From: Mauro Carvalho Chehab Date: Mon, 2 Mar 2020 08:16:11 +0000 (+0100) Subject: scsi: docs: convert sym53c8xx_2.txt to ReST X-Git-Tag: v5.15~4079^2~98 X-Git-Url: http://review.tizen.org/git/?a=commitdiff_plain;h=f02e84d29e1d0ca512ae48e6599641038380ea16;p=platform%2Fkernel%2Flinux-starfive.git scsi: docs: convert sym53c8xx_2.txt to ReST Link: https://lore.kernel.org/r/08202c87294d61d147ec4ac784219d20805cdeb5.1583136624.git.mchehab+huawei@kernel.org Signed-off-by: Mauro Carvalho Chehab Signed-off-by: Martin K. Petersen --- diff --git a/Documentation/scsi/index.rst b/Documentation/scsi/index.rst index 00584fb..238dd0a 100644 --- a/Documentation/scsi/index.rst +++ b/Documentation/scsi/index.rst @@ -42,5 +42,6 @@ Linux SCSI Subsystem smartpqi st sym53c500_cs + sym53c8xx_2 scsi_transport_srp/figures diff --git a/Documentation/scsi/sym53c8xx_2.txt b/Documentation/scsi/sym53c8xx_2.rst similarity index 53% rename from Documentation/scsi/sym53c8xx_2.txt rename to Documentation/scsi/sym53c8xx_2.rst index d281865..8de44a7 100644 --- a/Documentation/scsi/sym53c8xx_2.txt +++ b/Documentation/scsi/sym53c8xx_2.rst @@ -1,99 +1,111 @@ +.. SPDX-License-Identifier: GPL-2.0 + +========================================= The Linux SYM-2 driver documentation file +========================================= Written by Gerard Roudier + 21 Rue Carnot + 95170 DEUIL LA BARRE - FRANCE Updated by Matthew Wilcox 2004-10-09 -=============================================================================== - -1. Introduction -2. Supported chips and SCSI features -3. Advantages of this driver for newer chips. - 3.1 Optimized SCSI SCRIPTS - 3.2 New features appeared with the SYM53C896 -4. Memory mapped I/O versus normal I/O -5. Tagged command queueing -6. Parity checking -7. Profiling information -8. Control commands - 8.1 Set minimum synchronous period - 8.2 Set wide size - 8.3 Set maximum number of concurrent tagged commands - 8.4 Set debug mode - 8.5 Set flag (no_disc) - 8.6 Set verbose level - 8.7 Reset all logical units of a target - 8.8 Abort all tasks of all logical units of a target -9. Configuration parameters -10. Boot setup commands - 10.1 Syntax - 10.2 Available arguments - 10.2.1 Default number of tagged commands - 10.2.2 Burst max - 10.2.3 LED support - 10.2.4 Differential mode - 10.2.5 IRQ mode - 10.2.6 Check SCSI BUS - 10.2.7 Suggest a default SCSI id for hosts - 10.2.8 Verbosity level - 10.2.9 Debug mode - 10.2.10 Settle delay - 10.2.11 Serial NVRAM - 10.2.12 Exclude a host from being attached - 10.3 Converting from old options - 10.4 SCSI BUS checking boot option -11. SCSI problem troubleshooting - 15.1 Problem tracking - 15.2 Understanding hardware error reports -12. Serial NVRAM support (by Richard Waltham) - 17.1 Features - 17.2 Symbios NVRAM layout - 17.3 Tekram NVRAM layout - -=============================================================================== + +.. Contents + + 1. Introduction + 2. Supported chips and SCSI features + 3. Advantages of this driver for newer chips. + 3.1 Optimized SCSI SCRIPTS + 3.2 New features appeared with the SYM53C896 + 4. Memory mapped I/O versus normal I/O + 5. Tagged command queueing + 6. Parity checking + 7. Profiling information + 8. Control commands + 8.1 Set minimum synchronous period + 8.2 Set wide size + 8.3 Set maximum number of concurrent tagged commands + 8.4 Set debug mode + 8.5 Set flag (no_disc) + 8.6 Set verbose level + 8.7 Reset all logical units of a target + 8.8 Abort all tasks of all logical units of a target + 9. Configuration parameters + 10. Boot setup commands + 10.1 Syntax + 10.2 Available arguments + 10.2.1 Default number of tagged commands + 10.2.2 Burst max + 10.2.3 LED support + 10.2.4 Differential mode + 10.2.5 IRQ mode + 10.2.6 Check SCSI BUS + 10.2.7 Suggest a default SCSI id for hosts + 10.2.8 Verbosity level + 10.2.9 Debug mode + 10.2.10 Settle delay + 10.2.11 Serial NVRAM + 10.2.12 Exclude a host from being attached + 10.3 Converting from old options + 10.4 SCSI BUS checking boot option + 11. SCSI problem troubleshooting + 