From: Woohyun Jung Date: Fri, 17 Mar 2023 06:21:49 +0000 (+0900) Subject: Import smawk 0.3.1 X-Git-Tag: upstream/0.3.1 X-Git-Url: http://review.tizen.org/git/?a=commitdiff_plain;h=refs%2Fheads%2Fupstream;p=platform%2Fupstream%2Frust-smawk.git Import smawk 0.3.1 --- 3776150da8f4c4fb2cea76434c5d2e87ecd0f2e2 diff --git a/.cargo_vcs_info.json b/.cargo_vcs_info.json new file mode 100644 index 0000000..62d7460 --- /dev/null +++ b/.cargo_vcs_info.json @@ -0,0 +1,5 @@ +{ + "git": { + "sha1": "7d2913e351b112c74d4d855a4979c00a47926518" + } +} diff --git a/Cargo.toml b/Cargo.toml new file mode 100644 index 0000000..48db409 --- /dev/null +++ b/Cargo.toml @@ -0,0 +1,46 @@ +# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO +# +# When uploading crates to the registry Cargo will automatically +# "normalize" Cargo.toml files for maximal compatibility +# with all versions of Cargo and also rewrite `path` dependencies +# to registry (e.g., crates.io) dependencies +# +# If you believe there's an error in this file please file an +# issue against the rust-lang/cargo repository. If you're +# editing this file be aware that the upstream Cargo.toml +# will likely look very different (and much more reasonable) + +[package] +edition = "2018" +name = "smawk" +version = "0.3.1" +authors = ["Martin Geisler "] +exclude = [".github/", ".gitignore", "benches/", "examples/"] +description = "Functions for finding row-minima in a totally monotone matrix." +readme = "README.md" +keywords = ["smawk", "matrix", "optimization", "dynamic-programming"] +categories = ["algorithms", "science"] +license = "MIT" +repository = "https://github.com/mgeisler/smawk" +[dependencies.ndarray] +version = "0.14" +optional = true +[dev-dependencies.num-traits] +version = "0.2" + +[dev-dependencies.rand] +version = "0.8" + +[dev-dependencies.rand_chacha] +version = "0.3" + +[dev-dependencies.version-sync] +version = "0.9" +[badges.appveyor] +repository = "mgeisler/smawk" + +[badges.codecov] +repository = "mgeisler/smawk" + +[badges.travis-ci] +repository = "mgeisler/smawk" diff --git a/Cargo.toml.orig b/Cargo.toml.orig new file mode 100644 index 0000000..b3f6dcc --- /dev/null +++ b/Cargo.toml.orig @@ -0,0 +1,26 @@ +[package] +name = "smawk" +version = "0.3.1" +authors = ["Martin Geisler "] +description = "Functions for finding row-minima in a totally monotone matrix." +repository = "https://github.com/mgeisler/smawk" +readme = "README.md" +keywords = ["smawk", "matrix", "optimization", "dynamic-programming"] +categories = ["algorithms", "science"] +license = "MIT" +edition = "2018" +exclude = [".github/", ".gitignore", "benches/", "examples/"] + +[badges] +travis-ci = { repository = "mgeisler/smawk" } +appveyor = { repository = "mgeisler/smawk" } +codecov = { repository = "mgeisler/smawk" } + +[dependencies] +ndarray = { version = "0.14", optional = true } + +[dev-dependencies] +version-sync = "0.9" +num-traits = "0.2" +rand = "0.8" +rand_chacha = "0.3" diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000..124067f --- /dev/null +++ b/LICENSE @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2017 Martin Geisler + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/README.md b/README.md new file mode 100644 index 0000000..8568f2b --- /dev/null +++ b/README.md @@ -0,0 +1,136 @@ +# SMAWK Algorithm in Rust + +[![](https://github.com/mgeisler/smawk/workflows/build/badge.svg)][build-status] +[![](https://codecov.io/gh/mgeisler/smawk/branch/master/graph/badge.svg)][codecov] +[![](https://img.shields.io/crates/v/smawk.svg)][crates-io] +[![](https://docs.rs/smawk/badge.svg)][api-docs] + +This crate contains an implementation of the [SMAWK algorithm][smawk] +for finding the smallest element per row in a totally monotone matrix. + +The SMAWK algorithm allows you to lower the running time of some +algorithms from O(*n*²) to just O(*n*). In other words, you can turn a +quadratic time complexity (which is often too expensive) into linear +time complexity. + +Finding optimal line breaks in a paragraph of text is an example of an +algorithm which would normally take O(*n*²) time for *n* words. With +this crate, the running time becomes linear. Please see the [textwrap +crate][textwrap] for an example of this. + +## Usage + +Add this to your `Cargo.toml`: +```toml +[dependencies] +smawk = "0.3" +``` + +You can now efficiently find row and column minima. Here is an example +where we find the column minima: + +```rust +use smawk::smawk_column_minima; + +let matrix = vec![ + vec![3, 2, 4, 5, 6], + vec![2, 1, 3, 3, 4], + vec![2, 1, 3, 3, 4], + vec![3, 2, 4, 3, 4], + vec![4, 3, 2, 1, 1], +]; +let minima = vec![1, 1, 4, 4, 4]; +assert_eq!