a direct dep on nccl (#14430)
andersj [Tue, 27 Nov 2018 23:51:17 +0000 (15:51 -0800)]
when BUILD_CAFFE2_OPS is OFF, torch-python needs a direct dep on nccl (#14430)

Summary:
https://github.com/pytorch/pytorch/issues/14431 tracks supporting this with CI
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14430

Differential Revision: D13224079

Pulled By: anderspapitto

fbshipit-source-id: 47d7900d25910ed61585b93f9003acd1b2630a9f

5 years agoSpeed-up "advanced" indexing operations (#13420)
Sam Gross [Tue, 27 Nov 2018 23:18:39 +0000 (15:18 -0800)]
Speed-up "advanced" indexing operations (#13420)

Summary:
This speeds-up "advanced" indexing (indexing a tensor by a tensor)
on CPU and GPU. There's still a bunch of work to do, including
speeding up indexing by a byte (boolean) mask and speeding up the derivative
calculation for advanced indexing.

Here's some speed comparisons to indexing on master using a little [benchmark script](https://gist.github.com/colesbury/c369db72aad594e5e032c8fda557d909) with 16 OpenMP threads and on a P100. The test cases are listed as (input shape -> output shape).

| Test case             | CPU (old vs. new)   | CUDA (old vs. new)     |
|-----------------------|---------------------|------------------------|
| 1024x1024 -> 512x1024 | 225 us vs. **57 us**  | 297 us vs. **47 us** |
| 1024x1024 -> 1024x512 | 208 us vs. **153 us** | 335 us vs. **54 us** |
| 50x50 -> 20000x50     | 617 us vs. **77 us**  | 239 us vs. **54 us** |
| 50x50 -> 50x20000     | 575 us vs. **236 us** | 262 us vs. **58 us** |
| 2x5x10 -> 10          | 65 us  vs. **18 us**  | 612 us vs. **93 us** |

See #11647
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13420

Reviewed By: soumith

Differential Revision: D13088936

Pulled By: colesbury

fbshipit-source-id: 0a5c2ee9aa54e15f96d06692d1694c3b24b924e2

5 years agoResubmit: Set the correct engine name for position weighted pooling when fp16 is...
Jiyan Yang [Tue, 27 Nov 2018 22:49:28 +0000 (14:49 -0800)]
Resubmit: Set the correct engine name for position weighted pooling when fp16 is used for training

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13768

Reviewed By: xianjiec

Differential Revision: D12996103

fbshipit-source-id: 5ca4cda4210f68ece2b5d6eced8cf52ee91fb36f

5 years agoWindows local build: restore original working dir after activating VC environment...
Will Feng [Tue, 27 Nov 2018 22:13:48 +0000 (14:13 -0800)]
Windows local build: restore original working dir after activating VC environment (#14416)

Summary:
`call "C:\\Program Files (x86)\\Microsoft Visual Studio\\2017\\Community\\VC\\Auxiliary\\Build\\vcvarsall.bat" x64` seems to change the working dir to `C:\Users\Administrator\source`, and we need to cd back to the PyTorch directory before running `git submodule update --init --recursive`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14416

Differential Revision: D13222269

Pulled By: yf225

fbshipit-source-id: a0eb3311fb11713b1bb8f52cd13e2c21d5ca9c7b

5 years agocondition blob in while_op test changes data type (#14279)
Jerry Zhang [Tue, 27 Nov 2018 22:10:41 +0000 (14:10 -0800)]
condition blob in while_op test changes data type (#14279)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14279

att

Reviewed By: smessmer

Differential Revision: D13144472

fbshipit-source-id: af4d920a3148c648d1a428a5bcd56da19ea8c38c

5 years agoAdd test of ONNX_ATEN (#14259)
zrphercule [Tue, 27 Nov 2018 21:49:21 +0000 (13:49 -0800)]
Add test of ONNX_ATEN (#14259)

Summary:
In #14239 we fixed ONNX_ATEN.
In order to make sure its correctness in the future, we should add related test case.
We use torch.fmod() to test ONNX_ATEN.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14259

Differential Revision: D13204610

Pulled By: zrphercule

fbshipit-source-id: e4660c346e5edd201f1458b7d74d7dfac49b94c7

5 years agoAllowing TaskGroups to carry remote nets (#14342)
Hassan Eslami [Tue, 27 Nov 2018 21:31:59 +0000 (13:31 -0800)]
Allowing TaskGroups to carry remote nets (#14342)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14342

Sometimes, when we are creating a TaskGroup, we are in fact creating a TaskGroup for a distributed job. In some cases, we may want to register a few nets as "remote" to a TaskGroup. The remote net should have sufficient attributes on where they should be executed later on.