15.1 Problem tracking + 15.2 Understanding hardware error reports + 12. Serial NVRAM support (by Richard Waltham) + 17.1 Features + 17.2 Symbios NVRAM layout + 17.3 Tekram NVRAM layout + 1. Introduction +=============== This driver supports the whole SYM53C8XX family of PCI-SCSI controllers. -It also support the subset of LSI53C10XX PCI-SCSI controllers that are based +It also support the subset of LSI53C10XX PCI-SCSI controllers that are based on the SYM53C8XX SCRIPTS language. -It replaces the sym53c8xx+ncr53c8xx driver bundle and shares its core code -with the FreeBSD SYM-2 driver. The `glue' that allows this driver to work +It replaces the sym53c8xx+ncr53c8xx driver bundle and shares its core code +with the FreeBSD SYM-2 driver. The 'glue' that allows this driver to work under Linux is contained in 2 files named sym_glue.h and sym_glue.c. -Other drivers files are intended not to depend on the Operating System +Other drivers files are intended not to depend on the Operating System on which the driver is used. The history of this driver can be summarized as follows: 1993: ncr driver written for 386bsd and FreeBSD by: - Wolfgang Stanglmeier - Stefan Esser + + - Wolfgang Stanglmeier + - Stefan Esser 1996: port of the ncr driver to Linux-1.2.13 and rename it ncr53c8xx. - Gerard Roudier -1998: new sym53c8xx driver for Linux based on LOAD/STORE instruction and that + - Gerard Roudier + +1998: new sym53c8xx driver for Linux based on LOAD/STORE instruction and that adds full support for the 896 but drops support for early NCR devices. - Gerard Roudier -1999: port of the sym53c8xx driver to FreeBSD and support for the LSI53C1010 - 33 MHz and 66MHz Ultra-3 controllers. The new driver is named `sym'. - Gerard Roudier + - Gerard Roudier -2000: Add support for early NCR devices to FreeBSD `sym' driver. - Break the driver into several sources and separate the OS glue +1999: port of the sym53c8xx driver to FreeBSD and support for the LSI53C1010 + 33 MHz and 66MHz Ultra-3 controllers. The new driver is named 'sym'. + + - Gerard Roudier + +2000: Add support for early NCR devices to FreeBSD 'sym' driver. + Break the driver into several sources and separate the OS glue code from the core code that can be shared among different O/Ses. Write a glue code for Linux. - Gerard Roudier + + - Gerard Roudier 2004: Remove FreeBSD compatibility code. Remove support for versions of Linux before 2.6. Start using Linux facilities. -This README file addresses the Linux version of the driver. Under FreeBSD, +This README file addresses the Linux version of the driver. Under FreeBSD, the driver documentation is the sym.8 man page. Information about new chips is available at LSILOGIC web server: @@ -104,113 +116,145 @@ SCSI standard documentations are available at T10 site: http://www.t10.org/ -Useful SCSI tools written by Eric Youngdale are part of most Linux +Useful SCSI tools written by Eric Youngdale are part of most Linux distributions: - scsiinfo: command line tool - scsi-config: TCL/Tk tool using scsiinfo + + ============ ========================== + scsiinfo command line tool + scsi-config TCL/Tk tool using scsiinfo + ============ ========================== 2. Supported chips and SCSI features +==================================== The following features are supported for all chips: - Synchronous negotiation - Disconnection - Tagged command queuing - SCSI parity checking - PCI Master parity checking + - Synchronous negotiation + - Disconnection + - Tagged command queuing + - SCSI parity checking + - PCI Master parity checking Other features depends on chip capabilities. -The driver notably uses optimized SCRIPTS for devices that support -LOAD/STORE and handles PHASE MISMATCH from SCRIPTS for devices that + +The driver notably uses optimized SCRIPTS for devices that support +LOAD/STORE and handles PHASE MISMATCH from SCRIPTS for devices that support the corresponding feature. The following table shows some characteristics of the chip family. - On board LOAD/STORE HARDWARE -Chip SDMS BIOS Wide SCSI