(smawk_column_minima(&matrix), minima); +``` + +The `minima` vector gives the index of the minimum value per column, +so `minima[0] == 1` since the minimum value in the first column is 2 +(row 1). Note that the smallest row index is returned. + +### Cargo Features + +This crate has an optional dependency on the [`ndarray` +crate](https://docs.rs/ndarray/), which provides an efficient matrix +implementation. Enable the `ndarray` Cargo feature to use it. + +## Documentation + +**[API documentation][api-docs]** + +## Changelog + +### Version 0.3.1 (2021-01-30) + +This release relaxes the bounds on the `smawk_row_minima`, +`smawk_column_minima`, and `online_column_minima` functions so that +they work on matrices containing floating point numbers. + +* [#55](https://github.com/mgeisler/smawk/pull/55): Relax bounds to + `PartialOrd` instead of `Ord`. +* [#56](https://github.com/mgeisler/smawk/pull/56): Update + dependencies to their latest versions. +* [#59](https://github.com/mgeisler/smawk/pull/59): Give an example of + what SMAWK does in the README. + +### Version 0.3.0 (2020-09-02) + +This release slims down the crate significantly by making `ndarray` an +optional dependency. + +* [#45](https://github.com/mgeisler/smawk/pull/45): Move non-SMAWK + code and unit tests out of lib and into separate modules. +* [#46](https://github.com/mgeisler/smawk/pull/46): Switch + `smawk_row_minima` and `smawk_column_minima` functions to a new + `Matrix` trait. +* [#47](https://github.com/mgeisler/smawk/pull/47): Make the + dependency on the `ndarray` crate optional. +* [#48](https://github.com/mgeisler/smawk/pull/48): Let `is_monge` take + a `Matrix` argument instead of `ndarray::Array2`. +* [#50](https://github.com/mgeisler/smawk/pull/50): Remove mandatory + dependencies on `rand` and `num-traits` crates. + + +### Version 0.2.0 (2020-07-29) + +This release updates the code to Rust 2018. + +* [#18](https://github.com/mgeisler/smawk/pull/18): Make + `online_column_minima` generic in matrix type. +* [#23](https://github.com/mgeisler/smawk/pull/23): Switch to the + [Rust 2018][rust-2018] edition. We test against the latest stable + and nightly version of Rust. +* [#29](https://github.com/mgeisler/smawk/pull/29): Drop strict Rust + 2018 compatibility by not testing with Rust 1.31.0. +* [#32](https://github.com/mgeisler/smawk/pull/32): Fix crash on + overflow in `is_monge`. +* [#33](https://github.com/mgeisler/smawk/pull/33): Update `rand` + dependency to latest version and get rid of `rand_derive`. +* [#34](https://github.com/mgeisler/smawk/pull/34): Bump `num-traits` + and `version-sync` dependencies to latest versions. +* [#35](https://github.com/mgeisler/smawk/pull/35): Drop unnecessary + Windows tests. The assumption is that the numeric computations we do + are cross-platform. +* [#36](https://github.com/mgeisler/smawk/pull/36): Update `ndarray` + dependency to the latest version. +* [#37](https://github.com/mgeisler/smawk/pull/37): Automate + publishing new releases to crates.io. + +### Version 0.1.0 — August 7th, 2018 + +First release with the classical offline SMAWK algorithm as well as a +newer online version where the matrix entries can depend on previously +computed column minima. + +## License + +SMAWK can be distributed according to the [MIT license][mit]. +Contributions will be accepted under the same license. + +[build-status]: https://github.com/mgeisler/smawk/actions?query=branch%3Amaster+workflow%3Abuild +[crates-io]: https://crates.io/crates/smawk +[codecov]: https://codecov.io/gh/mgeisler/smawk +[textwrap]: https://crates.io/crates/textwrap +[smawk]: https://en.wikipedia.org/wiki/SMAWK_algorithm +[api-docs]: https://docs.rs/smawk/ +[rust-2018]: https://doc.rust-lang.org/edition-guide/rust-2018/ +[mit]: LICENSE diff --git a/src/brute_force.rs b/src/brute_force.rs new file mode 100644 index 0000000..77209f9 --- /dev/null +++ b/src/brute_force.rs @@ -0,0 +1,122 @@ +//! Brute-force algorithm for finding column minima. +//! +//! The functions here are mostly meant to be used for testing +//! correctness of the SMAWK implementation. +//! +//! **Note: this module is only available if you enable the `ndarray` +//! Cargo feature.** + +use ndarray::{Array2, ArrayView1}; + +/// Compute lane minimum by brute force. +/// +/// This does a simple scan through the lane (row or column). +#[inline] +pub fn lane_minimum(lane: ArrayView1<'_, T>) -> usize { + lane.iter() + .enumerate() + .min_by_key(|&(idx, elem)| (elem, idx)) + .map(|(idx, _)| idx) + .expect("empty lane in matrix") +} + +/// Compute row minima by brute force in O(*mn*) time. +/// +/// # Panics +/// +/// It is an error to call this on a matrix with zero columns. +pub fn row_minima(matrix: &Array2) -> Vec { + matrix.genrows().into_iter().map(lane_minimum).collect() +} + +/// Compute column minima by brute force in O(*mn*) time. +/// +/// # Panics +/// +/// It is an error to call this on a matrix with zero rows. +pub fn column_minima(matrix: &Array2) -> Vec { + matrix.gencolumns().into_iter().map(lane_minimum).collect() +} + +#[cfg(test)] +mod tests { + use super::*; + use ndarray::arr2; + + #[test] + fn brute_force_1x1() { + let matrix = arr2(&[[2]]); + let minima = vec![0]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn brute_force_2x1() { + let matrix = arr2(&[ + [3], // + [2], + ]); + let minima = vec![0, 0]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn brute_force_1x2() { + let matrix = arr2(&[[2, 1]]); + let minima = vec![1]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn brute_force_2x2() { + let matrix = arr2(&[ + [3, 2], // + [2, 1], + ]); + let minima = vec![1, 1]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn brute_force_3x3() { + let matrix = arr2(&[ + [3, 4, 4], // + [3, 4, 4], + [2, 3, 3], + ]); + let minima = vec![0, 0, 0]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn brute_force_4x4() { + let matrix = arr2(&[ + [4, 5, 5, 5], // + [2, 3, 3, 3], + [2, 3, 3, 3], + [2, 2, 2, 2], + ]); + let minima = vec![0, 0, 0, 0]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn brute_force_5x5() { + let matrix = arr2(&[ + [3, 2, 4, 5, 6], + [2, 1, 3, 3, 4], + [2, 1, 3, 3, 4], + [3, 2, 4, 3, 4], + [4, 3, 2, 1, 1], + ]); + let minima = vec![1, 1, 1, 1, 3]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } +} diff --git a/src/lib.rs b/src/lib.rs new file mode 100644 index 0000000..3d24d3e --- /dev/null +++ b/src/lib.rs @@ -0,0 +1,531 @@ +//! This crate implements various functions that help speed up dynamic +//! programming, most importantly the SMAWK algorithm for finding row +//! or column minima in a totally monotone matrix with *m* rows and +//! *n* columns in time O(*m* + *n*). This is much better than the +//! brute force solution which would take O(*mn*). When *m* and *n* +//! are of the same order, this turns a quadratic function into a +//! linear function. +//! +//! # Examples +//! +//! Computing the column minima of an *m* ✕ *n* Monge matrix can be +//! done efficiently with `smawk_column_minima`: +//! +//! ``` +//! use smawk::{Matrix, smawk_column_minima}; +//! +//! let matrix = vec![ +//! vec![3, 2, 4, 5, 6], +//! vec![2, 1, 3, 3, 4], +//! vec![2, 1, 3, 3, 4], +//! vec![3, 2, 4, 3, 4], +//! vec![4, 3, 2, 1, 1], +//! ]; +//! let minima = vec![1, 1, 4, 4, 4]; +//! assert_eq!(smawk_column_minima(&matrix), minima); +//! ``` +//! +//! The `minima` vector gives the index of the minimum value per +//! column, so `minima[0] == 1` since the minimum value in the first +//! column is 2 (row 1). Note that the smallest row index is returned. +//! +//! # Definitions +//! +//! Some of the functions in this crate only work on matrices that are +//! *totally monotone*, which we will define below. +//! +//! ## Monotone Matrices +//! +//! We start with a helper definition. Given an *m* ✕ *n* matrix `M`, +//! we say that `M` is *monotone* when the minimum value of row `i` is +//! found to the left of the minimum value in row `i'` where `i < i'`. +//! +//! More formally, if we let `rm(i)` denote the column index of the +//! left-most minimum value in row `i`, then we have +//! +//! ```text +//! rm(0) ≤ rm(1) ≤ ... ≤ rm(m - 1) +//! ``` +//! +//! This means that as you go down the rows from top to bottom, the +//! row-minima proceed from left to right. +//! +//! The algorithms in this crate deal with finding such row- and +//! column-minima. +//! +//! ## Totally Monotone Matrices +//! +//! We say that a matrix `M` is *totally monotone* when every +//! sub-matrix is monotone. A sub-matrix is formed by the intersection +//! of any two rows `i < i'` and any two columns `j < j'`. +//! +//! This is often expressed as via this equivalent condition: +//! +//! ```text +//! M[i, j] > M[i, j'] => M[i', j] > M[i', j'] +//! ``` +//! +//! for all `i < i'` and `j < j'`. +//! +//! ## Monge Property for Matrices +//! +//! A matrix `M` is said to fulfill the *Monge property* if +//! +//! ```text +//! M[i, j] + M[i', j'] ≤ M[i, j'] + M[i', j] +//! ``` +//! +//! for all `i < i'` and `j < j'`. This says that given any rectangle +//! in the matrix, the sum of the top-left and bottom-right corners is +//! less than or equal to the sum of the bottom-left and upper-right +//! corners. +//! +//! All Monge matrices are totally monotone, so it is enough to +//! establish that the Monge property holds in order to use a matrix +//! with the functions in this crate. If your program is dealing with +//! unknown inputs, it can use [`monge::is_monge`] to verify that a +//! matrix is a Monge matrix. + +#![doc(html_root_url = "https://docs.rs/smawk/0.3.1")] + +#[cfg(feature = "ndarray")] +pub mod brute_force; +pub mod monge; +#[cfg(feature = "ndarray")] +pub mod recursive; + +/// Minimal matrix trait for two-dimensional arrays. +/// +/// This provides the functionality needed to represent a read-only +/// numeric matrix. You can query the size of the matrix and access +/// elements. Modeled after [`ndarray::Array2`] from the [ndarray +/// crate](https://crates.io/crates/ndarray). +/// +/// Enable the `ndarray` Cargo feature if you want to use it with +/// `ndarray::Array2`. +pub trait Matrix { + /// Return the number of rows. + fn nrows(&self) -> usize; + /// Return the number of columns. + fn ncols(&self) -> usize; + /// Return a matrix element. + fn index(&self, row: usize, column: usize) -> T; +} + +/// Simple and inefficient matrix representation used for doctest +/// examples and simple unit tests. +/// +/// You should prefer implementing it yourself, or you can enable the +/// `ndarray` Cargo feature and use the provided implementation for +/// [`ndarray::Array2`]. +impl Matrix for Vec> { + fn nrows(&self) -> usize { + self.len() + } + fn ncols(&self) -> usize { + self[0].len() + } + fn index(&self, row: usize, column: usize) -> T { + self[row][column] + } +} + +/// Adapting [`ndarray::Array2`] to the `Matrix` trait. +/// +/// **Note: this implementation is only available if you enable the +/// `ndarray` Cargo feature.