This diff adds the remote net attribute to the TaskGroup class. It exposes two minimal functionalities: adding a remote net, and getting all remote nets added to a TaskGroup.

Reviewed By: d4l3k

Differential Revision: D13188320

fbshipit-source-id: efe947aec30817e9512a5e18be985713b9356bdc

5 years agoAdd scaffolding for HIP backend in ATen/core. (#14285)
Edward Yang [Tue, 27 Nov 2018 21:14:12 +0000 (13:14 -0800)]
Add scaffolding for HIP backend in ATen/core. (#14285)

Summary:
This code doesn't actually do anything, but it will be the
groundwork necessary to change PyTorch's HIPIFY pass from reusing
CUDA identifiers directly, to actually switching to using HIP
identifiers (moving us closer to a world where we can compile
both HIP and CUDA PyTorch side-by-side.)

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14285

Differential Revision: D13158851

Pulled By: ezyang

fbshipit-source-id: df2462daa5d0d4112455b67bd3067d60ba55cda5

5 years agoDocument device_guard in native_functions.yaml (#14235)
Edward Yang [Tue, 27 Nov 2018 21:12:25 +0000 (13:12 -0800)]
Document device_guard in native_functions.yaml (#14235)

Summary:
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14235

Differential Revision: D13145780

Pulled By: ezyang

fbshipit-source-id: 0e93bf009ad492551bcdcada0357f2fef529e67d

5 years agoRevert D13192228: [pytorch][PR] [jit] Add boolean dispatch for function overloading
David Riazati [Tue, 27 Nov 2018 21:12:14 +0000 (13:12 -0800)]
Revert D13192228: [pytorch][PR] [jit] Add boolean dispatch for function overloading

Differential Revision:
D13192228

Original commit changeset: fce33c400c1f

fbshipit-source-id: 75c9991dc7097f9513c6c89d16eff2de6e287c3b

5 years agoRemove fake dependencies from TensorImpl to caffe2 (#14141)
Sebastian Messmer [Tue, 27 Nov 2018 20:43:24 +0000 (12:43 -0800)]
Remove fake dependencies from TensorImpl to caffe2 (#14141)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14141

These includes weren't actually used, let's remove them.

Reviewed By: ezyang

Differential Revision: D13113129

fbshipit-source-id: 816995e280b81bf99002772ea8aea458bdfcd2c7

5 years agoFix include paths for TensorTypeId.h and TensorTypeIdRegistration.h
Sebastian Messmer [Tue, 27 Nov 2018 20:43:24 +0000 (12:43 -0800)]
Fix include paths for TensorTypeId.h and TensorTypeIdRegistration.h

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14070

Reviewed By: ezyang

Differential Revision: D13081610

fbshipit-source-id: 685994a15a2cd15e9e5447cf77671343de5dd278

5 years agoMove TensorTypeId to c10/core
Sebastian Messmer [Tue, 27 Nov 2018 20:43:24 +0000 (12:43 -0800)]
Move TensorTypeId to c10/core

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14327

Reviewed By: ezyang

Differential Revision: D13131338

fbshipit-source-id: c4682cb6ed6fe4cd1636e09d918eef6e90c836f1

5 years agoFix include paths for Storage.h and StorageImpl.h
Sebastian Messmer [Tue, 27 Nov 2018 20:43:24 +0000 (12:43 -0800)]
Fix include paths for Storage.h and StorageImpl.h

