From: Dmitry Kurtaev Date: Wed, 4 Apr 2018 11:48:29 +0000 (+0300) Subject: Fix Proposal deep learning layer X-Git-Tag: accepted/tizen/6.0/unified/20201030.111113~1^2~671^2 X-Git-Url: http://review.tizen.org/git/?a=commitdiff_plain;h=ef1aaf12c94998d8b275e0de9f8877f97fa48613;p=platform%2Fupstream%2Fopencv.git Fix Proposal deep learning layer --- diff --git a/modules/dnn/src/layers/proposal_layer.cpp b/modules/dnn/src/layers/proposal_layer.cpp index a4c0ecf..7784e70 100644 --- a/modules/dnn/src/layers/proposal_layer.cpp +++ b/modules/dnn/src/layers/proposal_layer.cpp @@ -31,6 +31,7 @@ public: lp.set("flip", false); lp.set("clip", false); lp.set("normalized_bbox", false); + lp.set("offset", 0.5 * baseSize / featStride); // Unused values. float variance[] = {0.1f, 0.1f, 0.2f, 0.2f}; @@ -123,7 +124,9 @@ public: CV_Assert(layerInternals.empty()); internals.push_back(layerOutputs[0]); - outputs.resize(1, shape(keepTopAfterNMS, 5)); + outputs.resize(2); + outputs[0] = shape(keepTopAfterNMS, 5); + outputs[1] = shape(keepTopAfterNMS, 1); return false; } @@ -210,13 +213,20 @@ public: CV_Assert(numDets <= keepTopAfterNMS); MatShape s = shape(numDets, 7); - UMat src = layerOutputs[0].reshape(1, s.size(), &s[0]).colRange(3, 7); + layerOutputs[0] = layerOutputs[0].reshape(1, s.size(), &s[0]); + + // The boxes. UMat dst = outputs[0].rowRange(0, numDets); - src.copyTo(dst.colRange(1, 5)); + layerOutputs[0].colRange(3, 7).copyTo(dst.colRange(1, 5)); dst.col(0).setTo(0); // First column are batch ids. Keep it zeros too. + // The scores. + dst = outputs[1].rowRange(0, numDets); + layerOutputs[0].col(2).copyTo(dst); + if (numDets < keepTopAfterNMS) - outputs[0].rowRange(numDets, keepTopAfterNMS).setTo(0); + for (int i = 0; i < 2; ++i) + outputs[i].rowRange(numDets, keepTopAfterNMS).setTo(0); return true; } @@ -284,13 +294,19 @@ public: const int numDets = layerOutputs[0].total() / 7; CV_Assert(numDets <= keepTopAfterNMS); - Mat src = layerOutputs[0].reshape(1, numDets).colRange(3, 7); + // The boxes. + layerOutputs[0] = layerOutputs[0].reshape(1, numDets); Mat dst = outputs[0].rowRange(0, numDets); - src.copyTo(dst.colRange(1, 5)); + layerOutputs[0].colRange(3, 7).copyTo(dst.colRange(1, 5)); dst.col(0).setTo(0); // First column are batch ids. Keep it zeros too. + // The scores. + dst = outputs[1].rowRange(0, numDets); + layerOutputs[0].col(2).copyTo(dst); + if (numDets < keepTopAfterNMS) - outputs[0].rowRange(numDets, keepTopAfterNMS).setTo(0); + for (int i = 0; i < 2; ++i) + outputs[i].rowRange(numDets, keepTopAfterNMS).setTo(0); } private: diff --git a/modules/dnn/test/test_layers.cpp b/modules/dnn/test/test_layers.cpp index 3cdf88a..dd5a06b 100644 --- a/modules/dnn/test/test_layers.cpp +++ b/modules/dnn/test/test_layers.cpp @@ -602,54 +602,36 @@ TEST(Layer_Test_ROIPooling, Accuracy) normAssert(out, ref); } -TEST(Layer_Test_FasterRCNN_Proposal, Accuracy) +typedef testing::TestWithParam Test_Caffe_layers; +TEST_P(Test_Caffe_layers, FasterRCNN_Proposal) { Net net = readNetFromCaffe(_tf("net_faster_rcnn_proposal.prototxt")); + net.setPreferableTarget(GetParam()); Mat scores = blobFromNPY(_tf("net_faster_rcnn_proposal.scores.npy")); Mat deltas = blobFromNPY(_tf("net_faster_rcnn_proposal.deltas.npy")); Mat imInfo = (Mat_(1, 3) << 600, 800, 1.6f); - Mat ref = blobFromNPY(_tf("net_faster_rcnn_proposal.npy")); net.setInput(scores, "rpn_cls_prob_reshape"); net.setInput(deltas, "rpn_bbox_pred"); net.setInput(imInfo, "im_info"); - Mat out = net.forward(); - - const int numDets = ref.size[0]; - EXPECT_LE(numDets, out.size[0]); - normAssert(out.rowRange(0, numDets), ref); - - if (numDets < out.size[0]) - EXPECT_EQ(countNonZero(out.rowRange(numDets, out.size[0])), 0); -} - -OCL_TEST(Layer_Test_FasterRCNN_Proposal, Accuracy) -{ - Net net = readNetFromCaffe(_tf("net_faster_rcnn_proposal.prototxt")); - - net.setPreferableBackend(DNN_BACKEND_DEFAULT); - net.setPreferableTarget(DNN_TARGET_OPENCL); - - Mat scores = blobFromNPY(_tf("net_faster_rcnn_proposal.scores.npy")); - Mat deltas = blobFromNPY(_tf("net_faster_rcnn_proposal.deltas.npy")); - Mat imInfo = (Mat_(1, 3) << 600, 800, 1.6f); - Mat ref = blobFromNPY(_tf("net_faster_rcnn_proposal.npy")); - - net.setInput(scores, "rpn_cls_prob_reshape"); - net.setInput(deltas, "rpn_bbox_pred"); - net.setInput(imInfo, "im_info"); + std::vector outs; + net.forward(outs, "output"); - Mat out = net.forward(); - - const int numDets = ref.size[0]; - EXPECT_LE(numDets, out.size[0]); - normAssert(out.rowRange(0, numDets), ref); - - if (numDets < out.size[0]) - EXPECT_EQ(countNonZero(out.rowRange(numDets, out.size[0])), 0); + for (int i = 0; i < 2; ++i) + { + Mat ref = blobFromNPY(_tf(i == 0 ? "net_faster_rcnn_proposal.out_rois.npy" : + "net_faster_rcnn_proposal.out_scores.npy")); + const int numDets = ref.size[0]; + EXPECT_LE(numDets, outs[i].size[0]); + normAssert(outs[i].rowRange(0, numDets), ref); + + if (numDets < outs[i].size[0]) + EXPECT_EQ(countNonZero(outs[i].rowRange(numDets, outs[i].size[0])), 0); + } } +INSTANTIATE_TEST_CASE_P(/**/, Test_Caffe_layers, availableDnnTargets()); typedef testing::TestWithParam > Scale_untrainable; TEST_P(Scale_untrainable, Accuracy)