From: Linus Torvalds Date: Fri, 31 Jan 2020 17:30:41 +0000 (-0800) Subject: Merge tag 'kvm-5.6-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm X-Git-Tag: v5.15~4592 X-Git-Url: http://review.tizen.org/git/?a=commitdiff_plain;h=e813e65038389b66d2f8dd87588694caf8dc2923;p=platform%2Fkernel%2Flinux-starfive.git Merge tag 'kvm-5.6-1' of git://git./virt/kvm/kvm Pull KVM updates from Paolo Bonzini: "This is the first batch of KVM changes. ARM: - cleanups and corner case fixes. PPC: - Bugfixes x86: - Support for mapping DAX areas with large nested page table entries. - Cleanups and bugfixes here too. A particularly important one is a fix for FPU load when the thread has TIF_NEED_FPU_LOAD. There is also a race condition which could be used in guest userspace to exploit the guest kernel, for which the embargo expired today. - Fast path for IPI delivery vmexits, shaving about 200 clock cycles from IPI latency. - Protect against "Spectre-v1/L1TF" (bring data in the cache via speculative out of bound accesses, use L1TF on the sibling hyperthread to read it), which unfortunately is an even bigger whack-a-mole game than SpectreV1. Sean continues his mission to rewrite KVM. In addition to a sizable number of x86 patches, this time he contributed a pretty large refactoring of vCPU creation that affects all architectures but should not have any visible effect. s390 will come next week together with some more x86 patches" * tag 'kvm-5.6-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (204 commits) x86/KVM: Clean up host's steal time structure x86/KVM: Make sure KVM_VCPU_FLUSH_TLB flag is not missed x86/kvm: Cache gfn to pfn translation x86/kvm: Introduce kvm_(un)map_gfn() x86/kvm: Be careful not to clear KVM_VCPU_FLUSH_TLB bit KVM: PPC: Book3S PR: Fix -Werror=return-type build failure KVM: PPC: Book3S HV: Release lock on page-out failure path KVM: arm64: Treat emulated TVAL TimerValue as a signed 32-bit integer KVM: arm64: pmu: Only handle supported event counters KVM: arm64: pmu: Fix chained SW_INCR counters KVM: arm64: pmu: Don't mark a counter as chained if the odd one is disabled KVM: arm64: pmu: Don't increment SW_INCR if PMCR.E is unset KVM: x86: Use a typedef for fastop functions KVM: X86: Add 'else' to unify fastop and execute call path KVM: x86: inline memslot_valid_for_gpte KVM: x86/mmu: Use huge pages for DAX-backed files KVM: x86/mmu: Remove lpage_is_disallowed() check from set_spte() KVM: x86/mmu: Fold max_mapping_level() into kvm_mmu_hugepage_adjust() KVM: x86/mmu: Zap any compound page when collapsing sptes KVM: x86/mmu: Remove obsolete gfn restoration in FNAME(fetch) ... --- e813e65038389b66d2f8dd87588694caf8dc2923 diff --cc arch/x86/include/asm/vmx.h index 9fbba31,d716fe9..d380b3b --- a/arch/x86/include/asm/vmx.h +++ b/arch/x86/include/asm/vmx.h @@@ -22,27 -19,27 +22,27 @@@ /* * Definitions of Primary Processor-Based VM-Execution Controls. */ - #define CPU_BASED_VIRTUAL_INTR_PENDING VMCS_CONTROL_BIT(VIRTUAL_INTR_PENDING) - #define CPU_BASED_USE_TSC_OFFSETING VMCS_CONTROL_BIT(TSC_OFFSETTING) -#define CPU_BASED_INTR_WINDOW_EXITING 0x00000004 -#define CPU_BASED_USE_TSC_OFFSETTING 0x00000008 -#define CPU_BASED_HLT_EXITING 0x00000080 -#define CPU_BASED_INVLPG_EXITING 0x00000200 -#define CPU_BASED_MWAIT_EXITING 0x00000400 -#define CPU_BASED_RDPMC_EXITING 0x00000800 -#define CPU_BASED_RDTSC_EXITING 0x00001000 -#define CPU_BASED_CR3_LOAD_EXITING 0x00008000 -#define CPU_BASED_CR3_STORE_EXITING 0x00010000 -#define CPU_BASED_CR8_LOAD_EXITING 0x00080000 -#define CPU_BASED_CR8_STORE_EXITING 0x00100000 -#define CPU_BASED_TPR_SHADOW 0x00200000 -#define CPU_BASED_NMI_WINDOW_EXITING 0x00400000 -#define CPU_BASED_MOV_DR_EXITING 0x00800000 -#define CPU_BASED_UNCOND_IO_EXITING 0x01000000 -#define CPU_BASED_USE_IO_BITMAPS 0x02000000 -#define CPU_BASED_MONITOR_TRAP_FLAG 0x08000000 -#define CPU_BASED_USE_MSR_BITMAPS 0x10000000 -#define CPU_BASED_MONITOR_EXITING 0x20000000 -#define CPU_BASED_PAUSE_EXITING 0x40000000 -#define CPU_BASED_ACTIVATE_SECONDARY_CONTROLS 0x80000000 ++#define CPU_BASED_INTR_WINDOW_EXITING VMCS_CONTROL_BIT(VIRTUAL_INTR_PENDING) ++#define CPU_BASED_USE_TSC_OFFSETTING VMCS_CONTROL_BIT(TSC_OFFSETTING) +#define CPU_BASED_HLT_EXITING VMCS_CONTROL_BIT(HLT_EXITING) +#define CPU_BASED_INVLPG_EXITING VMCS_CONTROL_BIT(INVLPG_EXITING) +#define CPU_BASED_MWAIT_EXITING VMCS_CONTROL_BIT(MWAIT_EXITING) +#define CPU_BASED_RDPMC_EXITING VMCS_CONTROL_BIT(RDPMC_EXITING) +#define CPU_BASED_RDTSC_EXITING VMCS_CONTROL_BIT(RDTSC_EXITING) +#define CPU_BASED_CR3_LOAD_EXITING VMCS_CONTROL_BIT(CR3_LOAD_EXITING) +#define CPU_BASED_CR3_STORE_EXITING VMCS_CONTROL_BIT(CR3_STORE_EXITING) +#define CPU_BASED_CR8_LOAD_EXITING VMCS_CONTROL_BIT(CR8_LOAD_EXITING) +#define CPU_BASED_CR8_STORE_EXITING VMCS_CONTROL_BIT(CR8_STORE_EXITING) +#define CPU_BASED_TPR_SHADOW VMCS_CONTROL_BIT(VIRTUAL_TPR) - #define CPU_BASED_VIRTUAL_NMI_PENDING VMCS_CONTROL_BIT(VIRTUAL_NMI_PENDING) ++#define CPU_BASED_NMI_WINDOW_EXITING VMCS_CONTROL_BIT(VIRTUAL_NMI_PENDING) +#define CPU_BASED_MOV_DR_EXITING VMCS_CONTROL_BIT(MOV_DR_EXITING) +#define CPU_BASED_UNCOND_IO_EXITING VMCS_CONTROL_BIT(UNCOND_IO_EXITING) +#define CPU_BASED_USE_IO_BITMAPS VMCS_CONTROL_BIT(USE_IO_BITMAPS) +#define CPU_BASED_MONITOR_TRAP_FLAG VMCS_CONTROL_BIT(MONITOR_TRAP_FLAG) +#define CPU_BASED_USE_MSR_BITMAPS VMCS_CONTROL_BIT(USE_MSR_BITMAPS) +#define CPU_BASED_MONITOR_EXITING VMCS_CONTROL_BIT(MONITOR_EXITING) +#define CPU_BASED_PAUSE_EXITING VMCS_CONTROL_BIT(PAUSE_EXITING) +#define CPU_BASED_ACTIVATE_SECONDARY_CONTROLS VMCS_CONTROL_BIT(SEC_CONTROLS) #define CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR 0x0401e172 diff --cc arch/x86/mm/pat/set_memory.c index 62a8ebe,0000000..c4aedd0 mode 100644,000000..100644 --- a/arch/x86/mm/pat/set_memory.c +++ b/arch/x86/mm/pat/set_memory.c @@@ -1,2279 -1,0 +1,2290 @@@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright 2002 Andi Kleen, SuSE Labs. + * Thanks to Ben LaHaise for precious feedback. + */ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "../mm_internal.h" + +/* + * The current flushing context - we pass it instead of 5 arguments: + */ +struct cpa_data { + unsigned long *vaddr; + pgd_t *pgd; + pgprot_t mask_set; + pgprot_t mask_clr; + unsigned long numpages; + unsigned long curpage; + unsigned long pfn; + unsigned int flags; + unsigned int force_split : 1, + force_static_prot : 1; + struct page **pages; +}; + +enum cpa_warn { + CPA_CONFLICT, + CPA_PROTECT, + CPA_DETECT, +}; + +static const int cpa_warn_level = CPA_PROTECT; + +/* + * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings) + * using cpa_lock. So that we don't allow any other cpu, with stale large tlb + * entries change the page attribute in parallel to some other cpu + * splitting a large page entry along with changing the attribute. + */ +static DEFINE_SPINLOCK(cpa_lock); + +#define CPA_FLUSHTLB 1 +#define CPA_ARRAY 2 +#define CPA_PAGES_ARRAY 4 +#define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */ + +#ifdef CONFIG_PROC_FS +static unsigned long direct_pages_count[PG_LEVEL_NUM]; + +void update_page_count(int level, unsigned long pages) +{ + /* Protect against CPA */ + spin_lock(&pgd_lock); + direct_pages_count[level] += pages; + spin_unlock(&pgd_lock); +} + +static void split_page_count(int level) +{ + if (direct_pages_count[level] == 0) + return; + + direct_pages_count[level]--; + direct_pages_count[level - 1] += PTRS_PER_PTE; +} + +void arch_report_meminfo(struct seq_file *m) +{ + seq_printf(m, "DirectMap4k: %8lu kB\n", + direct_pages_count[PG_LEVEL_4K] << 2); +#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) + seq_printf(m, "DirectMap2M: %8lu kB\n", + direct_pages_count[PG_LEVEL_2M] << 11); +#else + seq_printf(m, "DirectMap4M: %8lu kB\n", + direct_pages_count[PG_LEVEL_2M] << 12); +#endif + if (direct_gbpages) + seq_printf(m, "DirectMap1G: %8lu kB\n", + direct_pages_count[PG_LEVEL_1G] << 20); +} +#else +static inline void split_page_count(int