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14062

Reviewed By: ezyang

Differential Revision: D13081603

fbshipit-source-id: c272b715ef2f513d21d1c3f34fbf79eec6946441

5 years agoMove Storage and StorageImpl to c10
Sebastian Messmer [Tue, 27 Nov 2018 20:43:24 +0000 (12:43 -0800)]
Move Storage and StorageImpl to c10

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14061

Reviewed By: ezyang

Differential Revision: D13081608

fbshipit-source-id: 1ea2d32e9ec9293b6ffa4b9e76c674cca55d5a1c

5 years agoFix include paths for Allocator.h
Sebastian Messmer [Tue, 27 Nov 2018 20:43:24 +0000 (12:43 -0800)]
Fix include paths for Allocator.h

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14060

Reviewed By: ezyang

Differential Revision: D13081605

fbshipit-source-id: 02f23af174c0f0c38fb0163c2dfef3873ff5635d

5 years agoMove Allocator.h to c10
Sebastian Messmer [Tue, 27 Nov 2018 20:43:24 +0000 (12:43 -0800)]
Move Allocator.h to c10

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14059

Reviewed By: ezyang

Differential Revision: D13081606

fbshipit-source-id: d6ad59ad4e3d363268cd4307b6c999a168681246

5 years agoMove UniqueVoidPtr to c10
Sebastian Messmer [Tue, 27 Nov 2018 20:43:22 +0000 (12:43 -0800)]
Move UniqueVoidPtr to c10

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14058

Reviewed By: dzhulgakov

Differential Revision: D13081602

fbshipit-source-id: e91ccf9fba9a7a02f99ed90b7a3a0fe7afd56832

5 years agoMove ScalarTypeUtils.h to c10
Sebastian Messmer [Tue, 27 Nov 2018 20:43:22 +0000 (12:43 -0800)]
Move ScalarTypeUtils.h to c10

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14024

Reviewed By: ezyang

Differential Revision: D13081604

fbshipit-source-id: d7a09610f64eb2e9dd831bbb3c85f20691251594

5 years agoFix include paths for Scalar.h and ScalarType.h
Sebastian Messmer [Tue, 27 Nov 2018 20:43:22 +0000 (12:43 -0800)]
Fix include paths for Scalar.h and ScalarType.h

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14023

Reviewed By: ezyang

Differential Revision: D13081609

fbshipit-source-id: c27eeafa381b39e043f0261ea7f6f634ee8bc238

5 years agoMove Scalar and ScalarType to c10/core
Sebastian Messmer [Tue, 27 Nov 2018 20:43:22 +0000 (12:43 -0800)]
Move Scalar and ScalarType to c10/core

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14022

Reviewed By: ezyang

Differential Revision: D13015236

fbshipit-source-id: 92aac4e342d85f75a31837b2943fa5b80f0c35c9

5 years agoTrace in-place ops (#14254)
Michael Suo [Tue, 27 Nov 2018 20:38:28 +0000 (12:38 -0800)]
Trace in-place ops (#14254)

Summary:
This PR adds a `try_outplace` option to the tracer. When `try_outplace` is true, the tracer will attempt to out-of-place ops (similar to how things are done today). When it's false, the correct in-place op is emitted.

I made `try_outplace` false by default, but flipped it to true for ONNX export utils. zdevito jamesr66a, anywhere else I should preserve the existing behavior?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14254

Reviewed By: eellison

Differential Revision: D13166691

Pulled By: suo

fbshipit-source-id: ce39fdf73ac39811c55100e567466d53108e856b

5 years agoFixed torch.multiprocessing.spawn for not being able to spawn like dataloader workers...
Teng Li [Tue, 27 Nov 2018 20:32:56 +0000 (12:32 -0800)]
Fixed torch.multiprocessing.spawn for not being able to spawn like dataloader workers (#14391)

Summary:
Should fix: https://github.com/pytorch/pytorch/issues/14390

Now imagenet example works fine with multiprocessing and more than 1 dataloader worker
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14391