std. Max. sync SCRIPTS PHASE MISMATCH ----- --------- ---- --------- ---------- ---------- -------------- -810 N N FAST10 10 MB/s N N -810A N N FAST10 10 MB/s Y N -815 Y N FAST10 10 MB/s N N -825 Y Y FAST10 20 MB/s N N -825A Y Y FAST10 20 MB/s Y N -860 N N FAST20 20 MB/s Y N -875 Y Y FAST20 40 MB/s Y N -875A Y Y FAST20 40 MB/s Y Y -876 Y Y FAST20 40 MB/s Y N -895 Y Y FAST40 80 MB/s Y N -895A Y Y FAST40 80 MB/s Y Y -896 Y Y FAST40 80 MB/s Y Y -897 Y Y FAST40 80 MB/s Y Y -1510D Y Y FAST40 80 MB/s Y Y -1010 Y Y FAST80 160 MB/s Y Y -1010_66* Y Y FAST80 160 MB/s Y Y - -* Chip supports 33MHz and 66MHz PCI bus clock. ++--------+-----------+-----+-----------+------------+------------+---------+ +| | | | | |Load/store |Hardware | +| |On board | | | |scripts |phase | +|Chip |SDMS BIOS |Wide |SCSI std. | Max. sync | |mismatch | ++--------+-----------+-----+-----------+------------+------------+---------+ +|810 | N | N | FAST10 | 10 MB/s | N | N | ++--------+-----------+-----+-----------+------------+------------+---------+ +|810A | N | N | FAST10 | 10 MB/s | Y | N | ++--------+-----------+-----+-----------+------------+------------+---------+ +|815 | Y | N | FAST10 | 10 MB/s | N | N | ++--------+-----------+-----+-----------+------------+------------+---------+ +|825 | Y | Y | FAST10 | 20 MB/s | N | N | ++--------+-----------+-----+-----------+------------+------------+---------+ +|825A | Y | Y | FAST10 | 20 MB/s | Y | N | ++--------+-----------+-----+-----------+------------+------------+---------+ +|860 | N | N | FAST20 | 20 MB/s | Y | N | ++--------+-----------+-----+-----------+------------+------------+---------+ +|875 | Y | Y | FAST20 | 40 MB/s | Y | N | ++--------+-----------+-----+-----------+------------+------------+---------+ +|875A | Y | Y | FAST20 | 40 MB/s | Y | Y | ++--------+-----------+-----+-----------+------------+------------+---------+ +|876 | Y | Y | FAST20 | 40 MB/s | Y | N | ++--------+-----------+-----+-----------+------------+------------+---------+ +|895 | Y | Y | FAST40 | 80 MB/s | Y | N | ++--------+-----------+-----+-----------+------------+------------+---------+ +|895A | Y | Y | FAST40 | 80 MB/s | Y | Y | ++--------+-----------+-----+-----------+------------+------------+---------+ +|896 | Y | Y | FAST40 | 80 MB/s | Y | Y | ++--------+-----------+-----+-----------+------------+------------+---------+ +|897 | Y | Y | FAST40 | 80 MB/s | Y | Y | ++--------+-----------+-----+-----------+------------+------------+---------+ +|1510D | Y | Y | FAST40 | 80 MB/s | Y | Y | ++--------+-----------+-----+-----------+------------+------------+---------+ +|1010 | Y | Y | FAST80 |160 MB/s | Y | Y | ++--------+-----------+-----+-----------+------------+------------+---------+ +|1010_66 | Y | Y | FAST80 |160 MB/s | Y | Y | +|[1]_ | | | | | | | ++--------+-----------+-----+-----------+------------+------------+---------+ + +.. [1] Chip supports 33MHz and 66MHz PCI bus clock. Summary of other supported features: -Module: allow to load the driver -Memory mapped I/O: increases performance -Control commands: write operations to the proc SCSI file system -Debugging information: written to syslog (expert only) -Scatter / gather -Shared interrupt -Boot setup commands -Serial NVRAM: Symbios and Tekram formats +:Module: allow to load the driver +:Memory mapped I/O: increases performance +:Control commands: write operations to the proc SCSI file system +:Debugging information: written to syslog (expert only) +:Serial NVRAM: Symbios and Tekram formats + +- Scatter / gather +- Shared interrupt +- Boot setup commands 3. Advantages of this driver for newer chips. +============================================= -3.1 Optimized SCSI SCRIPTS. +3.1 Optimized SCSI SCRIPTS +-------------------------- -All chips except the 810, 815 and 825, support new SCSI SCRIPTS instructions -named LOAD and STORE that allow to move up to 1 DWORD from/to an IO register -to/from memory much faster that the MOVE MEMORY instruction that is supported +All chips except the 810, 815 and 825, support new SCSI SCRIPTS