From: Brennan Vincent Date: Fri, 5 Apr 2019 00:18:11 +0000 (-0700) Subject: don't attempt to multiply by a sparse matrix (#18737) X-Git-Tag: accepted/tizen/6.5/unified/20211028.231830~406 X-Git-Url: http://review.tizen.org/git/?a=commitdiff_plain;h=d35c39e73b04d7ab95812be8cbda21023e1b5cc4;p=platform%2Fupstream%2Fpytorch.git don't attempt to multiply by a sparse matrix (#18737) Summary: Tested by running the script in #16562 , and there was no error. Then: ``` >>> print(mat.grad) tensor([[1., 2., 3.], [1., 2., 3.], [1., 2., 3.]]) ``` which is correct. Pull Request resolved: https://github.com/pytorch/pytorch/pull/18737 Differential Revision: D14773078 Pulled By: umanwizard fbshipit-source-id: 8aa36eb6f6aa104263a467d9ac91d61b3bfd05f5 --- diff --git a/test/test_sparse.py b/test/test_sparse.py index e2a5dfd..5acf650 100644 --- a/test/test_sparse.py +++ b/test/test_sparse.py @@ -863,8 +863,12 @@ class TestSparse(TestCase): test_shape(7, 8, 9, 20, True) def test_sparse_mm(self): - def test_shape(d1, d2, d3, nnz): - D = torch.randn(d2, d3, device=self.device).requires_grad_(True) + def test_shape(d1, d2, d3, nnz, transposed): + if transposed: + D = torch.randn(d3, d2, + device=self.device).t_().requires_grad_(True) + else: + D = torch.randn(d2, d3, device=self.device).requires_grad_(True) S = self._gen_sparse(2, nnz, [d1, d2])[0] S_dense = S.to_dense().requires_grad_(True) S.requires_grad_(True) @@ -874,7 +878,8 @@ class TestSparse(TestCase): return torch.sparse.mm(S, D) gradcheck(fn, (S, D), check_sparse_nnz=True) - test_shape(7, 8, 9, 20) + test_shape(7, 8, 9, 20, False) + test_shape(7, 8, 9, 20, True) @skipIfRocm def test_dsmm(self): diff --git a/tools/autograd/templates/Functions.cpp b/tools/autograd/templates/Functions.cpp index 68012b0..ba3ccbb 100644 --- a/tools/autograd/templates/Functions.cpp +++ b/tools/autograd/templates/Functions.cpp @@ -524,6 +524,17 @@ Tensor mm_mat1_backward(const Tensor & grad, const Tensor & mat2, const Tensor & Tensor mm_mat2_backward(const Tensor & grad, const Tensor & mat1, IntArrayRef sizes, IntArrayRef strides, const Scalar & alpha) { // if input was column-major, return grad as column-order for efficiency if (strides[0] == 1 && strides[1] == sizes[0]) { + if (mat1.is_sparse()) { + // Since mm(dense, sparse) doesn't exist, + // pass a transposed output matrix to the underlying "addmm" + // function directly. + int64_t out_rows = mat1.size(1); + int64_t out_cols = grad.size(1); + Tensor t = at::zeros({}, grad.options()).expand({out_rows, out_cols}, true); + Tensor r = at::empty({out_cols, out_rows}, grad.options()).t(); + at::s_native_addmm_out(r, t, mat1.t(), grad, alpha, 1); + return r; + } return maybe_multiply(grad.t().mm(mat1).t(), alpha); } else { return maybe_multiply(mat1.t().mm(grad), alpha);