From: igor175 Date: Sat, 20 Apr 2013 01:50:26 +0000 (+0000) Subject: Fixed comments in (c,z)lahef.f and (c,z)lahef_rook.f X-Git-Tag: submit/tizen/20180313.231549~486 X-Git-Url: http://review.tizen.org/git/?a=commitdiff_plain;h=a50f292ada846e0c61695172ce53df57e6de0c7c;p=platform%2Fupstream%2Flapack.git Fixed comments in (c,z)lahef.f and (c,z)lahef_rook.f --- diff --git a/SRC/clahef.f b/SRC/clahef.f index 9ba5694b..20ffb392 100644 --- a/SRC/clahef.f +++ b/SRC/clahef.f @@ -1,4 +1,4 @@ -*> \brief \b CLAHEF computes a partial factorization of a complex Hermitian indefinite matrix using the Bunch-Kaufman diagonal pivoting method. +*> \brief \b CLAHEF computes a partial factorization of a complex Hermitian indefinite matrix using the Bunch-Kaufman diagonal pivoting method (blocked algorithm, calling Level 3 BLAS). * * =========== DOCUMENTATION =========== * @@ -428,7 +428,7 @@ * * Compose the columns of the inverse of 2-by-2 pivot * block D in the following way to reduce the number -* of FLOPS when we myltiply panel ( W(kw-1) W(kw) ) by +* of FLOPS when we multiply panel ( W(kw-1) W(kw) ) by * this inverse * * D**(-1) = ( d11 cj(d21) )**(-1) = @@ -739,7 +739,7 @@ * * Compose the columns of the inverse of 2-by-2 pivot * block D in the following way to reduce the number -* of FLOPS when we myltiply panel ( W(kw-1) W(kw) ) by +* of FLOPS when we multiply panel ( W(kw-1) W(kw) ) by * this inverse * * D**(-1) = ( d11 cj(d21) )**(-1) = diff --git a/SRC/clahef_rook.f b/SRC/clahef_rook.f index 951e8444..b55c7705 100644 --- a/SRC/clahef_rook.f +++ b/SRC/clahef_rook.f @@ -1,4 +1,4 @@ -* \brief \b CLAHEF_ROOK computes a partial factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman ("rook") diagonal pivoting method. +* \brief \b CLAHEF_ROOK computes a partial factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman ("rook") diagonal pivoting method (blocked algorithm, calling Level 3 BLAS). * * =========== DOCUMENTATION =========== * @@ -171,7 +171,7 @@ *> *> \verbatim *> -*> November 2012, Igor Kozachenko, +*> November 2012, Igor Kozachenko, *> Computer Science Division, *> University of California, Berkeley *> @@ -548,7 +548,7 @@ * * Compose the columns of the inverse of 2-by-2 pivot * block D in the following way to reduce the number -* of FLOPS when we myltiply panel ( W(kw-1) W(kw) ) by +* of FLOPS when we multiply panel ( W(kw-1) W(kw) ) by * this inverse * * D**(-1) = ( d11 cj(d21) )**(-1) = @@ -975,7 +975,7 @@ * * Compose the columns of the inverse of 2-by-2 pivot * block D in the following way to reduce the number -* of FLOPS when we myltiply panel ( W(k) W(k+1) ) by +* of FLOPS when we multiply panel ( W(k) W(k+1) ) by * this inverse * * D**(-1) = ( d11 cj(d21) )**(-1) = diff --git a/SRC/zlahef.f b/SRC/zlahef.f index b7d5e47a..2755ffd8 100644 --- a/SRC/zlahef.f +++ b/SRC/zlahef.f @@ -1,4 +1,4 @@ -*> \brief \b ZLAHEF computes a partial factorization of a complex Hermitian indefinite matrix using the Bunch-Kaufman diagonal pivoting method. +*> \brief \b ZLAHEF computes a partial factorization of a complex Hermitian indefinite matrix using the Bunch-Kaufman diagonal pivoting method (blocked algorithm, calling Level 3 BLAS). * * =========== DOCUMENTATION =========== * @@ -428,7 +428,7 @@ * * Compose the columns of the inverse of 2-by-2 pivot * block D in the following way to reduce the number -* of FLOPS when we myltiply panel ( W(kw-1) W(kw) ) by +* of FLOPS when we multiply panel ( W(kw-1) W(kw) ) by * this inverse * * D**(-1) = ( d11 cj(d21) )**(-1) = @@ -747,7 +747,7 @@ * * Compose the columns of the inverse of 2-by-2 pivot * block D in the following way to reduce the number -* of FLOPS when we myltiply panel ( W(kw-1) W(kw) ) by +* of FLOPS when we multiply panel ( W(kw-1) W(kw) ) by * this inverse * * D**(-1) = ( d11 cj(d21) )**(-1) = diff --git a/SRC/zlahef_rook.f b/SRC/zlahef_rook.f index 4d355fed..01713a58 100644 --- a/SRC/zlahef_rook.f +++ b/SRC/zlahef_rook.f @@ -1,4 +1,4 @@ -* \brief \b ZLAHEF_ROOK computes a partial factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman ("rook") diagonal pivoting method. +* \brief \b ZLAHEF_ROOK computes a partial factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman ("rook") diagonal pivoting method (blocked algorithm, calling Level 3 BLAS). * * =========== DOCUMENTATION =========== * @@ -548,7 +548,7 @@ * * Compose the columns of the inverse of 2-by-2 pivot * block D in the following way to reduce the number -* of FLOPS when we myltiply panel ( W(kw-1) W(kw) ) by +* of FLOPS when we multiply panel ( W(kw-1) W(kw) ) by * this inverse * * D**(-1) = ( d11 cj(d21) )**(-1) = @@ -975,7 +975,7 @@ * * Compose the columns of the inverse of 2-by-2 pivot * block D in the following way to reduce the number -* of FLOPS when we myltiply panel ( W(k) W(k+1) ) by +* of FLOPS when we multiply panel ( W(k) W(k+1) ) by * this inverse * * D**(-1) = ( d11 cj(d21) )**(-1) =