** +#[cfg(feature = "ndarray")] +impl Matrix for ndarray::Array2 { + #[inline] + fn nrows(&self) -> usize { + self.nrows() + } + #[inline] + fn ncols(&self) -> usize { + self.ncols() + } + #[inline] + fn index(&self, row: usize, column: usize) -> T { + self[[row, column]] + } +} + +/// Compute row minima in O(*m* + *n*) time. +/// +/// This implements the SMAWK algorithm for finding row minima in a +/// totally monotone matrix. +/// +/// The SMAWK algorithm is from Agarwal, Klawe, Moran, Shor, and +/// Wilbur, *Geometric applications of a matrix searching algorithm*, +/// Algorithmica 2, pp. 195-208 (1987) and the code here is a +/// translation [David Eppstein's Python code][pads]. +/// +/// [pads]: https://github.com/jfinkels/PADS/blob/master/pads/smawk.py +/// +/// Running time on an *m* ✕ *n* matrix: O(*m* + *n*). +/// +/// # Panics +/// +/// It is an error to call this on a matrix with zero columns. +pub fn smawk_row_minima>(matrix: &M) -> Vec { + // Benchmarking shows that SMAWK performs roughly the same on row- + // and column-major matrices. + let mut minima = vec![0; matrix.nrows()]; + smawk_inner( + &|j, i| matrix.index(i, j), + &(0..matrix.ncols()).collect::>(), + &(0..matrix.nrows()).collect::>(), + &mut minima, + ); + minima +} + +/// Compute column minima in O(*m* + *n*) time. +/// +/// This implements the SMAWK algorithm for finding column minima in a +/// totally monotone matrix. +/// +/// The SMAWK algorithm is from Agarwal, Klawe, Moran, Shor, and +/// Wilbur, *Geometric applications of a matrix searching algorithm*, +/// Algorithmica 2, pp. 195-208 (1987) and the code here is a +/// translation [David Eppstein's Python code][pads]. +/// +/// [pads]: https://github.com/jfinkels/PADS/blob/master/pads/smawk.py +/// +/// Running time on an *m* ✕ *n* matrix: O(*m* + *n*). +/// +/// # Panics +/// +/// It is an error to call this on a matrix with zero rows. +pub fn smawk_column_minima>(matrix: &M) -> Vec { + let mut minima = vec![0; matrix.ncols()]; + smawk_inner( + &|i, j| matrix.index(i, j), + &(0..matrix.nrows()).collect::>(), + &(0..matrix.ncols()).collect::>(), + &mut minima, + ); + minima +} + +/// Compute column minima in the given area of the matrix. The +/// `minima` slice is updated inplace. +fn smawk_inner T>( + matrix: &M, + rows: &[usize], + cols: &[usize], + mut minima: &mut [usize], +) { + if cols.is_empty() { + return; + } + + let mut stack = Vec::with_capacity(cols.len()); + for r in rows { + // TODO: use stack.last() instead of stack.is_empty() etc + while !stack.is_empty() + && matrix(stack[stack.len() - 1], cols[stack.len() - 1]) + > matrix(*r, cols[stack.len() - 1]) + { + stack.pop(); + } + if stack.len() != cols.len() { + stack.push(*r); + } + } + let rows = &stack; + + let mut odd_cols = Vec::with_capacity(1 + cols.len() / 2); + for (idx, c) in cols.iter().enumerate() { + if idx % 2 == 1 { + odd_cols.push(*c); + } + } + + smawk_inner(matrix, rows, &odd_cols, &mut minima); + + let mut r = 0; + for (c, &col) in cols.iter().enumerate().filter(|(c, _)| c % 2 == 0) { + let mut row = rows[r]; + let last_row = if c == cols.len() - 1 { + rows[rows.len() - 1] + } else { + minima[cols[c + 1]] + }; + let mut pair = (matrix(row, col), row); + while row != last_row { + r += 1; + row = rows[r]; + if (matrix(row, col), row) < pair { + pair = (matrix(row, col), row); + } + } + minima[col] = pair.1; + } +} + +/// Compute upper-right column minima in O(*m* + *n*) time. +/// +/// The input matrix must be totally monotone. +/// +/// The function returns a vector of `(usize, T)`. The `usize` in the +/// tuple at index `j` tells you the row of the minimum value in +/// column `j` and the `T` value is minimum value itself. +/// +/// The algorithm only considers values above the main diagonal, which +/// means that it computes values `v(j)` where: +/// +/// ```text +/// v(0) = initial +/// v(j) = min { M[i, j] | i < j } for j > 0 +/// ``` +/// +/// If we let `r(j)` denote the row index of the minimum value in +/// column `j`, the tuples in the result vector become `(r(j), M[r(j), +/// j])`. +/// +/// The algorithm is an *online* algorithm, in the sense that `matrix` +/// function can refer back to previously computed column minima when +/// determining an entry in the matrix. The guarantee is that we only +/// call `matrix(i, j)` after having computed `v(i)`. This is +/// reflected in the `&[(usize, T)]` argument to `matrix`, which grows +/// as more and more values are computed. +pub fn online_column_minima T>( + initial: T, + size: usize, + matrix: M, +) -> Vec<(usize, T)> { + let mut result = vec![(0, initial)]; + + // State used by the algorithm. + let mut finished = 0; + let mut base = 0; + let mut tentative = 0; + + // Shorthand for evaluating the matrix. We need a macro here since + // we don't want to borrow the result vector. + macro_rules! m { + ($i:expr, $j:expr) => {{ + assert!($i < $j, "(i, j) not above diagonal: ({}, {})", $i, $j); + assert!( + $i < size && $j < size, + "(i, j) out of bounds: ({}, {}), size: {}", + $i, + $j, + size + ); + matrix(&result[..finished + 1], $i, $j) + }}; + } + + // Keep going until we have finished all size columns. Since the + // columns are zero-indexed, we're done when finished == size - 1. + while finished < size - 1 { + // First case: we have already advanced past the previous + // tentative value. We make a new tentative value by applying + // smawk_inner to the largest square submatrix that fits under + // the base. + let i = finished + 1; + if i > tentative { + let rows = (base..finished + 1).collect::>(); + tentative = std::cmp::min(finished + rows.len(), size - 1); + let cols = (finished + 1..tentative + 1).collect::>(); + let mut minima = vec![0; tentative + 1]; + smawk_inner(&|i, j| m![i, j], &rows, &cols, &mut minima); + for col in cols { + let row = minima[col]; + let v = m![row, col]; + if col >= result.len() { + result.push((row, v)); + } else