instructions +named LOAD and STORE that allow to move up to 1 DWORD from/to an IO register +to/from memory much faster that the MOVE MEMORY instruction that is supported by the 53c7xx and 53c8xx family. -The LOAD/STORE instructions support absolute and DSA relative addressing -modes. The SCSI SCRIPTS had been entirely rewritten using LOAD/STORE instead +The LOAD/STORE instructions support absolute and DSA relative addressing +modes. The SCSI SCRIPTS had been entirely rewritten using LOAD/STORE instead of MOVE MEMORY instructions. -Due to the lack of LOAD/STORE SCRIPTS instructions by earlier chips, this -driver also incorporates a different SCRIPTS set based on MEMORY MOVE, in +Due to the lack of LOAD/STORE SCRIPTS instructions by earlier chips, this +driver also incorporates a different SCRIPTS set based on MEMORY MOVE, in order to provide support for the entire SYM53C8XX chips family. 3.2 New features appeared with the SYM53C896 +-------------------------------------------- -Newer chips (see above) allows handling of the phase mismatch context from -SCRIPTS (avoids the phase mismatch interrupt that stops the SCSI processor +Newer chips (see above) allows handling of the phase mismatch context from +SCRIPTS (avoids the phase mismatch interrupt that stops the SCSI processor until the C code has saved the context of the transfer). -The 896 and 1010 chips support 64 bit PCI transactions and addressing, +The 896 and 1010 chips support 64 bit PCI transactions and addressing, while the 895A supports 32 bit PCI transactions and 64 bit addressing. -The SCRIPTS processor of these chips is not true 64 bit, but uses segment -registers for bit 32-63. Another interesting feature is that LOAD/STORE +The SCRIPTS processor of these chips is not true 64 bit, but uses segment +registers for bit 32-63. Another interesting feature is that LOAD/STORE instructions that address the on-chip RAM (8k) remain internal to the chip. 4. Memory mapped I/O versus normal I/O +====================================== -Memory mapped I/O has less latency than normal I/O and is the recommended -way for doing IO with PCI devices. Memory mapped I/O seems to work fine on -most hardware configurations, but some poorly designed chipsets may break -this feature. A configuration option is provided for normal I/O to be +Memory mapped I/O has less latency than normal I/O and is the recommended +way for doing IO with PCI devices. Memory mapped I/O seems to work fine on +most hardware configurations, but some poorly designed chipsets may break +this feature. A configuration option is provided for normal I/O to be used but the driver defaults to MMIO. 5. Tagged command queueing +========================== -Queuing more than 1 command at a time to a device allows it to perform -optimizations based on actual head positions and its mechanical +Queuing more than 1 command at a time to a device allows it to perform +optimizations based on actual head positions and its mechanical characteristics. This feature may also reduce average command latency. -In order to really gain advantage of this feature, devices must have -a reasonable cache size (No miracle is to be expected for a low-end +In order to really gain advantage of this feature, devices must have +a reasonable cache size (No miracle is to be expected for a low-end hard disk with 128 KB or less). + Some known old SCSI devices do not properly support tagged command queuing. -Generally, firmware revisions that fix this kind of problems are available +Generally, firmware revisions that fix this kind of problems are available at respective vendor web/ftp sites. -All I can say is that I never have had problem with tagged queuing using -this driver and its predecessors. Hard disks that behaved correctly for + +All I can say is that I never have had problem with tagged queuing using +this driver and its predecessors. Hard disks that behaved correctly for me using tagged commands are the following: - IBM S12 0662 @@ -223,9 +267,9 @@ me using tagged commands are the following: - Quantum Atlas IV - Seagate Cheetah II -If your controller has NVRAM, you can configure this feature per target -from the user setup tool. The Tekram Setup program allows to tune the -maximum number of queued commands up to 32. The Symbios Setup only allows +If your controller has NVRAM, you can configure this feature per target +from the user setup tool. The Tekram Setup program allows to tune the +maximum number of queued commands up to 32. The Symbios Setup only allows to enable or disable this feature. The maximum number of simultaneous tagged commands queued to a device @@ -233,15 +277,15 @@ is currently set to 16 by default. This value is suitable for most SCSI disks. With large SCSI disks (>= 2GB, cache >= 512KB, average seek time <= 10 ms), using a larger value may give better performances. -This driver supports up to 255 commands per device, and but using more than -64 is generally not worth-while, unless you are using a very large disk or -disk arrays. It is noticeable that most of recent hard disks seem not to -accept more than 64 simultaneous commands. So, using more than 64 queued +This driver supports up to 255 commands per device, and but using more than +64 is generally not worth-while, unless you are using a very large disk or +disk arrays. It is noticeable that most of recent hard disks seem not to +accept more than 64 simultaneous commands. So, using more than 64 queued commands is probably just resource wasting. -If your controller does not have NVRAM or if it is managed by the SDMS -BIOS/SETUP, you can configure tagged queueing feature and device queue -depths from the boot command-line. For example: +If your controller does not have NVRAM or if it is managed by the SDMS +BIOS/SETUP, you can configure tagged queueing feature and device queue +depths from the boot command-line. For example:: sym53c8xx=tags:4/t2t3q15-t4q7/t1u0q32 @@ -257,25 +301,28 @@ In some special conditions, some SCSI disk firmwares may return a QUEUE FULL status for a SCSI command. This behaviour is managed by the driver using the following heuristic: -- Each time a QUEUE FULL status is returned, tagged queue depth is reduced - to the actual number of disconnected commands. +- Each time a QUEUE FULL status is returned, tagged queue depth is reduced + to the actual number of disconnected commands. - Every 200 successfully completed SCSI commands, if allowed by the current limit, the maximum number of queueable commands is incremented. -Since QUEUE FULL status reception and handling is resource wasting, the -driver notifies by default this problem to user by indicating the actual -number of commands used and their status, as well as its decision on the +Since QUEUE FULL status reception and handling is resource wasting, the +driver notifies by default this problem to user by indicating the actual +number of commands used and their status, as well as its decision on the device queue depth change. -The heuristic used by the driver in handling QUEUE FULL ensures that the -impact on performances is not too bad. You can get rid of the messages by +The heuristic used by the driver in handling QUEUE FULL ensures that the +impact on performances is not too bad. You can get rid of the messages by setting verbose level to zero, as follow: -1st method: boot your system using 'sym53c8xx=verb:0' option. -2nd method: apply "setverbose 0" control command to the proc fs entry +1st method: + boot your system using 'sym53c8xx=verb:0' option. +2nd method: + apply "setverbose 0" control command to the proc fs entry corresponding to your controller after boot-up. 6. Parity checking +================== The driver supports SCSI parity checking and PCI bus master parity checking. These features must be enabled in order to ensure safe @@ -284,17 +331,19 @@ with parity. The options to defeat parity checking have been removed from the driver. 