From: Aaron Plattner Date: Sat, 22 Mar 2008 01:18:50 +0000 (-0700) Subject: Move pixmanFetchSourcePict and friends into pixman-source.c. X-Git-Tag: pixman-0.10.0~15 X-Git-Url: http://review.tizen.org/git/?a=commitdiff_plain;h=90ff2bfbe5fd7f1e3aa5273e0fb72ae05e1e88c1;p=platform%2Fupstream%2Fpixman.git Move pixmanFetchSourcePict and friends into pixman-source.c. --- diff --git a/pixman/Makefile.am b/pixman/Makefile.am index 259c2a5..79c6788 100644 --- a/pixman/Makefile.am +++ b/pixman/Makefile.am @@ -12,6 +12,7 @@ libpixman_1_la_SOURCES = \ pixman-compose.c \ pixman-compose-accessors.c \ pixman-pict.c \ + pixman-source.c \ pixman-utils.c \ pixman-edge.c \ pixman-edge-accessors.c \ diff --git a/pixman/Makefile.win32 b/pixman/Makefile.win32 index 4a772ee..b4096f2 100644 --- a/pixman/Makefile.win32 +++ b/pixman/Makefile.win32 @@ -30,6 +30,7 @@ SOURCES = \ pixman-compose.c \ pixman-compose-accessors.c \ pixman-pict.c \ + pixman-source.c \ pixman-utils.c \ pixman-edge.c \ pixman-edge-accessors.c \ diff --git a/pixman/pixman-compose.c b/pixman/pixman-compose.c index f713c43..00d0171 100644 --- a/pixman/pixman-compose.c +++ b/pixman/pixman-compose.c @@ -140,654 +140,6 @@ FbComposeFunctions PIXMAN_COMPOSE_FUNCTIONS = { pixman_fbCombineMaskU }; -typedef struct -{ - uint32_t left_ag; - uint32_t left_rb; - uint32_t right_ag; - uint32_t right_rb; - int32_t left_x; - int32_t right_x; - int32_t stepper; - - pixman_gradient_stop_t *stops; - int num_stops; - unsigned int spread; - - int need_reset; -} GradientWalker; - -static void -_gradient_walker_init (GradientWalker *walker, - gradient_t *gradient, - unsigned int spread) -{ - walker->num_stops = gradient->n_stops; - walker->stops = gradient->stops; - walker->left_x = 0; - walker->right_x = 0x10000; - walker->stepper = 0; - walker->left_ag = 0; - walker->left_rb = 0; - walker->right_ag = 0; - walker->right_rb = 0; - walker->spread = spread; - - walker->need_reset = TRUE; -} - -static void -_gradient_walker_reset (GradientWalker *walker, - pixman_fixed_32_32_t pos) -{ - int32_t x, left_x, right_x; - pixman_color_t *left_c, *right_c; - int n, count = walker->num_stops; - pixman_gradient_stop_t * stops = walker->stops; - - static const pixman_color_t transparent_black = { 0, 0, 0, 0 }; - - switch (walker->spread) - { - case PIXMAN_REPEAT_NORMAL: - x = (int32_t)pos & 0xFFFF; - for (n = 0; n < count; n++) - if (x < stops[n].x) - break; - if (n == 0) { - left_x = stops[count-1].x - 0x10000; - left_c = &stops[count-1].color; - } else { - left_x = stops[n-1].x; - left_c = &stops[n-1].color; - } - - if (n == count) { - right_x = stops[0].x + 0x10000; - right_c = &stops[0].color; - } else { - right_x = stops[n].x; - right_c = &stops[n].color; - } - left_x += (pos - x); - right_x += (pos - x); - break; - - case PIXMAN_REPEAT_PAD: - for (n = 0; n < count; n++) - if (pos < stops[n].x) - break; - - if (n == 0) { - left_x = INT32_MIN; - left_c = &stops[0].color; - } else { - left_x = stops[n-1].x; - left_c = &stops[n-1].color; - } - - if (n == count) { - right_x = INT32_MAX; - right_c = &stops[n-1].color; - } else { - right_x = stops[n].x; - right_c = &stops[n].color; - } - break; - - case PIXMAN_REPEAT_REFLECT: - x = (int32_t)pos & 0xFFFF; - if ((int32_t)pos & 0x10000) - x = 0x10000 - x; - for (n = 0; n < count; n++) - if (x < stops[n].x) - break; - - if (n == 0) { - left_x = -stops[0].x; - left_c = &stops[0].color; - } else { - left_x = stops[n-1].x; - left_c = &stops[n-1].color; - } - - if (n == count) { - right_x = 0x20000 - stops[n-1].x; - right_c = &stops[n-1].color; - } else { - right_x = stops[n].x; - right_c = &stops[n].color; - } - - if ((int32_t)pos & 0x10000) { - pixman_color_t *tmp_c; - int32_t tmp_x; - - tmp_x = 0x10000 - right_x; - right_x = 0x10000 - left_x; - left_x = tmp_x; - - tmp_c = right_c; - right_c = left_c; - left_c = tmp_c; - - x = 0x10000 - x; - } - left_x += (pos - x); - right_x += (pos - x); - break; - - default: /* RepeatNone */ - for (n = 0; n < count; n++) - if (pos < stops[n].x) - break; - - if (n == 0) - { - left_x = INT32_MIN; - right_x = stops[0].x; - left_c = right_c = (pixman_color_t*) &transparent_black; - } - else if (n == count) - { - left_x = stops[n-1].x; - right_x = INT32_MAX; - left_c = right_c = (pixman_color_t*) &transparent_black; - } - else - { - left_x = stops[n-1].x; - right_x = stops[n].x; - left_c = &stops[n-1].color; - right_c = &stops[n].color; - } - } - - walker->left_x = left_x; - walker->right_x = right_x; - walker->left_ag = ((left_c->alpha >> 8) << 16) | (left_c->green >> 8); - walker->left_rb = ((left_c->red & 0xff00) << 8) | (left_c->blue >> 8); - walker->right_ag = ((right_c->alpha >> 8) << 16) | (right_c->green >> 8); - walker->right_rb = ((right_c->red & 0xff00) << 8) | (right_c->blue >> 8); - - if ( walker->left_x == walker->right_x || - ( walker->left_ag == walker->right_ag && - walker->left_rb == walker->right_rb ) ) - { - walker->stepper = 0; - } - else - { - int32_t width = right_x - left_x; - walker->stepper = ((1 << 24) + width/2)/width; - } - - walker->need_reset = FALSE; -} - -#define GRADIENT_WALKER_NEED_RESET(w,x) \ - ( (w)->need_reset || (x) < (w)->left_x || (x) >= (w)->right_x) - - -/* the following assumes that GRADIENT_WALKER_NEED_RESET(w,x) is FALSE */ -static uint32_t -_gradient_walker_pixel (GradientWalker *walker, - pixman_fixed_32_32_t x) -{ - int dist, idist; - uint32_t t1, t2, a, color; - - if (GRADIENT_WALKER_NEED_RESET (walker, x)) - _gradient_walker_reset (walker, x); - - dist = ((int)(x - walker->left_x)*walker->stepper) >> 16; - idist = 256 - dist; - - /* combined INTERPOLATE and premultiply */ - t1 = walker->left_rb*idist + walker->right_rb*dist; - t1 = (t1 >> 8) & 0xff00ff; - - t2 = walker->left_ag*idist + walker->right_ag*dist; - t2 &= 0xff00ff00; - - color = t2 & 0xff000000; - a = t2 >> 24; - - t1 = t1*a + 0x800080; - t1 = (t1 + ((t1 >> 8) & 0xff00ff)) >> 8; - - t2 = (t2 >> 8)*a + 0x800080; - t2 = (t2 + ((t2 >> 8) & 0xff00ff)); - - return (color | (t1 & 0xff00ff) | (t2 & 0xff00)); -} - -static void pixmanFetchSourcePict(source_image_t * pict, int x, int y, int width, uint32_t *buffer, uint32_t *mask, uint32_t maskBits) -{ -#if 0 - SourcePictPtr