Reviewed By: calebho

Differential Revision: D13209800

Pulled By: teng-li

fbshipit-source-id: e8abc0fb38d4436cf3474dcbba0e28f4290e4d29

5 years agoTensor construction: combine Resize+mutable_data - 4/4 (#13856)
Jerry Zhang [Tue, 27 Nov 2018 20:31:17 +0000 (12:31 -0800)]
Tensor construction: combine Resize+mutable_data - 4/4 (#13856)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13856

Codemod generated with clangr shard mode, 25 files per diff,
motivation: https://github.com/pytorch/pytorch/pull/12407

Reviewed By: smessmer

Differential Revision: D13007310

fbshipit-source-id: 941f064ef8934bb17fbfb706e6ed3db173b5d268

5 years agoPrint default values and introduce ir view classes (#14176)
Zachary DeVito [Tue, 27 Nov 2018 19:46:17 +0000 (11:46 -0800)]
Print default values and introduce ir view classes (#14176)

Summary:
[Stacked commit, only review the last commit]

This PR adds support for printing default values in python printing as well as the logic
for parsing default values back in using the parser. For simplicity, this PR simply
creates a subgraph of the constant expressions and then runs that graph to generate the defaults.
A more lightweight approach should be possible later, but would require more machinery.

To make reading code in the printer easier, this also add ir_views.h.
Similar to tree_views.h these classes can provide views of some commonly used IR nodes
that have complicated structure and common operations on that structure.

Currently it has only read-only views for prim::If and prim::Loop,
but we should eventually add helpers to manipulate If/Loop nodes as well.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14176

Differential Revision: D13198455

Pulled By: zdevito

fbshipit-source-id: dc99ab9692804ccaedb60a55040c0b89ac7a6a6d

5 years agoAdd Type support to the fuser, fuse more (#14336)
Thomas Viehmann [Tue, 27 Nov 2018 19:30:41 +0000 (11:30 -0800)]
Add Type support to the fuser, fuse more (#14336)

Summary:
This adds scalar type support to the fuser, both internally (instead of auto / assuming float) and for the inputs/outputs.
We can now fuse things with input / output of arbitrary scalar type, in particular comparisons and where work well. So it fixes #13384 by returning the right type tensor (and adds a test where byte and double tensors are returned).
The type inference is done by re-calling PropagateTensorShapeOnNode in the compilation, I would venture that it isn't prohibitively expensive compared to the actual compilation. (Propagation was fixed for where to return the second argument's type and amended to handle FusedConcat.)
I'm not sure how to add a check for the code generated by the fuser, but I am not sure we absolutely need to (we'd see if it is invalid / produces wrong results).

Thanks in particular to apaszke, fmassa, mruberry for advice and encouragement! All the errors are my own.

I have discussed order of PRs briefly with mruberry, if this goes in before he submits the PR, he graciously agreed to rebasing his, but I'd happily rebase, too.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14336

Differential Revision: D13202620

Pulled By: soumith

fbshipit-source-id: 855159e261fa15f21aca3053bfc05fb3f720a8ef

5 years agoUpdating submodules
svcscm [Tue, 27 Nov 2018 19:20:46 +0000 (11:20 -0800)]
Updating submodules

Reviewed By: yns88

fbshipit-source-id: e63160e97550942931bacaa860d91d591d2e1712

5 years agoAdd boolean dispatch for function overloading (#14081)
David Riazati [Tue, 27 Nov 2018 18:49:14 +0000 (10:49 -0800)]
Add boolean dispatch for function overloading (#14081)

Summary:
This PR allows to overload functions based on the value of a parameter (so long as it is a constant). See `max_pool1d` for an example usage.

This is the first step in enabling the use of `max_pool` functions for the standard library that can return `Tensor` or `Tuple[Tensor, Tensor]` based on the `return_indices` flag. This will give the JIT identical results to the Python versions of the functions.

Depends on #14232 for `Optional[BroadcastingList[T]]`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14081

Differential Revision: D13192228

Pulled By: driazati

fbshipit-source-id: fce33c400c1fd06e59747d98507c5fdcd8d4c113

5 years agoBarrier synchronizes with prior work before completing (#14386)
Pieter Noordhuis [Tue, 27 Nov 2018 18:41:06 +0000 (10:41 -0800)]
Barrier synchronizes with prior work before completing (#14386)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14386

See #13573, #14142, and #14271 for discussion.