if v < result[col].1 { + result[col] = (row, v); + } + } + finished = i; + continue; + } + + // Second case: the new column minimum is on the diagonal. All + // subsequent ones will be at least as low, so we can clear + // out all our work from higher rows. As in the fourth case, + // the loss of tentative is amortized against the increase in + // base. + let diag = m![i - 1, i]; + if diag < result[i].1 { + result[i] = (i - 1, diag); + base = i - 1; + tentative = i; + finished = i; + continue; + } + + // Third case: row i-1 does not supply a column minimum in any + // column up to tentative. We simply advance finished while + // maintaining the invariant. + if m![i - 1, tentative] >= result[tentative].1 { + finished = i; + continue; + } + + // Fourth and final case: a new column minimum at tentative. + // This allows us to make progress by incorporating rows prior + // to finished into the base. The base invariant holds because + // these rows cannot supply any later column minima. The work + // done when we last advanced tentative (and undone by this + // step) can be amortized against the increase in base. + base = i - 1; + tentative = i; + finished = i; + } + + result +} + +#[cfg(test)] +mod tests { + use super::*; + + #[test] + fn smawk_1x1() { + let matrix = vec![vec![2]]; + assert_eq!(smawk_row_minima(&matrix), vec![0]); + assert_eq!(smawk_column_minima(&matrix), vec![0]); + } + + #[test] + fn smawk_2x1() { + let matrix = vec![ + vec![3], // + vec![2], + ]; + assert_eq!(smawk_row_minima(&matrix), vec![0, 0]); + assert_eq!(smawk_column_minima(&matrix), vec![1]); + } + + #[test] + fn smawk_1x2() { + let matrix = vec![vec![2, 1]]; + assert_eq!(smawk_row_minima(&matrix), vec![1]); + assert_eq!(smawk_column_minima(&matrix), vec![0, 0]); + } + + #[test] + fn smawk_2x2() { + let matrix = vec![ + vec![3, 2], // + vec![2, 1], + ]; + assert_eq!(smawk_row_minima(&matrix), vec![1, 1]); + assert_eq!(smawk_column_minima(&matrix), vec![1, 1]); + } + + #[test] + fn smawk_3x3() { + let matrix = vec![ + vec![3, 4, 4], // + vec![3, 4, 4], + vec![2, 3, 3], + ]; + assert_eq!(smawk_row_minima(&matrix), vec![0, 0, 0]); + assert_eq!(smawk_column_minima(&matrix), vec![2, 2, 2]); + } + + #[test] + fn smawk_4x4() { + let matrix = vec![ + vec![4, 5, 5, 5], // + vec![2, 3, 3, 3], + vec![2, 3, 3, 3], + vec![2, 2, 2, 2], + ]; + assert_eq!(smawk_row_minima(&matrix), vec![0, 0, 0, 0]); + assert_eq!(smawk_column_minima(&matrix), vec![1, 3, 3, 3]); + } + + #[test] + fn smawk_5x5() { + let matrix = vec![ + vec![3, 2, 4, 5, 6], + vec![2, 1, 3, 3, 4], + vec![2, 1, 3, 3, 4], + vec![3, 2, 4, 3, 4], + vec![4, 3, 2, 1, 1], + ]; + assert_eq!(smawk_row_minima(&matrix), vec![1, 1, 1, 1, 3]); + assert_eq!(smawk_column_minima(&matrix), vec![1, 1, 4, 4, 4]); + } + + #[test] + fn online_1x1() { + let matrix = vec![vec![0]]; + let minima = vec![(0, 0)]; + assert_eq!(online_column_minima(0, 1, |_, i, j| matrix[i][j]), minima); + } + + #[test] + fn online_2x2() { + let matrix = vec![ + vec![0, 2], // + vec![0, 0], + ]; + let minima = vec![(0, 0), (0, 2)]; + assert_eq!(online_column_minima(0, 2, |_, i, j| matrix[i][j]), minima); + } + + #[test] + fn online_3x3() { + let matrix = vec![ + vec![0, 4, 4], // + vec![0, 0, 4], + vec![0, 0, 0], + ]; + let minima = vec![(0, 0), (0, 4), (0, 4)]; + assert_eq!(online_column_minima(0, 3, |_, i, j| matrix[i][j]), minima); + } + + #[test] + fn online_4x4() { + let matrix = vec![ + vec![0, 5, 5, 5], // + vec![0, 0, 3, 3], + vec![0, 0, 0, 3], + vec![0, 0, 0, 0], + ]; + let minima = vec![(0, 0), (0, 5), (1, 3), (1, 3)]; + assert_eq!(online_column_minima(0, 4, |_, i, j| matrix[i][j]), minima); + } + + #[test] + fn online_5x5() { + let matrix = vec![ + vec![0, 2, 4, 6, 7], + vec![0, 0, 3, 4, 5], + vec![0, 0, 0, 3, 4], + vec![0, 0, 0, 0, 4], + vec![0, 0, 0, 0, 0], + ]; + let minima = vec![(0, 0), (0, 2), (1, 3), (2, 3), (2, 4)]; + assert_eq!(online_column_minima(0, 5, |_, i, j| matrix[i][j]), minima); + } + + #[test] + fn smawk_works_with_partial_ord() { + let matrix = vec![ + vec![3.0, 2.0], // + vec![2.0, 1.0], + ]; + assert_eq!(smawk_row_minima(&matrix), vec![1, 1]); + assert_eq!(smawk_column_minima(&matrix), vec![1, 1]); + } + + #[test] + fn online_works_with_partial_ord() { + let matrix = vec![ + vec![0.0, 2.0], // + vec![0.0, 0.0], + ]; + let minima = vec![(0, 0.0), (0, 2.0)]; + assert_eq!(online_column_minima(0.0, 2, |_, i:usize, j:usize| matrix[i][j]), minima); + } + +} diff --git a/src/monge.rs b/src/monge.rs new file mode 100644 index 0000000..7614a6d --- /dev/null +++ b/src/monge.rs @@ -0,0 +1,121 @@ +//! Functions for generating and checking Monge arrays. +//! +//! The functions here are mostly meant to be used for testing +//! correctness of the SMAWK implementation. + +use crate::Matrix; +use std::num::Wrapping; +use std::ops::Add; + +/// Verify that a matrix is a Monge matrix. +/// +/// A [Monge matrix] \(or array) is a matrix where the following +/// inequality holds: +/// +/// ```text +/// M[i, j] + M[i', j'] <= M[i, j'] + M[i', j] for all i < i', j < j' +/// ``` +/// +/// The inequality says that the sum of the main diagonal is less than +/// the sum of the antidiagonal. Checking this condition is done by +/// checking *n* ✕ *m* submatrices, so the running time is O(*mn*). +/// +/// [Monge matrix]: https://en.wikipedia.org/wiki/Monge_array +pub fn is_monge>(matrix: &M) -> bool +where + Wrapping: Add>, +{ + /// Returns `Ok(a + b)` if the computation can be done without + /// overflow, otherwise `Err(a + b - T::MAX - 1)` is returned. + fn checked_add(a: Wrapping, b: Wrapping) -> Result + where + Wrapping: Add>, + { + let sum = a + b; + if sum < a { + Err(sum.0) + } else { + Ok(sum.0) + } + } + + (0..matrix.nrows() - 1) + .flat_map(|row| (0..matrix.ncols() - 1).map(move |col| (row, col))) + .all(|(row, col)| { + let top_left = Wrapping(matrix.index(row, col)); + let top_right = Wrapping(matrix.index(row, col + 1)); + let bot_left = Wrapping(matrix.index(row + 1, col)); + let bot_right = Wrapping(matrix.index(row + 1, col + 1)); + + match ( + checked_add(top_left, bot_right), + checked_add(bot_left, top_right), + ) { + (Ok(a), Ok(b)) => a <= b, // No overflow. + (Err(a), Err(b)) => a <= b, // Double overflow. + (Ok(_), Err(_)) => true, // Antidiagonal overflow. + (Err(_), Ok(_)) => false, // Main diagonal overflow. + } + }) +} + +#[cfg(test)] +mod tests { + use super::*; + + #[test] + fn is_monge_handles_overflow() { + // The x + y <= z + w computations will overflow for an u8 + // matrix unless is_monge is careful. + let matrix: Vec> = vec![ + vec![200, 200, 200, 200], + vec![200, 200, 200, 200], + vec![200, 200, 200, 200], + ]; + assert!(is_monge(&matrix)); + } + + #[test] + fn monge_constant_rows() { + let matrix = vec![ + vec![42, 42, 42, 42], + vec![0, 0, 0, 0], + vec![100, 100, 100, 100], + vec![1000, 1000, 1000, 1000], + ]; + assert!(is_monge(&matrix)); + } + + #[test] + fn monge_constant_cols() { + let matrix = vec![ + vec![42, 0, 100, 1000], + vec![42, 0, 100, 1000], + vec![42, 0, 100, 1000], + vec![42, 0, 100, 1000], + ]; + assert!(is_monge(&matrix)); + } + + #[test] + fn monge_upper_right() { + let matrix = vec![ + vec![10, 10, 42, 42, 42], + vec![10, 10, 42, 42, 42], + vec![10, 10, 10, 10, 10], + vec![10, 10, 10, 10, 10], + ]; + assert!(is_monge(&matrix)); + } + + #[test] + fn monge_lower_left() { + let matrix = vec![ + vec![10, 10, 10, 10, 10], + vec![10, 10, 10, 10, 10], + vec![42, 42, 42, 10, 10], + vec![42, 42, 42, 10, 10], + ]; + assert!(is_monge(&matrix)); + } +} diff --git a/src/recursive.rs b/src/recursive.rs new file mode 100644 index 0000000..e7f769b --- /dev/null +++ b/src/recursive.rs @@ -0,0 +1,161 @@ +//! Recursive algorithm for finding column minima. +//! +//! The functions here are mostly meant to be used for testing +//! correctness of the SMAWK implementation. +//! +//! **Note: this module is only available if you enable the `ndarray` +//! Cargo feature.** + +use ndarray::{s, Array2, ArrayView2, Axis}; + +/// Compute row minima in O(*m* + *n* log *m*) time. +/// +/// # Panics +/// +/// It is an error to call this on a matrix with zero columns. +pub fn row_minima(matrix: &Array2) -> Vec { + let mut minima = vec![0; matrix.nrows()]; + recursive_inner(matrix.view(), &|| Direction::Row, 0, &mut minima); + minima +} + +/// Compute column minima in O(*n* + *m* log *n*) time. +/// +/// # Panics +/// +/// It is an error to call this on a matrix with zero rows. +pub fn column_minima(matrix: &Array2) -> Vec { + let mut minima = vec![0; matrix.ncols()]; + recursive_inner(matrix.view(), &|| Direction::Column, 0, &mut minima); + minima +} + +/// The type of minima (row or column) we compute. +enum Direction { + Row, + Column, +} + +/// Compute the minima along the given direction (`Direction::Row` for +/// row minima and `Direction::Column` for column minima). +/// +/// The direction is given as a generic function argument to allow +/// monomorphization to kick in. The function calls will be inlined +/// and optimized away and the result is that the compiler generates +/// differnet code for finding row and column minima. +fn recursive_inner Direction>( + matrix: ArrayView2<'_, T>, + dir: &F, + offset: usize, + minima: &mut [usize], +) { + if matrix.is_empty() { + return; + } + + let axis = match dir() { + Direction::Row => Axis(0), + Direction::Column => Axis(1), + }; + let mid = matrix.len_of(axis) / 2; + let min_idx = crate::brute_force::lane_minimum(matrix.index_axis(axis, mid)); + minima[mid] = offset + min_idx; + + if mid == 0 { + return; // Matrix has a single row or column, so we're done. + } + + let top_left = match dir() { + Direction::Row => matrix.slice(s![..mid, ..(min_idx + 1)]), + Direction::Column => matrix.slice(s![..(min_idx + 1), ..mid]), + }; + let bot_right = match dir() { + Direction::Row => matrix.slice(s![(mid + 1).., min_idx..]), + Direction::Column => matrix.slice(s![min_idx.., (mid + 1)..]), + }; + recursive_inner(top_left, dir, offset, &mut minima[..mid]); + recursive_inner(bot_right, dir, offset + min_idx, &mut minima[mid + 1..]); +} + +#[cfg(test)] +mod tests { + use super::*; + use ndarray::arr2; + + #[test] + fn recursive_1x1() { + let matrix = arr2(&[[2]]); + let minima = vec![0]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn recursive_2x1() { + let matrix = arr2(&[ + [3], // + [2], + ]); + let minima = vec![0, 0]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn recursive_1x2() { + let matrix = arr2(&[[2, 1]]); + let minima = vec![1]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn recursive_2x2() { + let matrix = arr2(&[ + [3, 2], // + [2, 1], + ]); + let minima = vec![1, 1]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn recursive_3x3() { + let matrix = arr2(&[ + [3, 4, 4], // + [3, 4, 4], + [2, 