level) { } +#endif + +#ifdef CONFIG_X86_CPA_STATISTICS + +static unsigned long cpa_1g_checked; +static unsigned long cpa_1g_sameprot; +static unsigned long cpa_1g_preserved; +static unsigned long cpa_2m_checked; +static unsigned long cpa_2m_sameprot; +static unsigned long cpa_2m_preserved; +static unsigned long cpa_4k_install; + +static inline void cpa_inc_1g_checked(void) +{ + cpa_1g_checked++; +} + +static inline void cpa_inc_2m_checked(void) +{ + cpa_2m_checked++; +} + +static inline void cpa_inc_4k_install(void) +{ + cpa_4k_install++; +} + +static inline void cpa_inc_lp_sameprot(int level) +{ + if (level == PG_LEVEL_1G) + cpa_1g_sameprot++; + else + cpa_2m_sameprot++; +} + +static inline void cpa_inc_lp_preserved(int level) +{ + if (level == PG_LEVEL_1G) + cpa_1g_preserved++; + else + cpa_2m_preserved++; +} + +static int cpastats_show(struct seq_file *m, void *p) +{ + seq_printf(m, "1G pages checked: %16lu\n", cpa_1g_checked); + seq_printf(m, "1G pages sameprot: %16lu\n", cpa_1g_sameprot); + seq_printf(m, "1G pages preserved: %16lu\n", cpa_1g_preserved); + seq_printf(m, "2M pages checked: %16lu\n", cpa_2m_checked); + seq_printf(m, "2M pages sameprot: %16lu\n", cpa_2m_sameprot); + seq_printf(m, "2M pages preserved: %16lu\n", cpa_2m_preserved); + seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install); + return 0; +} + +static int cpastats_open(struct inode *inode, struct file *file) +{ + return single_open(file, cpastats_show, NULL); +} + +static const struct file_operations cpastats_fops = { + .open = cpastats_open, + .read = seq_read, + .llseek = seq_lseek, + .release = single_release, +}; + +static int __init cpa_stats_init(void) +{ + debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL, + &cpastats_fops); + return 0; +} +late_initcall(cpa_stats_init); +#else +static inline void cpa_inc_1g_checked(void) { } +static inline void cpa_inc_2m_checked(void) { } +static inline void cpa_inc_4k_install(void) { } +static inline void cpa_inc_lp_sameprot(int level) { } +static inline void cpa_inc_lp_preserved(int level) { } +#endif + + +static inline int +within(unsigned long addr, unsigned long start, unsigned long end) +{ + return addr >= start && addr < end; +} + +static inline int +within_inclusive(unsigned long addr, unsigned long start, unsigned long end) +{ + return addr >= start && addr <= end; +} + +#ifdef CONFIG_X86_64 + +static inline unsigned long highmap_start_pfn(void) +{ + return __pa_symbol(_text) >> PAGE_SHIFT; +} + +static inline unsigned long highmap_end_pfn(void) +{ + /* Do not reference physical address outside the kernel. */ + return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT; +} + +static bool __cpa_pfn_in_highmap(unsigned long pfn) +{ + /* + * Kernel text has an alias mapping at a high address, known + * here as "highmap". + */ + return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn()); +} + +#else + +static bool __cpa_pfn_in_highmap(unsigned long pfn) +{ + /* There is no highmap on 32-bit */ + return false; +} + +#endif + +/* + * See set_mce_nospec(). + * + * Machine check recovery code needs to change cache mode of poisoned pages to + * UC to avoid speculative access logging another error. But passing the + * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a + * speculative access. So we cheat and flip the top bit of the address. This + * works fine for the code that updates the page tables. But at the end of the + * process we need to flush the TLB and cache and the non-canonical address + * causes a #GP fault when used by the INVLPG and CLFLUSH instructions. + * + * But in the common case we already have a canonical address. This code + * will fix the top bit if needed and is a no-op otherwise. + */ +static inline unsigned long fix_addr(unsigned long addr) +{ +#ifdef CONFIG_X86_64 + return (long)(addr << 1) >> 1; +#else + return addr; +#endif +} + +static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx) +{ + if (cpa->flags & CPA_PAGES_ARRAY) { + struct page *page = cpa->pages[idx]; + + if (unlikely(PageHighMem(page))) + return 0; + + return (unsigned long)page_address(page); + } + + if (cpa->flags & CPA_ARRAY) + return cpa->vaddr[idx]; + + return *cpa->vaddr + idx * PAGE_SIZE; +} + +/* + * Flushing functions + */ + +static void clflush_cache_range_opt(void *vaddr, unsigned int size) +{ + const unsigned long clflush_size = boot_cpu_data.x86_clflush_size; + void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1)); + void *vend = vaddr + size; + + if (p >= vend) + return; + + for (; p < vend; p += clflush_size) + clflushopt(p); +} + +/** + * clflush_cache_range - flush a cache range with clflush + * @vaddr: virtual start address + * @size: number of bytes to flush + * + * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or + * SFENCE to avoid ordering issues. + */ +void clflush_cache_range(void *vaddr, unsigned int size) +{ + mb(); + clflush_cache_range_opt(vaddr, size); + mb(); +} +EXPORT_SYMBOL_GPL(clflush_cache_range); + +void arch_invalidate_pmem(void *addr, size_t size) +{ + clflush_cache_range(addr, size); +} +EXPORT_SYMBOL_GPL(arch_invalidate_pmem); + +static void __cpa_flush_all(void *arg) +{ + unsigned long cache = (unsigned long)arg; + + /* + * Flush all to work around Errata in early athlons regarding + * large page flushing. + */ + __flush_tlb_all(); + + if (cache && boot_cpu_data.x86 >= 4) + wbinvd(); +} + +static void cpa_flush_all(unsigned long cache) +{ + BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); + + on_each_cpu(__cpa_flush_all, (void *) cache, 1); +} + +static void __cpa_flush_tlb(void *data) +{ + struct cpa_data *cpa = data; + unsigned int i; + + for (i = 0; i < cpa->numpages; i++) + __flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i))); +} + +static void cpa_flush(struct cpa_data *data, int cache) +{ + struct cpa_data *cpa = data; + unsigned int i; + + BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); + + if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) { + cpa_flush_all(cache); + return; + } + + if (cpa->numpages <= tlb_single_page_flush_ceiling) + on_each_cpu(__cpa_flush_tlb, cpa, 1); + else + flush_tlb_all(); + + if (!cache) + return; + + mb(); + for (i = 0; i < cpa->numpages; i++) { + unsigned long addr = __cpa_addr(cpa, i); + unsigned int level; + + pte_t *pte = lookup_address(addr, &level); + + /* + * Only flush present addresses: + */ + if (pte && (pte_val(*pte) & _PAGE_PRESENT)) + clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE); + } + mb(); +} + +static bool overlaps(unsigned long r1_start, unsigned long r1_end, + unsigned long r2_start, unsigned long r2_end) +{ + return (r1_start <= r2_end && r1_end >= r2_start) || + (r2_start <= r1_end && r2_end >= r1_start); +} + +#ifdef CONFIG_PCI_BIOS +/* + * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS + * based config access (CONFIG_PCI_GOBIOS) support. + */ +#define BIOS_PFN PFN_DOWN(BIOS_BEGIN) +#define BIOS_PFN_END PFN_DOWN(BIOS_END - 1) + +static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) +{ + if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END)) + return _PAGE_NX; + return 0; +} +#else +static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn) +{ + return 0; +} +#endif + +/* + * The .rodata section needs to be read-only. Using the pfn catches all + * aliases. This also includes __ro_after_init, so do not enforce until + * kernel_set_to_readonly is true. + */ +static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn) +{ + unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata)); + + /* + * Note: __end_rodata is at page aligned and not inclusive, so + * subtract 1 to get the last enforced PFN in the rodata area. + */ + epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1; + + if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro)) + return _PAGE_RW; + return 0; +} + +/* + * Protect kernel text against becoming non executable by forbidding + * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext) + * out