7. Profiling information +======================== This driver does not provide profiling information as did its predecessors. -This feature was not this useful and added complexity to the code. -As the driver code got more complex, I have decided to remove everything +This feature was not this useful and added complexity to the code. +As the driver code got more complex, I have decided to remove everything that didn't seem actually useful. 8. Control commands +=================== Control commands can be sent to the driver with write operations to the proc SCSI file system. The generic command syntax is the -following: +following:: echo " " >/proc/scsi/sym53c8xx/0 (assumes controller number is 0) @@ -305,97 +354,112 @@ apply to all targets of the SCSI chain (except the controller). Available commands: 8.1 Set minimum synchronous period factor +----------------------------------------- setsync - target: target number - period: minimum synchronous period. + :target: target number + :period: minimum synchronous period. Maximum speed = 1000/(4*period factor) except for special cases below. Specify a period of 0, to force asynchronous transfer mode. - 9 means 12.5 nano-seconds synchronous period - 10 means 25 nano-seconds synchronous period - 11 means 30 nano-seconds synchronous period - 12 means 50 nano-seconds synchronous period + - 9 means 12.5 nano-seconds synchronous period + - 10 means 25 nano-seconds synchronous period + - 11 means 30 nano-seconds synchronous period + - 12 means 50 nano-seconds synchronous period 8.2 Set wide size +----------------- setwide - target: target number - size: 0=8 bits, 1=16bits + :target: target number + :size: 0=8 bits, 1=16bits 8.3 Set maximum number of concurrent tagged commands - +---------------------------------------------------- + settags - target: target number - tags: number of concurrent tagged commands + :target: target number + :tags: number of concurrent tagged commands must not be greater than configured (default: 16) 8.4 Set debug mode +------------------ setdebug Available debug flags: - alloc: print info about memory allocations (ccb, lcb) - queue: print info about insertions into the command start queue - result: print sense data on CHECK CONDITION status - scatter: print info about the scatter process - scripts: print info about the script binding process - tiny: print minimal debugging information - timing: print timing information of the NCR chip - nego: print information about SCSI negotiations - phase: print information on script interruptions + + ======== ======================================================== + alloc print info about memory allocations (ccb, lcb) + queue print info about insertions into the command start queue + result print sense data on CHECK CONDITION status + scatter print info about the scatter process + scripts print info about the script binding process + tiny print minimal debugging information + timing print timing information of the NCR chip + nego print information about SCSI negotiations + phase print information on script interruptions + ======== ======================================================== Use "setdebug" with no argument to reset debug flags. 8.5 Set flag (no_disc) - +---------------------- + setflag - target: target number + :target: target number For the moment, only one flag is available: no_disc: not allow target to disconnect. Do not specify any flag in order to reset the flag. For example: - - setflag 4 + + setflag 4 will reset no_disc flag for target 4, so will allow it disconnections. - - setflag all + setflag all will allow disconnection for all devices on the SCSI bus. 8.6 Set verbose level +--------------------- setverbose #level - The driver default verbose level is 1. This command allows to change + The driver default verbose level is 1. This command allows to change th driver verbose level after boot-up. 8.7 Reset all logical units of a target +--------------------------------------- resetdev - target: target number + :target: target number + The driver will try to send a BUS DEVICE RESET message to the target. 