From: Sven Verdoolaege Date: Wed, 21 Apr 2010 15:11:29 +0000 (+0200) Subject: doc: emphasize that we are dealing with integer sets X-Git-Tag: isl-0.03~224 X-Git-Url: http://review.tizen.org/git/?a=commitdiff_plain;h=c19740ffe2e351562ef55f602634fa77782896fc;p=platform%2Fupstream%2Fisl.git doc: emphasize that we are dealing with integer sets --- diff --git a/doc/implementation.tex b/doc/implementation.tex index 7141494..0257d06 100644 --- a/doc/implementation.tex +++ b/doc/implementation.tex @@ -5,7 +5,7 @@ A {\em polyhedral set}\index{polyhedral set} $S$ is a finite union of basic sets $S = \bigcup_i S_i$, each of which can be represented using affine constraints $$ -S_i : \Q^n \to 2^{\Q^d} : \vec s \mapsto +S_i : \Z^n \to 2^{\Z^d} : \vec s \mapsto S_i(\vec s) = \{\, \vec x \in \Z^d \mid \exists \vec z \in \Z^e : A \vec x + B \vec s + D \vec z + \vec c \geq \vec 0 \,\} @@ -18,7 +18,7 @@ and $\vec c \in \Z^m$. \end{definition} \begin{definition}[Parameter Domain of a Set] -Let $S \in \Q^n \to 2^{\Q^d}$ be a set. +Let $S \in \Z^n \to 2^{\Z^d}$ be a set. The {\em parameter domain} of $S$ is the set $$\pdom S \coloneqq \{\, \vec s \in \Z^n \mid S(\vec s) \ne \emptyset \,\}.$$ \end{definition} @@ -27,7 +27,7 @@ $$\pdom S \coloneqq \{\, \vec s \in \Z^n \mid S(\vec s) \ne \emptyset \,\}.$$ A {\em polyhedral relation}\index{polyhedral relation} $R$ is a finite union of basic relations $R = \bigcup_i R_i$ of type -$\Q^n \to 2^{\Q^{d_1+d_2}}$, +$\Z^n \to 2^{\Z^{d_1+d_2}}$, each of which can be represented using affine constraints $$ @@ -45,13 +45,13 @@ and $\vec c \in \Z^m$. \end{definition} \begin{definition}[Parameter Domain of a Relation] -Let $R \in \Q^n \to 2^{\Q^{d+d}}$ be a relation. +Let $R \in \Z^n \to 2^{\Z^{d+d}}$ be a relation. The {\em parameter domain} of $R$ is the set $$\pdom R \coloneqq \{\, \vec s \in \Z^n \mid R(\vec s) \ne \emptyset \,\}.$$ \end{definition} \begin{definition}[Domain of a Relation] -Let $R \in \Q^n \to 2^{\Q^{d+d}}$ be a relation. +Let $R \in \Z^n \to 2^{\Z^{d+d}}$ be a relation. The {\em domain} of $R$ is the polyhedral set $$\domain R \coloneqq \vec s \mapsto \{\, \vec x_1 \in \Z^{d_1} \mid \exists \vec x_2 \in \Z^{d_2} : @@ -61,7 +61,7 @@ $$ \end{definition} \begin{definition}[Range of a Relation] -Let $R \in \Q^n \to 2^{\Q^{d+d}}$ be a relation. +Let $R \in \Z^n \to 2^{\Z^{d+d}}$ be a relation. The {\em range} of $R$ is the polyhedral set $$ \range R \coloneqq \vec s \mapsto @@ -72,8 +72,8 @@ $$ \end{definition} \begin{definition}[Composition of Relations] -Let $R \in \Q^n \to 2^{\Q^{d_1+d_2}}$ and -$S \in \Q^n \to 2^{\Q^{d_2+d_3}}$ be two relations, +Let $R \in \Z^n \to 2^{\Z^{d_1+d_2}}$ and +$S \in \Z^n \to 2^{\Z^{d_2+d_3}}$ be two relations, then the composition of $R$ and $S$ is defined as $$ @@ -89,7 +89,7 @@ $$ \end{definition} \begin{definition}[Difference Set of a Relation] -Let $R \in \Q^n \to 2^{\Q^{d+d}}$ be a relation. +Let $R \in \Z^n \to 2^{\Z^{d+d}}$ be a relation. The difference set ($\Delta \, R$) of $R$ is the set of differences between image elements and the corresponding domain elements, @@ -112,7 +112,7 @@ More details will be added later. \subsection{Introduction} \begin{definition}[Power of a Relation] -Let $R \in \Q^n \to 2^{\Q^{d+d}}$ be a relation and +Let $R \in \Z^n \to 2^{\Z^{d+d}}$ be a relation and $k \in \Z_{\ge 1}$ a positive number, then power $k$ of relation $R$ is defined as \begin{equation} @@ -128,7 +128,7 @@ R \circ R^{k-1} & \text{if $k \ge 2$} \end{definition} \begin{definition}[Transitive Closure of a Relation] -Let $R \in \Q^n \to 2^{\Q^{d+d}}$ be a relation, +Let $R \in \Z^n \to 2^{\Z^{d+d}}$ be a relation, then the transitive closure $R^+$ of $R$ is the union of all positive powers of $R$, $$