of which the kernel actually executes. Do not protect the low + * mapping. + * + * This does not cover __inittext since that is gone after boot. + */ +static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end) +{ + unsigned long t_end = (unsigned long)_etext - 1; + unsigned long t_start = (unsigned long)_text; + + if (overlaps(start, end, t_start, t_end)) + return _PAGE_NX; + return 0; +} + +#if defined(CONFIG_X86_64) +/* + * Once the kernel maps the text as RO (kernel_set_to_readonly is set), + * kernel text mappings for the large page aligned text, rodata sections + * will be always read-only. For the kernel identity mappings covering the + * holes caused by this alignment can be anything that user asks. + * + * This will preserve the large page mappings for kernel text/data at no + * extra cost. + */ +static pgprotval_t protect_kernel_text_ro(unsigned long start, + unsigned long end) +{ + unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1; + unsigned long t_start = (unsigned long)_text; + unsigned int level; + + if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end)) + return 0; + /* + * Don't enforce the !RW mapping for the kernel text mapping, if + * the current mapping is already using small page mapping. No + * need to work hard to preserve large page mappings in this case. + * + * This also fixes the Linux Xen paravirt guest boot failure caused + * by unexpected read-only mappings for kernel identity + * mappings. In this paravirt guest case, the kernel text mapping + * and the kernel identity mapping share the same page-table pages, + * so the protections for kernel text and identity mappings have to + * be the same. + */ + if (lookup_address(start, &level) && (level != PG_LEVEL_4K)) + return _PAGE_RW; + return 0; +} +#else +static pgprotval_t protect_kernel_text_ro(unsigned long start, + unsigned long end) +{ + return 0; +} +#endif + +static inline bool conflicts(pgprot_t prot, pgprotval_t val) +{ + return (pgprot_val(prot) & ~val) != pgprot_val(prot); +} + +static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val, + unsigned long start, unsigned long end, + unsigned long pfn, const char *txt) +{ + static const char *lvltxt[] = { + [CPA_CONFLICT] = "conflict", + [CPA_PROTECT] = "protect", + [CPA_DETECT] = "detect", + }; + + if (warnlvl > cpa_warn_level || !conflicts(prot, val)) + return; + + pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n", + lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot), + (unsigned long long)val); +} + +/* + * Certain areas of memory on x86 require very specific protection flags, + * for example the BIOS area or kernel text. Callers don't always get this + * right (again, ioremap() on BIOS memory is not uncommon) so this function + * checks and fixes these known static required protection bits. + */ +static inline pgprot_t static_protections(pgprot_t prot, unsigned long start, + unsigned long pfn, unsigned long npg, + unsigned long lpsize, int warnlvl) +{ + pgprotval_t forbidden, res; + unsigned long end; + + /* + * There is no point in checking RW/NX conflicts when the requested + * mapping is setting the page !PRESENT. + */ + if (!(pgprot_val(prot) & _PAGE_PRESENT)) + return prot; + + /* Operate on the virtual address */ + end = start + npg * PAGE_SIZE - 1; + + res = protect_kernel_text(start, end); + check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX"); + forbidden = res; + + /* + * Special case to preserve a large page. If the change spawns the + * full large page mapping then there is no point to split it + * up. Happens with ftrace and is going to be removed once ftrace + * switched to text_poke(). + */ + if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) { + res = protect_kernel_text_ro(start, end); + check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO"); + forbidden |= res; + } + + /* Check the PFN directly */ + res = protect_pci_bios(pfn, pfn + npg - 1); + check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX"); + forbidden |= res; + + res = protect_rodata(pfn, pfn + npg - 1); + check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO"); + forbidden |= res; + + return __pgprot(pgprot_val(prot) & ~forbidden); +} + +/* + * Lookup the page table entry for a virtual address in a specific pgd. + * Return a pointer to the entry and the level of the mapping. + */ +pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address, + unsigned int *level) +{ + p4d_t *p4d; + pud_t *pud; + pmd_t *pmd; + + *level = PG_LEVEL_NONE; + + if (pgd_none(*pgd)) + return NULL; + + p4d = p4d_offset(pgd, address); + if (p4d_none(*p4d)) + return NULL; + + *level = PG_LEVEL_512G; + if (p4d_large(*p4d) || !p4d_present(*p4d)) + return (pte_t *)p4d; + + pud = pud_offset(p4d, address); + if (pud_none(*pud)) + return NULL; + + *level = PG_LEVEL_1G; + if (pud_large(*pud) || !pud_present(*pud)) + return (pte_t *)pud; + + pmd = pmd_offset(pud, address); + if (pmd_none(*pmd)) + return NULL; + + *level = PG_LEVEL_2M; + if (pmd_large(*pmd) || !pmd_present(*pmd)) + return (pte_t *)pmd; + + *level = PG_LEVEL_4K; + + return pte_offset_kernel(pmd, address); +} + +/* + * Lookup the page table entry for a virtual address. Return a pointer + * to the entry and the level of the mapping. + * + * Note: We return pud and pmd either when the entry is marked large + * or when the present bit is not set. Otherwise we would return a + * pointer to a nonexisting mapping. + */ +pte_t *lookup_address(unsigned long address, unsigned int *level) +{ + return lookup_address_in_pgd(pgd_offset_k(address), address, level); +} +EXPORT_SYMBOL_GPL(lookup_address); + ++/* ++ * Lookup the page table entry for a virtual address in a given mm. Return a ++ * pointer to the entry and the level of the mapping. ++ */ ++pte_t *lookup_address_in_mm(struct mm_struct *mm, unsigned long address, ++ unsigned int *level) ++{ ++ return lookup_address_in_pgd(pgd_offset(mm, address), address, level); ++} ++EXPORT_SYMBOL_GPL(lookup_address_in_mm); ++ +static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address, + unsigned int *level) +{ + if (cpa->pgd) + return lookup_address_in_pgd(cpa->pgd + pgd_index(address), + address, level); + + return lookup_address(address, level); +} + +/* + * Lookup the PMD entry for a virtual address. Return a pointer to the entry + * or NULL if not present. + */ +pmd_t *lookup_pmd_address(unsigned long address) +{ + pgd_t *pgd; + p4d_t *p4d; + pud_t *pud; + + pgd = pgd_offset_k(address); + if (pgd_none(*pgd)) + return NULL; + + p4d = p4d_offset(pgd, address); + if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d)) + return NULL; + + pud = pud_offset(p4d, address); + if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud)) + return NULL; + + return pmd_offset(pud, address); +} + +/* + * This is necessary because __pa() does not work on some + * kinds of memory, like vmalloc() or the alloc_remap() + * areas on 32-bit NUMA systems. The percpu areas can + * end up in this kind of memory, for instance. + * + * This could be optimized, but it is only intended to be + * used at inititalization time, and keeping it + * unoptimized should increase the testing coverage for + * the more obscure platforms. + */ +phys_addr_t slow_virt_to_phys(void *__virt_addr) +{ + unsigned long virt_addr = (unsigned long)__virt_addr; + phys_addr_t phys_addr; + unsigned long offset; + enum pg_level level; + pte_t *pte; + + pte = lookup_address(virt_addr, &level); + BUG_ON(!pte); + + /* + * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t + * before being left-shifted PAGE_SHIFT bits -- this trick is to + * make 32-PAE kernel work correctly. + */ + switch (level) { + case PG_LEVEL_1G: + phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT; + offset = virt_addr & ~PUD_PAGE_MASK; + break; + case PG_LEVEL_2M: + phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT; + offset = virt_addr & ~PMD_PAGE_MASK; + break; + default: + phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT; + offset = virt_addr & ~PAGE_MASK; + } + + return (phys_addr_t)(phys_addr | offset); +} +EXPORT_SYMBOL_GPL(slow_virt_to_phys); + +/* + * Set the new pmd in all the pgds we know about: + */ +static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte) +{ + /* change init_mm */ + set_pte_atomic(kpte, pte); +#ifdef CONFIG_X86_32 + if (!SHARED_KERNEL_PMD) { + struct page *page; + + list_for_each_entry(page, &pgd_list, lru) { + pgd_t *pgd; + p4d_t *p4d; + pud_t *pud; + pmd_t *pmd; + + pgd = (pgd_t *)page_address(page) + pgd_index(address); + p4d = p4d_offset(pgd, address); + pud = pud_offset(p4d, address); + pmd = pmd_offset(pud, address); + set_pte_atomic((pte_t *)pmd, pte); + } + } +#endif +} + +static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot) +{ + /* + * _PAGE_GLOBAL means "global page" for present PTEs. + * But, it is also used to indicate _PAGE_PROTNONE + * for non-present PTEs. + * + * This ensures that a _PAGE_GLOBAL PTE going from + * present to non-present is not confused as + * _PAGE_PROTNONE. + */ + if (!