3, 3], + ]); + let minima = vec![0, 0, 0]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn recursive_4x4() { + let matrix = arr2(&[ + [4, 5, 5, 5], // + [2, 3, 3, 3], + [2, 3, 3, 3], + [2, 2, 2, 2], + ]); + let minima = vec![0, 0, 0, 0]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn recursive_5x5() { + let matrix = arr2(&[ + [3, 2, 4, 5, 6], + [2, 1, 3, 3, 4], + [2, 1, 3, 3, 4], + [3, 2, 4, 3, 4], + [4, 3, 2, 1, 1], + ]); + let minima = vec![1, 1, 1, 1, 3]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } +} diff --git a/tests/agreement.rs b/tests/agreement.rs new file mode 100644 index 0000000..1d710ee --- /dev/null +++ b/tests/agreement.rs @@ -0,0 +1,105 @@ +#![cfg(feature = "ndarray")] + +use ndarray::{s, Array2}; +use rand::SeedableRng; +use rand_chacha::ChaCha20Rng; +use smawk::{brute_force, recursive}; +use smawk::{online_column_minima, smawk_column_minima, smawk_row_minima}; + +mod random_monge; +use random_monge::random_monge_matrix; + +/// Check that the brute force, recursive, and SMAWK functions +/// give identical results on a large number of randomly generated +/// Monge matrices. +#[test] +fn column_minima_agree() { + let sizes = vec![1, 2, 3, 4, 5, 10, 15, 20, 30]; + let mut rng = ChaCha20Rng::seed_from_u64(0); + for _ in 0..4 { + for m in sizes.clone().iter() { + for n in sizes.clone().iter() { + let matrix: Array2 = random_monge_matrix(*m, *n, &mut rng); + + // Compute and test row minima. + let brute_force = brute_force::row_minima(&matrix); + let recursive = recursive::row_minima(&matrix); + let smawk = smawk_row_minima(&matrix); + assert_eq!( + brute_force, recursive, + "recursive and brute force differs on:\n{:?}", + matrix + ); + assert_eq!( + brute_force, smawk, + "SMAWK and brute force differs on:\n{:?}", + matrix + ); + + // Do the same for the column minima. + let brute_force = brute_force::column_minima(&matrix); + let recursive = recursive::column_minima(&matrix); + let smawk = smawk_column_minima(&matrix); + assert_eq!( + brute_force, recursive, + "recursive and brute force differs on:\n{:?}", + matrix + ); + assert_eq!( + brute_force, smawk, + "SMAWK and brute force differs on:\n{:?}", + matrix + ); + } + } + } +} + +/// Check that the brute force and online SMAWK functions give +/// identical results on a large number of randomly generated +/// Monge matrices. +#[test] +fn online_agree() { + let sizes = vec![1, 2, 3, 4, 5, 10, 15, 20, 30, 50]; + let mut rng = ChaCha20Rng::seed_from_u64(0); + for _ in 0..5 { + for &size in &sizes { + // Random totally monotone square matrix of the + // desired size. + let mut matrix: Array2 = random_monge_matrix(size, size, &mut rng); + + // Adjust matrix so the column minima are above the + // diagonal. The brute_force::column_minima will still + // work just fine on such a mangled Monge matrix. + let max = *matrix.iter().max().unwrap_or(&0); + for idx in 0..(size as isize) { + // Using the maximum value of the matrix instead + // of i32::max_value() makes for prettier matrices + // in case we want to print them. + matrix.slice_mut(s![idx..idx + 1, ..idx + 1]).fill(max); + } + + // The online algorithm always returns the initial + // value for the left-most column -- without + // inspecting the column at all. So we fill the + // left-most column with this value to have the brute + // force algorithm do the same. + let initial = 42; + matrix.slice_mut(s![0.., ..1]).fill(initial); + + // Brute-force computation of column minima, returned + // in the same form as online_column_minima. + let brute_force = brute_force::column_minima(&matrix) + .iter() + .enumerate() + .map(|(j, &i)| (i, matrix[[i, j]])) + .collect::>(); + let online = online_column_minima(initial, size, |_, i, j| matrix[[i, j]]); + assert_eq!( + brute_force, online, + "brute force and online differ on:\n{:3?}", + matrix + ); + } + } +} diff --git a/tests/complexity.rs b/tests/complexity.rs new file mode 100644 index 0000000..743fe57 --- /dev/null +++ b/tests/complexity.rs @@ -0,0 +1,83 @@ +#![cfg(feature = "ndarray")] + +use ndarray::{Array1, Array2}; +use rand::SeedableRng; +use rand_chacha::ChaCha20Rng; +use smawk::online_column_minima; + +mod random_monge; +use random_monge::random_monge_matrix; + +#[derive(Debug)] +struct LinRegression { + alpha: f64, + beta: f64, + r_squared: f64, +} + +/// Square an expression. Works equally well for floats and matrices. +macro_rules! squared { + ($x:expr) => { + $x * $x + }; +} + +/// Compute the mean of a 1-dimensional array. +macro_rules! mean { + ($a:expr) => { + $a.mean().expect("Mean of empty array") + }; +} + +/// Compute a simple linear regression from the list of values. +/// +/// See . +fn linear_regression(values: &[(usize, i32)]) -> LinRegression { + let xs = values.iter().map(|&(x, _)| x as f64).collect::>(); + let ys = values.iter().map(|&(_, y)| y as f64).collect::>(); + + let xs_mean = mean!(&xs); + let ys_mean = mean!(&ys); + let xs_ys_mean = mean!(&xs * &ys); + + let cov_xs_ys = ((&xs - xs_mean) * (&ys - ys_mean)).scalar_sum(); + let var_xs = squared!(&xs - xs_mean).scalar_sum(); + + let beta = cov_xs_ys / var_xs; + let alpha = ys_mean - beta * xs_mean; + let r_squared = squared!(xs_ys_mean - xs_mean * ys_mean) + / ((mean!(&xs * &xs) - squared!(xs_mean)) * (mean!(&ys * &ys) - squared!