8.8 Abort all tasks of all logical units of a target +---------------------------------------------------- cleardev - target: target number - The driver will try to send a ABORT message to all the logical units + :target: target number + + The driver will try to send a ABORT message to all the logical units of the target. 9. Configuration parameters +=========================== -Under kernel configuration tools (make menuconfig, for example), it is +Under kernel configuration tools (make menuconfig, for example), it is possible to change some default driver configuration parameters. If the firmware of all your devices is perfect enough, all the features supported by the driver can be enabled at start-up. However, @@ -414,166 +478,238 @@ Default tagged command queue depth (default answer: 16) This parameter can be specified from the boot command line. Maximum number of queued commands (default answer: 32) - This option allows you to specify the maximum number of tagged commands + This option allows you to specify the maximum number of tagged commands that can be queued to a device. The maximum supported value is 255. Synchronous transfers frequency (default answer: 80) - This option allows you to specify the frequency in MHz the driver + This option allows you to specify the frequency in MHz the driver will use at boot time for synchronous data transfer negotiations. 0 means "asynchronous data transfers". 10. Boot setup commands +======================= 10.1 Syntax +----------- Setup commands can be passed to the driver either at boot time or as parameters to modprobe, as described in Documentation/admin-guide/kernel-parameters.rst -Example of boot setup command under lilo prompt: +Example of boot setup command under lilo prompt:: -lilo: linux root=/dev/sda2 sym53c8xx.cmd_per_lun=4 sym53c8xx.sync=10 sym53c8xx.debug=0x200 + lilo: linux root=/dev/sda2 sym53c8xx.cmd_per_lun=4 sym53c8xx.sync=10 sym53c8xx.debug=0x200 - enable tagged commands, up to 4 tagged commands queued. - set synchronous negotiation speed to 10 Mega-transfers / second. - set DEBUG_NEGO flag. The following command will install the driver module with the same -options as above. +options as above:: modprobe sym53c8xx cmd_per_lun=4 sync=10 debug=0x200 10.2 Available arguments +------------------------ 10.2.1 Default number of tagged commands - cmd_per_lun=0 (or cmd_per_lun=1) tagged command queuing disabled - cmd_per_lun=#tags (#tags > 1) tagged command queuing enabled +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + - cmd_per_lun=0 (or cmd_per_lun=1) tagged command queuing disabled + - cmd_per_lun=#tags (#tags > 1) tagged command queuing enabled + #tags will be truncated to the max queued commands configuration parameter. 10.2.2 Burst max +^^^^^^^^^^^^^^^^ + + ========== ====================================================== burst=0 burst disabled burst=255 get burst length from initial IO register settings. burst=#x burst enabled (1<<#x burst transfers max) - #x is an integer value which is log base 2 of the burst transfers max. + + #x is an integer value which is log base 2 of the burst + transfers max. + ========== ====================================================== + By default the driver uses the maximum value supported by the chip. 10.2.3 LED support +^^^^^^^^^^^^^^^^^^ + + ===== =================== led=1 enable LED support led=0 disable LED support + ===== =================== + Do not enable LED support if your scsi board does not use SDMS BIOS. (See 'Configuration parameters') 10.2.4 Differential mode - diff=0 never set up diff mode +^^^^^^^^^^^^^^^^^^^^^^^^ + + ====== ================================= + diff=0 never set up diff mode diff=1 set up diff mode if BIOS set it diff=2 always set up diff mode diff=3 set diff mode if GPIO3 is not set + ====== ================================= 10.2.5 IRQ mode +^^^^^^^^^^^^^^^ + + ====== ================================================ irqm=0 always open drain irqm=1 same as initial settings (assumed BIOS settings) irqm=2 always totem pole + ====== ================================================ + +10.2.6 Check SCSI BUS +^^^^^^^^^^^^^^^^^^^^^ -10.2.6 Check SCSI BUS buschk=