(pgprot_val(prot) & _PAGE_PRESENT)) + pgprot_val(prot) &= ~_PAGE_GLOBAL; + + return prot; +} + +static int __should_split_large_page(pte_t *kpte, unsigned long address, + struct cpa_data *cpa) +{ + unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn; + pgprot_t old_prot, new_prot, req_prot, chk_prot; + pte_t new_pte, *tmp; + enum pg_level level; + + /* + * Check for races, another CPU might have split this page + * up already: + */ + tmp = _lookup_address_cpa(cpa, address, &level); + if (tmp != kpte) + return 1; + + switch (level) { + case PG_LEVEL_2M: + old_prot = pmd_pgprot(*(pmd_t *)kpte); + old_pfn = pmd_pfn(*(pmd_t *)kpte); + cpa_inc_2m_checked(); + break; + case PG_LEVEL_1G: + old_prot = pud_pgprot(*(pud_t *)kpte); + old_pfn = pud_pfn(*(pud_t *)kpte); + cpa_inc_1g_checked(); + break; + default: + return -EINVAL; + } + + psize = page_level_size(level); + pmask = page_level_mask(level); + + /* + * Calculate the number of pages, which fit into this large + * page starting at address: + */ + lpaddr = (address + psize) & pmask; + numpages = (lpaddr - address) >> PAGE_SHIFT; + if (numpages < cpa->numpages) + cpa->numpages = numpages; + + /* + * We are safe now. Check whether the new pgprot is the same: + * Convert protection attributes to 4k-format, as cpa->mask* are set + * up accordingly. + */ + + /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */ + req_prot = pgprot_large_2_4k(old_prot); + + pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr); + pgprot_val(req_prot) |= pgprot_val(cpa->mask_set); + + /* + * req_prot is in format of 4k pages. It must be converted to large + * page format: the caching mode includes the PAT bit located at + * different bit positions in the two formats. + */ + req_prot = pgprot_4k_2_large(req_prot); + req_prot = pgprot_clear_protnone_bits(req_prot); + if (pgprot_val(req_prot) & _PAGE_PRESENT) + pgprot_val(req_prot) |= _PAGE_PSE; + + /* + * old_pfn points to the large page base pfn. So we need to add the + * offset of the virtual address: + */ + pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT); + cpa->pfn = pfn; + + /* + * Calculate the large page base address and the number of 4K pages + * in the large page + */ + lpaddr = address & pmask; + numpages = psize >> PAGE_SHIFT; + + /* + * Sanity check that the existing mapping is correct versus the static + * protections. static_protections() guards against !PRESENT, so no + * extra conditional required here. + */ + chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages, + psize, CPA_CONFLICT); + + if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) { + /* + * Split the large page and tell the split code to + * enforce static protections. + */ + cpa->force_static_prot = 1; + return 1; + } + + /* + * Optimization: If the requested pgprot is the same as the current + * pgprot, then the large page can be preserved and no updates are + * required independent of alignment and length of the requested + * range. The above already established that the current pgprot is + * correct, which in consequence makes the requested pgprot correct + * as well if it is the same. The static protection scan below will + * not come to a different conclusion. + */ + if (pgprot_val(req_prot) == pgprot_val(old_prot)) { + cpa_inc_lp_sameprot(level); + return 0; + } + + /* + * If the requested range does not cover the full page, split it up + */ + if (address != lpaddr || cpa->numpages != numpages) + return 1; + + /* + * Check whether the requested pgprot is conflicting with a static + * protection requirement in the large page. + */ + new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages, + psize, CPA_DETECT); + + /* + * If there is a conflict, split the large page. + * + * There used to be a 4k wise evaluation trying really hard to + * preserve the large pages, but experimentation has shown, that this + * does not help at all. There might be corner cases which would + * preserve one large page occasionally, but it's really not worth the + * extra code and cycles for the common case. + */ + if (pgprot_val(req_prot) != pgprot_val(new_prot)) + return 1; + + /* All checks passed. Update the large page mapping. */ + new_pte = pfn_pte(old_pfn, new_prot); + __set_pmd_pte(kpte, address, new_pte); + cpa->flags |= CPA_FLUSHTLB; + cpa_inc_lp_preserved(level); + return 0; +} + +static int should_split_large_page(pte_t *kpte, unsigned long address, + struct cpa_data *cpa) +{ + int do_split; + + if (cpa->force_split) + return 1; + + spin_lock(&pgd_lock); + do_split = __should_split_large_page(kpte, address, cpa); + spin_unlock(&pgd_lock); + + return do_split; +} + +static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn, + pgprot_t ref_prot, unsigned long address, + unsigned long size) +{ + unsigned int npg = PFN_DOWN(size); + pgprot_t prot; + + /* + * If should_split_large_page() discovered an inconsistent mapping, + * remove the invalid protection in the split mapping. + */ + if (!cpa->force_static_prot) + goto set; + + /* Hand in lpsize = 0 to enforce the protection mechanism */ + prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT); + + if (pgprot_val(prot) == pgprot_val(ref_prot)) + goto set; + + /* + * If this is splitting a PMD, fix it up. PUD splits cannot be + * fixed trivially as that would require to rescan the newly + * installed PMD mappings after returning from split_large_page() + * so an eventual further split can allocate the necessary PTE + * pages. Warn for now and revisit it in case this actually + * happens. + */ + if (size == PAGE_SIZE) + ref_prot = prot; + else + pr_warn_once("CPA: Cannot fixup static protections for PUD split\n"); +set: + set_pte(pte, pfn_pte(pfn, ref_prot)); +} + +static int +__split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address, + struct page *base) +{ + unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1; + pte_t *pbase = (pte_t *)page_address(base); + unsigned int i, level; + pgprot_t ref_prot; + pte_t *tmp; + + spin_lock(&pgd_lock); + /* + * Check for races, another CPU might have split this page + * up for us already: + */ + tmp = _lookup_address_cpa(cpa, address, &level); + if (tmp != kpte) { + spin_unlock(&pgd_lock); + return 1; + } + + paravirt_alloc_pte(&init_mm, page_to_pfn(base)); + + switch (level) { + case PG_LEVEL_2M: + ref_prot = pmd_pgprot(*(pmd_t *)kpte); + /* + * Clear PSE (aka _PAGE_PAT) and move + * PAT bit to correct position. + */ + ref_prot = pgprot_large_2_4k(ref_prot); + ref_pfn = pmd_pfn(*(pmd_t *)kpte); + lpaddr = address & PMD_MASK; + lpinc = PAGE_SIZE; + break; + + case PG_LEVEL_1G: + ref_prot = pud_pgprot(*(pud_t *)kpte); + ref_pfn = pud_pfn(*(pud_t *)kpte); + pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT; + lpaddr = address & PUD_MASK; + lpinc = PMD_SIZE; + /* + * Clear the PSE flags if the PRESENT flag is not set + * otherwise pmd_present/pmd_huge will return true + * even on a non present pmd. + */ + if (!