This change updates ProcessGroupGloo to ensure that all prior
operations have completed before executing the barrier.

Reviewed By: manojkris

Differential Revision: D13205022

fbshipit-source-id: 673e7e6ca357dc843874d6dd8da590832e1de7fa

5 years agoMake ProcessGroup::Work::wait() throw (#14298)
Pieter Noordhuis [Tue, 27 Nov 2018 18:41:06 +0000 (10:41 -0800)]
Make ProcessGroup::Work::wait() throw (#14298)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14298

This is a breaking API change for users of the C++ c10d API. The work
object defined wait() to return a boolean. If the work completed
successfully it would return true, if it didn't it would return false.
It was then up to the user to call the exception() function to figure
out what went wrong. This has proven suboptimal as it allows users to
forget about failure handling and errors may be ignored.

The work class is semantically very similar to std::future, where a
call to get() may throw if the underlying std::promise has set an
exception. This commit changes the semantic of the work class to be
similar to this and turns wait() into a void function that throws if
the work completes with an exception.

The exception() function can still be used to retrieve the exception
if isSuccess() returns false, but now returns an std::exception_ptr
instead of a reference to a std::exception.

Reviewed By: manojkris

Differential Revision: D13158475

fbshipit-source-id: 9cd8569b9e7cbddc867a5f34c6fd0b7be85581b8

5 years agoAdd option structs and timeout field (#14297)
Pieter Noordhuis [Tue, 27 Nov 2018 18:41:04 +0000 (10:41 -0800)]
Add option structs and timeout field (#14297)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14297

Adds option structs for allgather and barrier such that we have one
for every collective. Add timeout member field to every one of these
such that we can support per operation timeouts.

Use default constructed options struct for every collective process
group function exposed to Python.

Reviewed By: manojkris

Differential Revision: D13158474

fbshipit-source-id: 3d28977de2f2bd6fc2f42ba3108b63a429338906

5 years agoRefer to all work with ProcessGroup prefix (#14296)
Pieter Noordhuis [Tue, 27 Nov 2018 18:41:04 +0000 (10:41 -0800)]
Refer to all work with ProcessGroup prefix (#14296)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14296

There was mixed usage of "ProcessGroup::Work" and just "Work".
Adding prefix for readability/consistency.

Reviewed By: manojkris

Differential Revision: D13128977

fbshipit-source-id: a54a8784fa91cd6023c723cb83e9f626fb896a30

5 years agoRemove algorithm caching in ProcessGroupGloo (#14295)
Pieter Noordhuis [Tue, 27 Nov 2018 18:41:04 +0000 (10:41 -0800)]
Remove algorithm caching in ProcessGroupGloo (#14295)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14295

This is no longer used after moving to Gloo new style algorithms.

Closes #11912.

Reviewed By: manojkris

Differential Revision: D13111781

fbshipit-source-id: 53e347080e29d847cd9da36f2d93af047930690c

5 years agoUse new style barrier support in c10d/gloo (#14294)
Pieter Noordhuis [Tue, 27 Nov 2018 18:41:04 +0000 (10:41 -0800)]
Use new style barrier support in c10d/gloo (#14294)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14294

This is the final collective to be ported to the new style where there
is no longer a need to keep a cached algorithm instance around. There
is a follow up change incoming to remove the algorithm caching
functionality in ProcessGroupGloo.

Reviewed By: manojkris

Differential Revision: D13111509

fbshipit-source-id: f3ea0d955a62029fc4e7cfc09055e4957e0943ac

5 years agofix doc for sparse.addmm (#14403)
Wei Yang [Tue, 27 Nov 2018 18:22:24 +0000 (10:22 -0800)]
fix doc for sparse.addmm (#14403)

Summary:
- fixing the doc issue in sparse.addmm

================ before change ==================
![image](https://user-images.githubusercontent.com/38509346/49063994-2f10fe80-f1ce-11e8-9ccc-54241bc45f0b.png)
![image](https://user-images.githubusercontent.com/38509346/49064064-641d5100-f1ce-11e8-865a-7227be7156ef.png)