pGradient = pict->pSourcePict; -#endif - GradientWalker walker; - uint32_t *end = buffer + width; - gradient_t *gradient; - - if (pict->common.type == SOLID) - { - register uint32_t color = ((solid_fill_t *)pict)->color; - - while (buffer < end) - *(buffer++) = color; - - return; - } - - gradient = (gradient_t *)pict; - - _gradient_walker_init (&walker, gradient, pict->common.repeat); - - if (pict->common.type == LINEAR) { - pixman_vector_t v, unit; - pixman_fixed_32_32_t l; - pixman_fixed_48_16_t dx, dy, a, b, off; - linear_gradient_t *linear = (linear_gradient_t *)pict; - - /* reference point is the center of the pixel */ - v.vector[0] = pixman_int_to_fixed(x) + pixman_fixed_1/2; - v.vector[1] = pixman_int_to_fixed(y) + pixman_fixed_1/2; - v.vector[2] = pixman_fixed_1; - if (pict->common.transform) { - if (!pixman_transform_point_3d (pict->common.transform, &v)) - return; - unit.vector[0] = pict->common.transform->matrix[0][0]; - unit.vector[1] = pict->common.transform->matrix[1][0]; - unit.vector[2] = pict->common.transform->matrix[2][0]; - } else { - unit.vector[0] = pixman_fixed_1; - unit.vector[1] = 0; - unit.vector[2] = 0; - } - - dx = linear->p2.x - linear->p1.x; - dy = linear->p2.y - linear->p1.y; - l = dx*dx + dy*dy; - if (l != 0) { - a = (dx << 32) / l; - b = (dy << 32) / l; - off = (-a*linear->p1.x - b*linear->p1.y)>>16; - } - if (l == 0 || (unit.vector[2] == 0 && v.vector[2] == pixman_fixed_1)) { - pixman_fixed_48_16_t inc, t; - /* affine transformation only */ - if (l == 0) { - t = 0; - inc = 0; - } else { - t = ((a*v.vector[0] + b*v.vector[1]) >> 16) + off; - inc = (a * unit.vector[0] + b * unit.vector[1]) >> 16; - } - - if (pict->class == SOURCE_IMAGE_CLASS_VERTICAL) - { - register uint32_t color; - - color = _gradient_walker_pixel( &walker, t ); - while (buffer < end) - *(buffer++) = color; - } - else - { - if (!mask) { - while (buffer < end) - { - *(buffer) = _gradient_walker_pixel (&walker, t); - buffer += 1; - t += inc; - } - } else { - while (buffer < end) { - if (*mask++ & maskBits) - { - *(buffer) = _gradient_walker_pixel (&walker, t); - } - buffer += 1; - t += inc; - } - } - } - } - else /* projective transformation */ - { - pixman_fixed_48_16_t t; - - if (pict->class == SOURCE_IMAGE_CLASS_VERTICAL) - { - register uint32_t color; - - if (v.vector[2] == 0) - { - t = 0; - } - else - { - pixman_fixed_48_16_t x, y; - - x = ((pixman_fixed_48_16_t) v.vector[0] << 16) / v.vector[2]; - y = ((pixman_fixed_48_16_t) v.vector[1] << 16) / v.vector[2]; - t = ((a * x + b * y) >> 16) + off; - } - - color = _gradient_walker_pixel( &walker, t ); - while (buffer < end) - *(buffer++) = color; - } - else - { - while (buffer < end) - { - if (!mask || *mask++ & maskBits) - { - if (v.vector[2] == 0) { - t = 0; - } else { - pixman_fixed_48_16_t x, y; - x = ((pixman_fixed_48_16_t)v.vector[0] << 16) / v.vector[2]; - y = ((pixman_fixed_48_16_t)v.vector[1] << 16) / v.vector[2]; - t = ((a*x + b*y) >> 16) + off; - } - *(buffer) = _gradient_walker_pixel (&walker, t); - } - ++buffer; - v.vector[0] += unit.vector[0]; - v.vector[1] += unit.vector[1]; - v.vector[2] += unit.vector[2]; - } - } - } - } else { - -/* - * In the radial gradient problem we are given two circles (c₁,r₁) and - * (c₂,r₂) that define the gradient itself. Then, for any point p, we - * must compute the value(s) of t within [0.0, 1.0] representing the - * circle(s) that would color the point. - * - * There are potentially two values of t since the point p can be - * colored by both sides of the circle, (which happens whenever one - * circle is not entirely contained within the other). - * - * If we solve for a value of t that is outside of [0.0, 1.0] then we - * use the extend mode (NONE, REPEAT, REFLECT, or PAD) to map to a - * value within [0.0, 1.0]. - * - * Here is an illustration of the problem: - * - * p₂ - * p • - * • ╲ - * · ╲r₂ - * p₁ · ╲ - * • θ╲ - * ╲ ╌╌• - * ╲r₁ · c₂ - * θ╲ · - * ╌╌• - * c₁ - * - * Given (c₁,r₁), (c₂,r₂) and p, we must find an angle θ such that two - * points p₁ and p₂ on the two circles are collinear with p. Then, the - * desired value of t is the ratio of the length of p₁p to the length - * of p₁p₂. - * - * So, we have six unknown values: (p₁x, p₁y), (p₂x, p₂y), θ and t. - * We can also write six equations that constrain the problem: - * - * Point p₁ is a distance r₁ from c₁ at an angle of θ: - * - * 1. p₁x = c₁x + r₁·cos θ - * 2. p₁y = c₁y + r₁·sin θ - * - * Point p₂ is a distance r₂ from c₂ at an angle of θ: - * - * 3. p₂x = c₂x + r2·cos θ - * 4. p₂y = c₂y + r2·sin θ - * - * Point p lies at a fraction t along the line segment p₁p₂: - * - * 5. px = t·p₂x + (1-t)·p₁x - * 6. py = t·p₂y + (1-t)·p₁y - * - * To solve, first subtitute 1-4 into 5 and 6: - * - * px = t·(c₂x + r₂·cos θ) + (1-t)·(c₁x + r₁·cos θ) - * py = t·(c₂y + r₂·sin θ) + (1-t)·(c₁y + r₁·sin θ) - * - * Then solve each for cos θ and sin θ expressed as a function of t: - * - * cos θ = (-(c₂x - c₁x)·t + (px - c₁x)) / ((r₂-r₁)·t + r₁) - * sin θ = (-(c₂y - c₁y)·t + (py - c₁y)) / ((r₂-r₁)·t + r₁) - * - * To simplify this a bit, we define new variables for several of the - * common terms as shown below: - * - * p₂ - * p • - * • ╲ - * · ┆ ╲r₂ - * p₁ · ┆ ╲ - * • pdy┆ ╲ - * ╲ ┆ •c₂ - * ╲r₁ ┆ · ┆ - * ╲ ·┆ ┆cdy - * •╌╌╌╌┴╌╌╌╌╌╌╌┘ - * c₁ pdx cdx - * - * cdx = (c₂x - c₁x) - * cdy = (c₂y - c₁y) - * dr = r₂-r₁ - * pdx = px - c₁x - * pdy = py - c₁y - * - * Note that cdx, cdy, and dr do not depend on point p at all, so can - * be pre-computed for the entire gradient. The simplifed equations - * are now: - * - * cos θ = (-cdx·t + pdx) / (dr·t + r₁) - * sin θ = (-cdy·t + pdy) / (dr·t + r₁) - * - * Finally, to get a single function of t and eliminate the last - * unknown θ, we use the identity sin²θ + cos²θ = 1. First, square - * each equation, (we knew a quadratic was coming since it must be - * possible to obtain two solutions in some cases): - * - * cos²θ = (cdx²t² - 2·cdx·pdx·t + pdx²) / (dr²·t² + 2·r₁·dr·t + r₁²) - * sin²θ = (cdy²t² - 2·cdy·pdy·t + pdy²) / (dr²·t² + 2·r₁·dr·t + r₁²) - * - * Then add both together, set the result equal to 1, and express as a - * standard quadratic equation in t of the form At² + Bt + C = 0 - * - * (cdx² + cdy² - dr²)·t² - 2·(cdx·pdx + cdy·pdy + r₁·dr)·t + (pdx² + pdy² - r₁²) = 0 - * - * In other words: - * - * A = cdx² + cdy² - dr² - * B = -2·(pdx·cdx + pdy·cdy + r₁·dr) - * C = pdx² + pdy² - r₁² - * - * And again, notice that A does not depend on p, so can be - * precomputed. From here we just use the quadratic formula to solve - * for t: - * - * t = (-2·B ± ⎷(B² - 4·A·C)) / 2·A - */ - /* radial or conical */ - pixman_bool_t affine = TRUE; - double cx = 1.; - double cy = 0.; - double cz = 0.; - double rx = x + 0.5; - double ry = y + 0.5; - double rz = 1.; - - if (pict->common.transform) { - pixman_vector_t v; - /* reference point is the center of the pixel */ - v.vector[0] = pixman_int_to_fixed(x) + pixman_fixed_1/2; - v.vector[1] = pixman_int_to_fixed(y) + pixman_fixed_1/2; - v.vector[2] = pixman_fixed_1; - if (!pixman_transform_point_3d (pict->common.transform, &v)) - return; - - cx = pict->common.transform->matrix[0][0]/65536.; - cy = pict->common.transform->matrix[1][0]/65536.; - cz = pict->common.transform->matrix[2][0]/65536.; - rx = v.vector[0]/65536.; - ry = v.vector[1]/65536.; - rz = v.vector[2]/65536.; - affine = pict->common.transform->matrix[2][0] == 0 && v.vector[2] == pixman_fixed_1; - } - - if (pict->common.type == RADIAL) { - radial_gradient_t *radial = (radial_gradient_t *)pict; - if (affine) { - while (buffer < end) { - if (!mask || *mask++ & maskBits) - { - double pdx, pdy; - double B, C; - double det; - double c1x = radial->c1.x / 65536.0; - double c1y = radial->c1.y / 65536.0; - double r1 = radial->c1.radius / 65536.0; - pixman_fixed_48_16_t t; - - pdx = rx - c1x; - pdy = ry - c1y; - - B = -2 * ( pdx * radial->cdx - + pdy * radial->cdy - + r1 * radial->dr); - C = (pdx * pdx + pdy * pdy - r1 * r1); - - det = (B * B) - (4 * radial->A * C); - if (det < 0.0) - det = 0.0; - - if (radial->A < 0) - t = (pixman_fixed_48_16_t) ((- B - sqrt(det)) / (2.0 * radial->A) * 65536); - else - t = (pixman_fixed_48_16_t) ((- B + sqrt(det)) / (2.0 * radial->A) * 65536); - - *(buffer) = _gradient_walker_pixel (&walker, t); - } - ++buffer; - - rx += cx; - ry += cy; - } - } else { - /* projective */ - while (buffer < end) { - if (!mask || *mask++ & maskBits) - { - double pdx, pdy; - double B, C; - double det; - double c1x = radial->c1.x / 65536.0; - double c1y = radial->c1.y / 65536.0; - double r1 = radial->c1.radius / 65536.0; - pixman_fixed_48_16_t t; - double x, y; - - if (rz != 0) { - x = rx/rz; - y = ry/rz; - } else { - x = y = 0.; - } - - pdx = x - c1x; - pdy = y - c1y; - - B = -2 * ( pdx * radial->cdx - + pdy * radial->cdy - + r1 * radial->dr); - C = (pdx * pdx + pdy * pdy - r1 * r1); - - det = (B * B) - (4 * radial->A * C); - if (det < 0.0) - det = 0.0; - - if (radial->A < 0) - t = (pixman_fixed_48_16_t) ((- B - sqrt(det)) / (2.0 * radial->A) * 65536); - else - t = (pixman_fixed_48_16_t) ((- B + sqrt(det)) / (2.0 * radial->A) * 65536); - - *(buffer) = _gradient_walker_pixel (&walker, t); - } - ++buffer; - - rx += cx; - ry += cy; - rz += cz; - } - } - } else /* SourcePictTypeConical */ { - conical_gradient_t *conical = (conical_gradient_t *)pict; - double a = conical->angle/(180.