(pgprot_val(ref_prot) & _PAGE_PRESENT)) + pgprot_val(ref_prot) &= ~_PAGE_PSE; + break; + + default: + spin_unlock(&pgd_lock); + return 1; + } + + ref_prot = pgprot_clear_protnone_bits(ref_prot); + + /* + * Get the target pfn from the original entry: + */ + pfn = ref_pfn; + for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc) + split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc); + + if (virt_addr_valid(address)) { + unsigned long pfn = PFN_DOWN(__pa(address)); + + if (pfn_range_is_mapped(pfn, pfn + 1)) + split_page_count(level); + } + + /* + * Install the new, split up pagetable. + * + * We use the standard kernel pagetable protections for the new + * pagetable protections, the actual ptes set above control the + * primary protection behavior: + */ + __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE))); + + /* + * Do a global flush tlb after splitting the large page + * and before we do the actual change page attribute in the PTE. + * + * Without this, we violate the TLB application note, that says: + * "The TLBs may contain both ordinary and large-page + * translations for a 4-KByte range of linear addresses. This + * may occur if software modifies the paging structures so that + * the page size used for the address range changes. If the two + * translations differ with respect to page frame or attributes + * (e.g., permissions), processor behavior is undefined and may + * be implementation-specific." + * + * We do this global tlb flush inside the cpa_lock, so that we + * don't allow any other cpu, with stale tlb entries change the + * page attribute in parallel, that also falls into the + * just split large page entry. + */ + flush_tlb_all(); + spin_unlock(&pgd_lock); + + return 0; +} + +static int split_large_page(struct cpa_data *cpa, pte_t *kpte, + unsigned long address) +{ + struct page *base; + + if (!debug_pagealloc_enabled()) + spin_unlock(&cpa_lock); + base = alloc_pages(GFP_KERNEL, 0); + if (!debug_pagealloc_enabled()) + spin_lock(&cpa_lock); + if (!base) + return -ENOMEM; + + if (__split_large_page(cpa, kpte, address, base)) + __free_page(base); + + return 0; +} + +static bool try_to_free_pte_page(pte_t *pte) +{ + int i; + + for (i = 0; i < PTRS_PER_PTE; i++) + if (!pte_none(pte[i])) + return false; + + free_page((unsigned long)pte); + return true; +} + +static bool try_to_free_pmd_page(pmd_t *pmd) +{ + int i; + + for (i = 0; i < PTRS_PER_PMD; i++) + if (!pmd_none(pmd[i])) + return false; + + free_page((unsigned long)pmd); + return true; +} + +static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end) +{ + pte_t *pte = pte_offset_kernel(pmd, start); + + while (start < end) { + set_pte(pte, __pte(0)); + + start += PAGE_SIZE; + pte++; + } + + if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) { + pmd_clear(pmd); + return true; + } + return false; +} + +static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd, + unsigned long start, unsigned long end) +{ + if (unmap_pte_range(pmd, start, end)) + if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud))) + pud_clear(pud); +} + +static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end) +{ + pmd_t *pmd = pmd_offset(pud, start); + + /* + * Not on a 2MB page boundary? + */ + if (start & (PMD_SIZE - 1)) { + unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; + unsigned long pre_end = min_t(unsigned long, end, next_page); + + __unmap_pmd_range(pud, pmd, start, pre_end); + + start = pre_end; + pmd++; + } + + /* + * Try to unmap in 2M chunks. + */ + while (end - start >= PMD_SIZE) { + if (pmd_large(*pmd)) + pmd_clear(pmd); + else + __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE); + + start += PMD_SIZE; + pmd++; + } + + /* + * 4K leftovers? + */ + if (start < end) + return __unmap_pmd_range(pud, pmd, start, end); + + /* + * Try again to free the PMD page if haven't succeeded above. + */ + if (!pud_none(*pud)) + if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud))) + pud_clear(pud); +} + +static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end) +{ + pud_t *pud = pud_offset(p4d, start); + + /* + * Not on a GB page boundary? + */ + if (start & (PUD_SIZE - 1)) { + unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; + unsigned long pre_end = min_t(unsigned long, end, next_page); + + unmap_pmd_range(pud, start, pre_end); + + start = pre_end; + pud++; + } + + /* + * Try to unmap in 1G chunks? + */ + while (end - start >= PUD_SIZE) { + + if (pud_large(*pud)) + pud_clear(pud); + else + unmap_pmd_range(pud, start, start + PUD_SIZE); + + start += PUD_SIZE; + pud++; + } + + /* + * 2M leftovers? + */ + if (start < end) + unmap_pmd_range(pud, start, end); + + /* + * No need to try to free the PUD page because we'll free it in + * populate_pgd's error path + */ +} + +static int alloc_pte_page(pmd_t *pmd) +{ + pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL); + if (!pte) + return -1; + + set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); + return 0; +} + +static int alloc_pmd_page(pud_t *pud) +{ + pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); + if (!pmd) + return -1; + + set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); + return 0; +} + +static void populate_pte(struct cpa_data *cpa, + unsigned long start, unsigned long end, + unsigned num_pages, pmd_t *pmd, pgprot_t pgprot) +{ + pte_t *pte; + + pte = pte_offset_kernel(pmd, start); + + pgprot = pgprot_clear_protnone_bits(pgprot); + + while (num_pages-- && start < end) { + set_pte(pte, pfn_pte(cpa->pfn, pgprot)); + + start += PAGE_SIZE; + cpa->pfn++; + pte++; + } +} + +static long populate_pmd(struct cpa_data *cpa, + unsigned long start, unsigned long end, + unsigned num_pages, pud_t *pud, pgprot_t pgprot) +{ + long cur_pages = 0; + pmd_t *pmd; + pgprot_t pmd_pgprot; + + /* + * Not on a 2M boundary? + */ + if (start & (PMD_SIZE - 1)) { + unsigned long pre_end = start + (num_pages << PAGE_SHIFT); + unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; + + pre_end = min_t(unsigned long, pre_end, next_page); + cur_pages = (pre_end - start) >> PAGE_SHIFT; + cur_pages = min_t(unsigned int, num_pages, cur_pages); + + /* + * Need a PTE page? + */ + pmd = pmd_offset(pud, start); + if (pmd_none(*pmd)) + if (alloc_pte_page(pmd)) + return -1; + + populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot); + + start = pre_end; + } + + /* + * We mapped them all? + */ + if (num_pages == cur_pages) + return cur_pages; + + pmd_pgprot = pgprot_4k_2_large(pgprot); + + while (end - start >= PMD_SIZE) { + + /* + * We cannot use a 1G page so allocate a PMD page if needed. + */ + if (pud_none(*pud)) + if (alloc_pmd_page(pud)) + return -1; + + pmd = pmd_offset(pud, start); + + set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn, + canon_pgprot(pmd_pgprot)))); + + start += PMD_SIZE; + cpa->pfn += PMD_SIZE >> PAGE_SHIFT; + cur_pages += PMD_SIZE >> PAGE_SHIFT; + } + + /* + * Map trailing 4K pages. + */ + if (start < end) { + pmd = pmd_offset(pud, start); + if (pmd_none(*pmd)) + if (alloc_pte_page(pmd)) + return -1; + + populate_pte(cpa, start, end, num_pages - cur_pages, + pmd, pgprot); + } + return num_pages; +} + +static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d, + pgprot_t pgprot) +{ + pud_t *pud; + unsigned long end; + long cur_pages = 0; + pgprot_t pud_pgprot; + + end = start + (cpa->numpages << PAGE_SHIFT); + + /* + * Not on a Gb page boundary? => map everything up to it with + * smaller pages. + */ + if (start & (PUD_SIZE - 1)) { + unsigned long pre_end; + unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; + + pre_end = min_t(unsigned long, end, next_page); + cur_pages = (pre_end - start) >> PAGE_SHIFT; + cur_pages = min_t(int, (int)cpa->numpages, cur_pages); + + pud = pud_offset(p4d, start); + + /* + * Need a PMD page? + */ + if (pud_none(*pud)) + if (alloc_pmd_page(pud)) + return -1; + + cur_pages = populate_pmd(cpa, start, pre_end, cur_pages, + pud, pgprot); + if (cur_pages < 0) + return cur_pages; + + start = pre_end; + } + + /* We mapped them all? */ + if (cpa->numpages == cur_pages) + return cur_pages; + + pud = pud_offset(p4d, start); + pud_pgprot = pgprot_4k_2_large(pgprot); + + /* + * Map everything starting from the Gb boundary, possibly with 1G pages + */ + while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) { + set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn, + canon_pgprot(pud_pgprot)))); + + start += PUD_SIZE; + cpa->pfn += PUD_SIZE >> PAGE_SHIFT; + cur_pages += PUD_SIZE >> PAGE_SHIFT; + pud++; + } + + /* Map trailing leftover */ + if (start < end) { + long tmp; + + pud = pud_offset(p4d, start); + if (pud_none(*pud)) + if (alloc_pmd_page(pud)) + return -1; + + tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages, + pud, pgprot); + if (tmp < 0) + return cur_pages; + + cur_pages += tmp; + } + return cur_pages; +} + +/* + * Restrictions for kernel page table do not necessarily apply when mapping in + * an alternate PGD. + */ +static int populate_pgd(struct cpa_data *cpa, unsigned long addr) +{ + pgprot_t pgprot = __pgprot(_KERNPG_TABLE); + pud_t *pud = NULL; /* shut up gcc */ + p4d_t *p4d; + pgd_t *pgd_entry; + long ret; + + pgd_entry = cpa->pgd + pgd_index(addr); + + if (pgd_none(*pgd_entry)) { + p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); + if (!p4d) + return -1; + + set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE)); + } + + /* + * Allocate a PUD page and hand it down for mapping. + */ + p4d = p4d_offset(pgd_entry, addr); + if (p4d_none(*p4d)) { + pud = (pud_t *)get_zeroed_page(GFP_KERNEL); + if (!pud) + return -1; + + set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); + } + + pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr); + pgprot_val(pgprot) |= pgprot_val(cpa->mask_set); + + ret = populate_pud(cpa, addr, p4d, pgprot); + if (ret < 0) { + /* + * Leave the PUD page in place in case some other CPU or thread + * already found it, but remove any useless entries we just + * added to it. + */ + unmap_pud_range(p4d, addr, + addr + (cpa->numpages << PAGE_SHIFT)); + return ret; + } + + cpa->numpages = ret; + return 0; +} + +static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr, + int primary) +{ + if (cpa->pgd) { + /* + * Right now, we only execute this code path when mapping + * the EFI virtual memory map regions, no other users + * provide a ->pgd value. This may change in the future. + */ + return populate_pgd(cpa, vaddr); + } + + /* + * Ignore all non primary paths. + */ + if (!primary) { + cpa->numpages = 1; + return 0; + } + + /* + * Ignore the NULL PTE for kernel identity mapping, as it is expected + * to have holes. + * Also set numpages to '1' indicating that we processed cpa req for + * one virtual address page and its pfn. TBD: numpages can be set based + * on the initial value and the level returned by lookup_address(). + */ + if (within(vaddr, PAGE_OFFSET, + PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) { + cpa->numpages = 1; + cpa->pfn = __pa(vaddr) >> PAGE_SHIFT; + return 0; + + } else if (__cpa_pfn_in_highmap(cpa->pfn)) { + /* Faults in the highmap are OK, so do not warn: */ + return -EFAULT; + } else { + WARN(1, KERN_WARNING "CPA: called for zero pte. " + "vaddr = %lx cpa->vaddr = %lx\n", vaddr, + *cpa->vaddr); + + return -EFAULT; + } +} + +static int __change_page_attr(struct cpa_data *cpa, int primary) +{ + unsigned long address; + int do_split, err; + unsigned int level; + pte_t *kpte, old_pte; + + address = __cpa_addr(cpa, cpa->curpage); +repeat: + kpte = _lookup_address_cpa(cpa, address, &level); + if (!kpte) + return __cpa_process_fault(cpa, address, primary); + + old_pte = *kpte; + if (pte_none(old_pte)) + return __cpa_process_fault(cpa, address, primary); + + if (level == PG_LEVEL_4K) { + pte_t new_pte; + pgprot_t new_prot = pte_pgprot(old_pte); + unsigned long pfn = pte_pfn(old_pte); + + pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr); + pgprot_val(new_prot) |= pgprot_val(cpa->mask_set); + + cpa_inc_4k_install(); + /* Hand in lpsize = 0 to enforce the protection mechanism */ + new_prot = static_protections(new_prot, address, pfn, 1, 0, + CPA_PROTECT); + + new_prot = pgprot_clear_protnone_bits(new_prot); + + /* + * We need to keep the pfn from the existing PTE, + * after all we're only going to change it's attributes + * not the memory it points to + */ + new_pte = pfn_pte(pfn, new_prot); + cpa->pfn = pfn; + /* + * Do we really change anything ? + */ + if (pte_val(old_pte) != pte_val(new_pte)) { + set_pte_atomic(kpte, new_pte); + cpa->flags |= CPA_FLUSHTLB; + } + cpa->numpages = 1; + return 0; + } + + /* + * Check, whether we can keep the large page intact + * and just change the pte: + */ + do_split = should_split_large_page(kpte, address, cpa); + /* + * When the range fits into the existing large page, + * return. cp->numpages and cpa->tlbflush have been updated in + * try_large_page: + */ + if (do_split <= 0) + return do_split; + + /* + * We have to split the large page: + */ + err = split_large_page(cpa, kpte, address); + if (!err) + goto repeat; + + return err; +} + +static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias); + +static int cpa_process_alias(struct cpa_data *cpa) +{ + struct cpa_data alias_cpa; + unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT); + unsigned long vaddr; + int ret; + + if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1)) + return 0; + + /* + * No need to redo, when the primary call touched the direct + * mapping already: + */ + vaddr = __cpa_addr(cpa, cpa->curpage); + if (!(within(vaddr, PAGE_OFFSET, + PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) { + + alias_cpa = *cpa; + alias_cpa.vaddr = &laddr; + alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); + alias_cpa.curpage = 0; + + ret = __change_page_attr_set_clr(&alias_cpa, 0); + if (ret) + return ret; + } + +#ifdef CONFIG_X86_64 + /* + * If the primary call didn't touch the high mapping already + * and the physical address is inside the kernel map, we need + * to touch the high mapped kernel as well: + */ + if (!within(vaddr, (unsigned long)_text, _brk_end) && + __cpa_pfn_in_highmap(cpa->pfn)) { + unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + + __START_KERNEL_map - phys_base; + alias_cpa = *cpa; + alias_cpa.vaddr = &temp_cpa_vaddr; + alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); + alias_cpa.curpage = 0; + + /* + * The high mapping range is imprecise, so ignore the + * return value. + */ + __change_page_attr_set_clr(&alias_cpa, 0); + } +#endif + + return 0; +} + +static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias) +{ + unsigned long numpages = cpa->numpages; + unsigned long rempages = numpages; + int ret = 0; + + while (rempages) { + /* + * Store the remaining nr of pages for the large page + * preservation check. + */ + cpa->numpages = rempages; + /* for array changes, we can't use large page */ + if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY)) + cpa->numpages = 1; + + if (!debug_pagealloc_enabled()) + spin_lock(&cpa_lock); + ret = __change_page_attr(cpa, checkalias); + if (!debug_pagealloc_enabled()) + spin_unlock(&cpa_lock); + if (ret) + goto out; + + if (checkalias) { + ret = cpa_process_alias(cpa); + if (ret) + goto out; + } + + /* + * Adjust the number of pages with the result of the + * CPA operation. Either a large page has been + * preserved or a single page update happened. + */ + BUG_ON(cpa->numpages > rempages || !cpa->numpages); + rempages -= cpa->numpages; + cpa->curpage += cpa->numpages; + } + +out: + /* Restore the original numpages */ + cpa->numpages = numpages; + return ret; +} + +static int change_page_attr_set_clr(unsigned long *addr, int numpages, + pgprot_t mask_set, pgprot_t mask_clr, + int force_split, int in_flag, + struct page **pages) +{ + struct cpa_data cpa; + int ret, cache, checkalias; + + memset(&cpa, 0, sizeof(cpa)); + + /* + * Check, if we are requested to set a not supported + * feature. Clearing non-supported features is OK. + */ + mask_set = canon_pgprot(mask_set); + + if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split) + return 0; + + /* Ensure we are PAGE_SIZE aligned */ + if (in_flag & CPA_ARRAY) { + int i; + for (i = 0; i < numpages; i++) { + if (addr[i] & ~PAGE_MASK) { + addr[i] &= PAGE_MASK; + WARN_ON_ONCE(1); + } + } + } else if (!