================ post change ==================
![image](https://user-images.githubusercontent.com/38509346/49064078-76978a80-f1ce-11e8-8f38-f1f8ac9ce63b.png)
![image](https://user-images.githubusercontent.com/38509346/49064085-7bf4d500-f1ce-11e8-8a0d-bf9e5460d21f.png)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14403

Differential Revision: D13216582

Pulled By: weiyangfb

fbshipit-source-id: 52e0a20c6b341c37cfb31f281be3afe2a52ca532

5 years agoper-group and per-channel quantization (#14340)
Jongsoo Park [Tue, 27 Nov 2018 18:05:28 +0000 (10:05 -0800)]
per-group and per-channel quantization (#14340)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14340

Pull Request resolved: https://github.com/pytorch/FBGEMM/pull/25

Per-group and per-channel quantization in fbgemm
This diff also cleans up explicit template instantiation using macro expansion
This diff also changes randFill interface which was easy to make mistakes of generating integer random numbers for floating point vectors.

Using this in DNNLOWP operators will be done in a separate diff.

Reviewed By: dskhudia

Differential Revision: D13176386

fbshipit-source-id: e46c53e31e21520bded71b8ed86e8b19e010e2dd

5 years agoAdd variable_factories.h to cppdocs (#14381)
Peter Goldsborough [Tue, 27 Nov 2018 18:04:57 +0000 (10:04 -0800)]
Add variable_factories.h to cppdocs (#14381)

Summary:
This will document `torch::from_blob` and such.

soumith ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14381

Differential Revision: D13216560

Pulled By: goldsborough

fbshipit-source-id: 112f60e45e4d38a8a9983fa71e9cc56bc1a73465

5 years agoUse integer math to compute output size of pooling operations (#14405)
Jan Schlüter [Tue, 27 Nov 2018 17:36:11 +0000 (09:36 -0800)]
Use integer math to compute output size of pooling operations (#14405)

Summary:
As reported in #13386, the pooling operations can return wrong results for large inputs. The root of the problem is that while the output shape is initially being computed with integer operations, it is converted to float32 for division by the stride and applying either a `ceil` or a `floor` depending on the `ceil_mode`. Since even moderately large integers (the smallest being 16,777,217) cannot be expressed exactly in float32, this leads to wrong result shapes.

This PR relies purely on integer operations to perform the shape computation, including the ceil/floor distinction. Since I could not stand all that duplicated code, I pulled it out into a `pooling_shape.h` header, similar to the existing `linear_upsampling.h` header. I hope this is acceptable, let me know if you'd like to see it solved differently. I've also added tests to `test_nn.py` that fail without my changes and pass with my changes. They cover `{max,avg}_pool{1,2,3}d()` for CPU and GPU.

Fixes #13386.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14405

Differential Revision: D13215260

Pulled By: soumith

fbshipit-source-id: 802588ce6cba8db6c346448c3b3c0dac14d12b2d

5 years agoDelete legacy THCStream (long live THCStream). (#14246)
Edward Yang [Tue, 27 Nov 2018 16:23:34 +0000 (08:23 -0800)]
Delete legacy THCStream (long live THCStream). (#14246)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14246

This commit systematically eliminates THCStream entirely from THC, replacing it
with at::cuda::CUDAStream.  In places where the previous pointer type showed up
in a public API signature, those functions are now only available to C++
clients.  (It would not be too difficult to make a C-compatible version of
CUDAStream, as it's really just a simple struct, but we leave this for
future work.)

All functions in THC that referred to THCStream were expunged in favor of their
modern counterparts.

One annoyance was that I didn't feel like redoing how the torch.cuda.Stream
binding code worked, but I really wanted to get rid of the stored THCStream*
pointer.  So I repurposed the bit-packing code I implemented for Stream hashing,
and used that to (reversibly) store streams in a uint64_t cdata field.  A perhaps
more future proof solution would be to get rid of cdata entirely, and store the
device and stream ID directly.