(ys_mean))); + + LinRegression { + alpha: alpha, + beta: beta, + r_squared: r_squared, + } +} + +/// Check that the number of matrix accesses in `online_column_minima` +/// grows as O(*n*) for *n* ✕ *n* matrix. +#[test] +fn online_linear_complexity() { + let mut rng = ChaCha20Rng::seed_from_u64(0); + let mut data = vec![]; + + for &size in &[1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100] { + let matrix: Array2 = random_monge_matrix(size, size, &mut rng); + let count = std::cell::RefCell::new(0); + online_column_minima(0, size, |_, i, j| { + *count.borrow_mut() += 1; + matrix[[i, j]] + }); + data.push((size, count.into_inner())); + } + + let lin_reg = linear_regression(&data); + assert!( + lin_reg.r_squared > 0.95, + "r² = {:.4} is lower than expected for a linear fit\nData points: {:?}\n{:?}", + lin_reg.r_squared, + data, + lin_reg + ); +} diff --git a/tests/monge.rs b/tests/monge.rs new file mode 100644 index 0000000..0d5a3d0 --- /dev/null +++ b/tests/monge.rs @@ -0,0 +1,83 @@ +#![cfg(feature = "ndarray")] + +use ndarray::{arr2, Array, Array2}; +use rand::SeedableRng; +use rand_chacha::ChaCha20Rng; +use smawk::monge::is_monge; + +mod random_monge; +use random_monge::{random_monge_matrix, MongePrim}; + +#[test] +fn random_monge() { + let mut rng = ChaCha20Rng::seed_from_u64(0); + let matrix: Array2 = random_monge_matrix(5, 5, &mut rng); + + assert!(is_monge(&matrix)); + assert_eq!( + matrix, + arr2(&[ + [2, 3, 4, 4, 5], + [5, 5, 6, 6, 7], + [3, 3, 4, 4, 5], + [5, 2, 3, 3, 4], + [5, 2, 3, 3, 4] + ]) + ); +} + +#[test] +fn monge_constant_rows() { + let mut rng = ChaCha20Rng::seed_from_u64(0); + let matrix: Array2 = MongePrim::ConstantRows.to_matrix(5, 4, &mut rng); + assert!(is_monge(&matrix)); + for row in matrix.genrows() { + let elem = row[0]; + assert_eq!(row, Array::from_elem(matrix.ncols(), elem)); + } +} + +#[test] +fn monge_constant_cols() { + let mut rng = ChaCha20Rng::seed_from_u64(0); + let matrix: Array2 = MongePrim::ConstantCols.to_matrix(5, 4, &mut rng); + assert!(is_monge(&matrix)); + for column in matrix.gencolumns() { + let elem = column[0]; + assert_eq!(column, Array::from_elem(matrix.nrows(), elem)); + } +} + +#[test] +fn monge_upper_right_ones() { + let mut rng = ChaCha20Rng::seed_from_u64(1); + let matrix: Array2 = MongePrim::UpperRightOnes.to_matrix(5, 4, &mut rng); + assert!(is_monge(&matrix)); + assert_eq!( + matrix, + arr2(&[ + [0, 0, 1, 1], + [0, 0, 1, 1], + [0, 0, 1, 1], + [0, 0, 0, 0], + [0, 0, 0, 0] + ]) + ); +} + +#[test] +fn monge_lower_left_ones() { + let mut rng = ChaCha20Rng::seed_from_u64(1); + let matrix: Array2 = MongePrim::LowerLeftOnes.to_matrix(5, 4, &mut rng); + assert!(is_monge(&matrix)); + assert_eq!( + matrix, + arr2(&[ + [0, 0, 0, 0], + [0, 0, 0, 0], + [1, 1, 0, 0], + [1, 1, 0, 0], + [1, 1, 0, 0] + ]) + ); +} diff --git a/tests/random_monge/mod.rs b/tests/random_monge/mod.rs new file mode 100644 index 0000000..a913dee --- /dev/null +++ b/tests/random_monge/mod.rs @@ -0,0 +1,83 @@ +//! Test functionality for generating random Monge matrices. + +// The code is put here so we can reuse it in different integration +// tests, without Cargo finding it when `cargo test` is run. See the +// section on "Submodules in Integration Tests" in +// https://doc.rust-lang.org/book/ch11-03-test-organization.html + +use ndarray::{s, Array2}; +use num_traits::PrimInt; +use rand::distributions::{Distribution, Standard}; +use rand::Rng; + +/// A Monge matrix can be decomposed into one of these primitive +/// building blocks. +#[derive(Copy, Clone)] +pub enum MongePrim { + ConstantRows, + ConstantCols, + UpperRightOnes, + LowerLeftOnes, +} + +impl MongePrim { + /// Generate a Monge matrix from a primitive. + pub fn to_matrix(&self, m: usize, n: usize, rng: &mut R) -> Array2 + where + Standard: Distribution, + { + let mut matrix = Array2::from_elem((m, n), T::zero()); + // Avoid panic in UpperRightOnes and LowerLeftOnes below. + if m == 0 || n == 0 { + return matrix; + } + + match *self { + MongePrim::ConstantRows => { + for mut row in matrix.genrows_mut() { + if rng.gen::() { + row.fill(T::one()) + } + } + } + MongePrim::ConstantCols => { + for mut col in matrix.gencolumns_mut() { + if rng.gen::() { + col.fill(T::one()) + } + } + } + MongePrim::UpperRightOnes => { + let i = rng.gen_range(0..(m + 1) as isize); + let j = rng.gen_range(0..(n + 1) as isize); + matrix.slice_mut(s![..i, -j..]).fill(T::one()); + } + MongePrim::LowerLeftOnes => { + let i = rng.gen_range(0..(m + 1) as isize); + let j = rng.gen_range(0..(n + 1) as isize); + matrix.slice_mut(s![-i.., ..j]).fill(T::one()); + } + } + + matrix + } +} + +/// Generate a random Monge matrix. +pub fn random_monge_matrix(m: usize, n: usize, rng: &mut R) -> Array2 +where + Standard: Distribution, +{ + let monge_primitives = [ + MongePrim::ConstantRows, + MongePrim::ConstantCols, + MongePrim::LowerLeftOnes, + MongePrim::UpperRightOnes, + ]; + let mut matrix = Array2::from_elem((m, n), T::zero()); + for _ in 0..(m + n) { + let monge = monge_primitives[rng.gen_range(0..monge_primitives.len())]; + matrix = matrix + monge.to_matrix(m, n, rng); + } + matrix +} diff --git a/tests/version-numbers.rs b/tests/version-numbers.rs new file mode 100644 index 0000000..288592d --- /dev/null +++ b/tests/version-numbers.rs @@ -0,0 +1,9 @@ +#[test] +fn test_readme_deps() { + version_sync::assert_markdown_deps_updated!("README.md"); +} + +#[test] +fn test_html_root_url() { + version_sync::assert_html_root_url_updated!("src/lib.rs"); +}