(in_flag & CPA_PAGES_ARRAY)) { + /* + * in_flag of CPA_PAGES_ARRAY implies it is aligned. + * No need to check in that case + */ + if (*addr & ~PAGE_MASK) { + *addr &= PAGE_MASK; + /* + * People should not be passing in unaligned addresses: + */ + WARN_ON_ONCE(1); + } + } + + /* Must avoid aliasing mappings in the highmem code */ + kmap_flush_unused(); + + vm_unmap_aliases(); + + cpa.vaddr = addr; + cpa.pages = pages; + cpa.numpages = numpages; + cpa.mask_set = mask_set; + cpa.mask_clr = mask_clr; + cpa.flags = 0; + cpa.curpage = 0; + cpa.force_split = force_split; + + if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY)) + cpa.flags |= in_flag; + + /* No alias checking for _NX bit modifications */ + checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX; + /* Has caller explicitly disabled alias checking? */ + if (in_flag & CPA_NO_CHECK_ALIAS) + checkalias = 0; + + ret = __change_page_attr_set_clr(&cpa, checkalias); + + /* + * Check whether we really changed something: + */ + if (!(cpa.flags & CPA_FLUSHTLB)) + goto out; + + /* + * No need to flush, when we did not set any of the caching + * attributes: + */ + cache = !!pgprot2cachemode(mask_set); + + /* + * On error; flush everything to be sure. + */ + if (ret) { + cpa_flush_all(cache); + goto out; + } + + cpa_flush(&cpa, cache); +out: + return ret; +} + +static inline int change_page_attr_set(unsigned long *addr, int numpages, + pgprot_t mask, int array) +{ + return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0, + (array ? CPA_ARRAY : 0), NULL); +} + +static inline int change_page_attr_clear(unsigned long *addr, int numpages, + pgprot_t mask, int array) +{ + return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0, + (array ? CPA_ARRAY : 0), NULL); +} + +static inline int cpa_set_pages_array(struct page **pages, int numpages, + pgprot_t mask) +{ + return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0, + CPA_PAGES_ARRAY, pages); +} + +static inline int cpa_clear_pages_array(struct page **pages, int numpages, + pgprot_t mask) +{ + return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0, + CPA_PAGES_ARRAY, pages); +} + +int _set_memory_uc(unsigned long addr, int numpages) +{ + /* + * for now UC MINUS. see comments in ioremap() + * If you really need strong UC use ioremap_uc(), but note + * that you cannot override IO areas with set_memory_*() as + * these helpers cannot work with IO memory. + */ + return change_page_attr_set(&addr, numpages, + cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), + 0); +} + +int set_memory_uc(unsigned long addr, int numpages) +{ + int ret; + + /* + * for now UC MINUS. see comments in ioremap() + */ + ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, + _PAGE_CACHE_MODE_UC_MINUS, NULL); + if (ret) + goto out_err; + + ret = _set_memory_uc(addr, numpages); + if (ret) + goto out_free; + + return 0; + +out_free: + memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); +out_err: + return ret; +} +EXPORT_SYMBOL(set_memory_uc); + +int _set_memory_wc(unsigned long addr, int numpages) +{ + int ret; + + ret = change_page_attr_set(&addr, numpages, + cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), + 0); + if (!ret) { + ret = change_page_attr_set_clr(&addr, numpages, + cachemode2pgprot(_PAGE_CACHE_MODE_WC), + __pgprot(_PAGE_CACHE_MASK), + 0, 0, NULL); + } + return ret; +} + +int set_memory_wc(unsigned long addr, int numpages) +{ + int ret; + + ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, + _PAGE_CACHE_MODE_WC, NULL); + if (ret) + return ret; + + ret = _set_memory_wc(addr, numpages); + if (ret) + memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); + + return ret; +} +EXPORT_SYMBOL(set_memory_wc); + +int _set_memory_wt(unsigned long addr, int numpages) +{ + return change_page_attr_set(&addr, numpages, + cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0); +} + +int _set_memory_wb(unsigned long addr, int numpages) +{ + /* WB cache mode is hard wired to all cache attribute bits being 0 */ + return change_page_attr_clear(&addr, numpages, + __pgprot(_PAGE_CACHE_MASK), 0); +} + +int set_memory_wb(unsigned long addr, int numpages) +{ + int ret; + + ret = _set_memory_wb(addr, numpages); + if (ret) + return ret; + + memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); + return 0; +} +EXPORT_SYMBOL(set_memory_wb); + +int set_memory_x(unsigned long addr, int numpages) +{ + if (!(__supported_pte_mask & _PAGE_NX)) + return 0; + + return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0); +} + +int set_memory_nx(unsigned long addr, int numpages) +{ + if (!(__supported_pte_mask & _PAGE_NX)) + return 0; + + return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0); +} + +int set_memory_ro(unsigned long addr, int numpages) +{ + return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0); +} + +int set_memory_rw(unsigned long addr, int numpages) +{ + return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0); +} + +int set_memory_np(unsigned long addr, int numpages) +{ + return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0); +} + +int set_memory_np_noalias(unsigned long addr, int numpages) +{ + int cpa_flags = CPA_NO_CHECK_ALIAS; + + return change_page_attr_set_clr(&addr, numpages, __pgprot(0), + __pgprot(_PAGE_PRESENT), 0, + cpa_flags, NULL); +} + +int set_memory_4k(unsigned long addr, int numpages) +{ + return change_page_attr_set_clr(&addr, numpages, __pgprot(0), + __pgprot(0), 1, 0, NULL); +} + +int set_memory_nonglobal(unsigned long addr, int numpages) +{ + return change_page_attr_clear(&addr, numpages, + __pgprot(_PAGE_GLOBAL), 0); +} + +int set_memory_global(unsigned long addr, int numpages) +{ + return change_page_attr_set(&addr, numpages, + __pgprot(_PAGE_GLOBAL), 0); +} + +static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc) +{ + struct cpa_data cpa; + int ret; + + /* Nothing to do if memory encryption is not active */ + if (!mem_encrypt_active()) + return 0; + + /* Should not be working on unaligned addresses */ + if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr)) + addr &= PAGE_MASK; + + memset(&cpa, 0, sizeof(cpa)); + cpa.vaddr = &addr; + cpa.numpages = numpages; + cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0); + cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC); + cpa.pgd = init_mm.pgd; + + /* Must avoid aliasing mappings in the highmem code */ + kmap_flush_unused(); + vm_unmap_aliases(); + + /* + * Before changing the encryption attribute, we need to flush caches. + */ + cpa_flush(&cpa, 1); + + ret = __change_page_attr_set_clr(&cpa, 1); + + /* + * After changing the encryption attribute, we need to flush TLBs again + * in case any speculative TLB caching occurred (but no need to flush + * caches again). We could just use cpa_flush_all(), but in case TLB + * flushing gets optimized in the cpa_flush() path use the same logic + * as above. + */ + cpa_flush(&cpa, 0); + + return ret; +} + +int set_memory_encrypted(unsigned long addr, int numpages) +{ + return __set_memory_enc_dec(addr, numpages, true); +} +EXPORT_SYMBOL_GPL(set_memory_encrypted); + +int set_memory_decrypted(unsigned long addr, int numpages) +{ + return __set_memory_enc_dec(addr, numpages, false); +} +EXPORT_SYMBOL_GPL(set_memory_decrypted); + +int set_pages_uc(struct page *page, int numpages) +{ + unsigned long addr = (unsigned long)page_address(page); + + return set_memory_uc(addr, numpages); +} +EXPORT_SYMBOL(set_pages_uc); + +static int _set_pages_array(struct page **pages, int numpages, + enum page_cache_mode new_type) +{ + unsigned long start; + unsigned long