Billing of changes:
- All CUDAStream_ pointer API functions are now hidden and anonymously
  namespaced (instead of being in the impl namespace).  All use sites
  rewritten to use the modern C++ API.  Since CUDAStreamInternals is no
  longer part of the public API, the CUDAStreamInternals constructor and
  internals() method have been removed, and replaced with anonymous
  functions in the C++ file.
- device_index() returns DeviceIndex rather than int64_t now
- Stream and CUDAStream now have pack/unpack methods.  (CUDAStream checks
  that the unpacked bit-pattern is for a CUDA device.)
- THCStream.h header is removed entirely
- Most THCStream handling functions in THC API are removed

Reviewed By: gchanan

Differential Revision: D13121531

fbshipit-source-id: 48873262cc0a37c3eec75a7ba1c93c800da40222

5 years agoAdd hash functions for Stream, CUDAStream; fix Device hash function (#14191)
Edward Yang [Tue, 27 Nov 2018 16:23:34 +0000 (08:23 -0800)]
Add hash functions for Stream, CUDAStream; fix Device hash function (#14191)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14191

Previously, Device's hash function only worked for CPU and CUDA.  Now
it works for everything.

Implementing the bit concatenation was a bit tricky, and I got it wrong the
first time. See Note [Hazard when concatenating signed integers]

Reviewed By: smessmer

Differential Revision: D13119624

fbshipit-source-id: 36bfa139cfc739bb0624f52aaf466438c2428207

5 years agoImplement NaN-propagating max/min on Vec256.
Owen Anderson [Tue, 27 Nov 2018 06:41:56 +0000 (22:41 -0800)]
Implement NaN-propagating max/min on Vec256.

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13399

Differential Revision: D13199957

Pulled By: resistor

fbshipit-source-id: 1565e079b13c5d4f42f2033830a7c997b7d824bc

5 years agoUpdating submodules
svcscm [Tue, 27 Nov 2018 03:35:44 +0000 (19:35 -0800)]
Updating submodules

Reviewed By: yns88

fbshipit-source-id: 210f7eec65bea5e31817fb56dec27b0ab8af797a

5 years agoRemove unused executors, part 3 (#14199)
Ilia Cherniavskii [Tue, 27 Nov 2018 03:07:07 +0000 (19:07 -0800)]
Remove unused executors, part 3 (#14199)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14199

Remove legacy code for dag, async_dag

Reviewed By: salexspb

Differential Revision: D13019102

fbshipit-source-id: ff07e45304d9af4be0375215f4b642c4b0edb12d

5 years agoRemove unused executors, part 2 (#14115)
Ilia Cherniavskii [Tue, 27 Nov 2018 03:07:07 +0000 (19:07 -0800)]
Remove unused executors, part 2 (#14115)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14115

Remove legacy implementation of prof_dag

Reviewed By: salexspb

Differential Revision: D13019096

fbshipit-source-id: 4f2bf676444d84eaa2cc1effcc3ebdc764e0a016

5 years agoRemove unused executors, part 1 (#14117)
Ilia Cherniavskii [Tue, 27 Nov 2018 03:07:06 +0000 (19:07 -0800)]
Remove unused executors, part 1 (#14117)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14117

Removing unused legacy executors (htrace)

Reviewed By: salexspb

Differential Revision: D13019078

fbshipit-source-id: 19d0ed1b47a22cc17c27fdd15d748ced54806132

5 years agoDelete OPENMP_STUB translation. (#14286)
Edward Yang [Tue, 27 Nov 2018 03:06:06 +0000 (19:06 -0800)]
Delete OPENMP_STUB translation. (#14286)

Summary:
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14286

Differential Revision: D13205356

Pulled By: ezyang

fbshipit-source-id: 08e9821e4b32f8d7f3c41906e481f280ee6cf2e3

5 years agobackward for sparse.addmm(D, S, D, alpha, beta) -> D (#13345)
Wei Yang [Tue, 27 Nov 2018 01:43:21 +0000 (17:43 -0800)]
backward for sparse.addmm(D, S, D, alpha, beta) -> D (#13345)

Summary:
- introduce `sparse.addmm()` with backward for sparse matrix input for https://github.com/pytorch/pytorch/issues/12308
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13345

Differential Revision: D13094070

Pulled By: weiyangfb

fbshipit-source-id: 136c08c3ca9bafb20577b60dd43d31c3e5cd5461

5 years agoSwitch Int8ChannelShuffle operator to QNNPACK (#14362)
Marat Dukhan [Tue, 27 Nov 2018 01:41:13 +0000 (17:41 -0800)]
Switch Int8ChannelShuffle operator to QNNPACK (#14362)

Summary:
1.8-2.2X better performance on ARM devices
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14362

Reviewed By: jerryzh168

Differential Revision: D13192312

Pulled By: Maratyszcza

fbshipit-source-id: 0d3dff067e300c7d741c42615b61246cbf09a829

5 years agoFixed file init_method write/read race (#14388)
Teng Li [Tue, 27 Nov 2018 01:05:17 +0000 (17:05 -0800)]
Fixed file init_method write/read race (#14388)

Summary:
This should fix the race among multiple processes: https://github.com/pytorch/pytorch/issues/13750

Essentially, the reader is trying to open the file, and will error out if it doesn't exist, we here factor in the timeout option of FileStore to apply a timeout for creating a file (should always be created anyway unless something is wrong), and more importantly, waiting for the file to be created.

Tested on both NFS and local drive, the race disappears when 8 concurrent processes do distributed training.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14388

Differential Revision: D13207178

Pulled By: teng-li

fbshipit-source-id: d3d5d62c4c8f01c0522bf1653c8986155c54ff80

5 years agoFix dataloader iterator test (#14045)
Peter Goldsborough [Tue, 27 Nov 2018 01:04:51 +0000 (17:04 -0800)]
Fix dataloader iterator test (#14045)

Summary:
I noticed the test `DataLoaderTest.CanDereferenceIteratorMultipleTimes` doesn't test proper progression of the iterator. I also added a test for using `std::copy`.

Fixes https://github.com/pytorch/pytorch/issues/14276

ebetica ezyang apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14045

Differential Revision: D13092187

Pulled By: goldsborough

fbshipit-source-id: 57698ec00fa7b914b159677a4ab38b6b25c2860b

5 years agoFixed c10d test (#14389)
Teng Li [Tue, 27 Nov 2018 00:44:11 +0000 (16:44 -0800)]
Fixed c10d test (#14389)

Summary:
Most likely a typo.

Tested on 8-GPU machine

```
tengli@learnfair062:~/pytorch/test$ python test_c10d.py ProcessGroupNCCLTest.test_barrier
.
----------------------------------------------------------------------
Ran 1 test in 29.341s

OK
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14389

Differential Revision: D13207207

Pulled By: teng-li

fbshipit-source-id: aaffe14237076fe19d94e2fa4d9c093397f07bb9

5 years agofix typo in `torch.sum` documentation (#14250)
Brennan Vincent [Tue, 27 Nov 2018 00:34:47 +0000 (16:34 -0800)]
fix typo in `torch.sum` documentation (#14250)

Summary:
Notice that an extra colon was added to `:attr:`, so in https://pytorch.org/docs/stable/torch.html#torch.sum , `dim` shows up as ":attr::_dim_". This patch fixes the issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14250

Reviewed By: soumith

Differential Revision: D13146363

Pulled By: umanwizard

fbshipit-source-id: f7d03dcb0973aae248b56ab407ba8489f2b1fe36

5 years agoMore JIT type hierarchy refinement (#14127)
Wanchao Liang [Tue, 27 Nov 2018 00:21:08 +0000 (16:21 -0800)]
More JIT type hierarchy refinement (#14127)

Summary:
JIT type system hierarchy refinement and refactors:

1. Make NumberType be the base type of IntType FloatType
2. Make single type container like OptionalType and FutureType share SingleElementType base type
3. Some refactors to make it more robust, e.g. adding python_str() for some types so that we have proper python_print serialization format
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14127

Differential Revision: D13112657

Pulled By: wanchaol

fbshipit-source-id: 335c5b25977be2e0a462c7e4a6649c1b653ccb4f