end; + enum page_cache_mode set_type; + int i; + int free_idx; + int ret; + + for (i = 0; i < numpages; i++) { + if (PageHighMem(pages[i])) + continue; + start = page_to_pfn(pages[i]) << PAGE_SHIFT; + end = start + PAGE_SIZE; + if (memtype_reserve(start, end, new_type, NULL)) + goto err_out; + } + + /* If WC, set to UC- first and then WC */ + set_type = (new_type == _PAGE_CACHE_MODE_WC) ? + _PAGE_CACHE_MODE_UC_MINUS : new_type; + + ret = cpa_set_pages_array(pages, numpages, + cachemode2pgprot(set_type)); + if (!ret && new_type == _PAGE_CACHE_MODE_WC) + ret = change_page_attr_set_clr(NULL, numpages, + cachemode2pgprot( + _PAGE_CACHE_MODE_WC), + __pgprot(_PAGE_CACHE_MASK), + 0, CPA_PAGES_ARRAY, pages); + if (ret) + goto err_out; + return 0; /* Success */ +err_out: + free_idx = i; + for (i = 0; i < free_idx; i++) { + if (PageHighMem(pages[i])) + continue; + start = page_to_pfn(pages[i]) << PAGE_SHIFT; + end = start + PAGE_SIZE; + memtype_free(start, end); + } + return -EINVAL; +} + +int set_pages_array_uc(struct page **pages, int numpages) +{ + return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS); +} +EXPORT_SYMBOL(set_pages_array_uc); + +int set_pages_array_wc(struct page **pages, int numpages) +{ + return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC); +} +EXPORT_SYMBOL(set_pages_array_wc); + +int set_pages_array_wt(struct page **pages, int numpages) +{ + return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT); +} +EXPORT_SYMBOL_GPL(set_pages_array_wt); + +int set_pages_wb(struct page *page, int numpages) +{ + unsigned long addr = (unsigned long)page_address(page); + + return set_memory_wb(addr, numpages); +} +EXPORT_SYMBOL(set_pages_wb); + +int set_pages_array_wb(struct page **pages, int numpages) +{ + int retval; + unsigned long start; + unsigned long end; + int i; + + /* WB cache mode is hard wired to all cache attribute bits being 0 */ + retval = cpa_clear_pages_array(pages, numpages, + __pgprot(_PAGE_CACHE_MASK)); + if (retval) + return retval; + + for (i = 0; i < numpages; i++) { + if (PageHighMem(pages[i])) + continue; + start = page_to_pfn(pages[i]) << PAGE_SHIFT; + end = start + PAGE_SIZE; + memtype_free(start, end); + } + + return 0; +} +EXPORT_SYMBOL(set_pages_array_wb); + +int set_pages_ro(struct page *page, int numpages) +{ + unsigned long addr = (unsigned long)page_address(page); + + return set_memory_ro(addr, numpages); +} + +int set_pages_rw(struct page *page, int numpages) +{ + unsigned long addr = (unsigned long)page_address(page); + + return set_memory_rw(addr, numpages); +} + +static int __set_pages_p(struct page *page, int numpages) +{ + unsigned long tempaddr = (unsigned long) page_address(page); + struct cpa_data cpa = { .vaddr = &tempaddr, + .pgd = NULL, + .numpages = numpages, + .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW), + .mask_clr = __pgprot(0), + .flags = 0}; + + /* + * No alias checking needed for setting present flag. otherwise, + * we may need to break large pages for 64-bit kernel text + * mappings (this adds to complexity if we want to do this from + * atomic context especially). Let's keep it simple! + */ + return __change_page_attr_set_clr(&cpa, 0); +} + +static int __set_pages_np(struct page *page, int numpages) +{ + unsigned long tempaddr = (unsigned long) page_address(page); + struct cpa_data cpa = { .vaddr = &tempaddr, + .pgd = NULL, + .numpages = numpages, + .mask_set = __pgprot(0), + .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), + .flags = 0}; + + /* + * No alias checking needed for setting not present flag. otherwise, + * we may need to break large pages for 64-bit kernel text + * mappings (this adds to complexity if we want to do this from + * atomic context especially). Let's keep it simple! + */ + return __change_page_attr_set_clr(&cpa, 0); +} + +int set_direct_map_invalid_noflush(struct page *page) +{ + return __set_pages_np(page, 1); +} + +int set_direct_map_default_noflush(struct page *page) +{ + return __set_pages_p(page, 1); +} + +void __kernel_map_pages(struct page *page, int numpages, int enable) +{ + if (PageHighMem(page)) + return; + if (!enable) { + debug_check_no_locks_freed(page_address(page), + numpages * PAGE_SIZE); + } + + /* + * The return value is ignored as the calls cannot fail. + * Large pages for identity mappings are not used at boot time + * and hence no memory allocations during large page split. + */ + if (enable) + __set_pages_p(page, numpages); + else + __set_pages_np(page, numpages); + + /* + * We should perform an IPI and flush all tlbs, + * but that can deadlock->flush only current cpu. + * Preemption needs to be disabled around __flush_tlb_all() due to + * CR3 reload in __native_flush_tlb(). + */ + preempt_disable(); + __flush_tlb_all(); + preempt_enable(); + + arch_flush_lazy_mmu_mode(); +} + +#ifdef CONFIG_HIBERNATION +bool kernel_page_present(struct page *page) +{ + unsigned int level; + pte_t *pte; + + if (PageHighMem(page)) + return false; + + pte = lookup_address((unsigned long)page_address(page), &level); + return (pte_val(*pte) & _PAGE_PRESENT); +} +#endif /* CONFIG_HIBERNATION */ + +int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address, + unsigned numpages, unsigned long page_flags) +{ + int retval = -EINVAL; + + struct cpa_data cpa = { + .vaddr = &address, + .pfn = pfn, + .pgd = pgd, + .numpages = numpages, + .mask_set = __pgprot(0), + .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)), + .flags = 0, + }; + + WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); + + if (!(__supported_pte_mask & _PAGE_NX)) + goto out; + + if (!(page_flags & _PAGE_ENC)) + cpa.mask_clr = pgprot_encrypted(cpa.mask_clr); + + cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags); + + retval = __change_page_attr_set_clr(&cpa, 0); + __flush_tlb_all(); + +out: + return retval; +} + +/* + * __flush_tlb_all() flushes mappings only on current CPU and hence this + * function shouldn't be used in an SMP environment. Presently, it's used only + * during boot (way before smp_init()) by EFI subsystem and hence is ok. + */ +int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address, + unsigned long numpages) +{ + int retval; + + /* + * The typical sequence for unmapping is to find a pte through + * lookup_address_in_pgd() (ideally, it should never return NULL because + * the address is already mapped) and change it's protections. As pfn is + * the *target* of a mapping, it's not useful while unmapping. + */ + struct cpa_data cpa = { + .vaddr = &address, + .pfn = 0, + .pgd = pgd, + .numpages = numpages, + .mask_set = __pgprot(0), + .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), + .flags = 0, + }; + + WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); + + retval = __change_page_attr_set_clr(&cpa, 0); + __flush_tlb_all(); + + return retval; +} + +/* + * The testcases use internal knowledge of the implementation that shouldn't + * be exposed to the rest of the kernel. Include these directly here. + */ +#ifdef CONFIG_CPA_DEBUG +#include "cpa-test.c" +#endif diff --cc mm/huge_memory.c index a880932,9b3ee79..f39689a --- a/mm/huge_memory.c +++ b/mm/huge_memory.c @@@ -527,13 -527,24 +527,24 @@@ void prep_transhuge_page(struct page *p set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); } + bool is_transparent_hugepage(struct page *page) + { + if (!PageCompound(page)) + return 0; + + page = compound_head(page); + return is_huge_zero_page(page) || + page[1].compound_dtor == TRANSHUGE_PAGE_DTOR; + } + EXPORT_SYMBOL_GPL(is_transparent_hugepage); + -static unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len, +static unsigned long __thp_get_unmapped_area(struct file *filp, + unsigned long addr, unsigned long len, loff_t off, unsigned long flags, unsigned long size) { - unsigned long addr; loff_t off_end = off + len; loff_t off_align = round_up(off, size); - unsigned long len_pad; + unsigned long len_pad, ret; if (off_end <= off_align || (off_end - off_align) < size) return 0;