*65536); - if (affine) { - rx -= conical->center.x/65536.; - ry -= conical->center.y/65536.; - - while (buffer < end) { - double angle; - - if (!mask || *mask++ & maskBits) - { - pixman_fixed_48_16_t t; - - angle = atan2(ry, rx) + a; - t = (pixman_fixed_48_16_t) (angle * (65536. / (2*M_PI))); - - *(buffer) = _gradient_walker_pixel (&walker, t); - } - - ++buffer; - rx += cx; - ry += cy; - } - } else { - while (buffer < end) { - double x, y; - double angle; - - if (!mask || *mask++ & maskBits) - { - pixman_fixed_48_16_t t; - - if (rz != 0) { - x = rx/rz; - y = ry/rz; - } else { - x = y = 0.; - } - x -= conical->center.x/65536.; - y -= conical->center.y/65536.; - angle = atan2(y, x) + a; - t = (pixman_fixed_48_16_t) (angle * (65536. / (2*M_PI))); - - *(buffer) = _gradient_walker_pixel (&walker, t); - } - - ++buffer; - rx += cx; - ry += cy; - rz += cz; - } - } - } - } -} - /* * Fetch from region strategies */ diff --git a/pixman/pixman-private.h b/pixman/pixman-private.h index b0aa375..3d67572 100644 --- a/pixman/pixman-private.h +++ b/pixman/pixman-private.h @@ -188,6 +188,9 @@ fetchProc pixman_fetchProcForPicture_accessors (bits_image_t *); fetchPixelProc pixman_fetchPixelProcForPicture_accessors (bits_image_t *); storeProc pixman_storeProcForPicture_accessors (bits_image_t *); +void pixmanFetchSourcePict(source_image_t *, int x, int y, int width, + uint32_t *buffer, uint32_t *mask, uint32_t maskBits); + /* end */ typedef enum diff --git a/pixman/pixman-source.c b/pixman/pixman-source.c new file mode 100644 index 0000000..a5a4235 --- /dev/null +++ b/pixman/pixman-source.c @@ -0,0 +1,681 @@ +/* + * + * Copyright © 2000 Keith Packard, member of The XFree86 Project, Inc. + * 2005 Lars Knoll & Zack Rusin, Trolltech + * + * Permission to use, copy, modify, distribute, and sell this software and its + * documentation for any purpose is hereby granted without fee, provided that + * the above copyright notice appear in all copies and that both that + * copyright notice and this permission notice appear in supporting + * documentation, and that the name of Keith Packard not be used in + * advertising or publicity pertaining to distribution of the software without + * specific, written prior permission. Keith Packard makes no + * representations about the suitability of this software for any purpose. It + * is provided "as is" without express or implied warranty. + * + * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS + * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND + * FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY + * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN + * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING + * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS + * SOFTWARE. + */ + +#ifdef HAVE_CONFIG_H +#include +#endif + +#include + +#include "pixman-private.h" + +typedef struct +{ + uint32_t left_ag; + uint32_t left_rb; + uint32_t right_ag; + uint32_t right_rb; + int32_t left_x; + int32_t right_x; + int32_t stepper; + + pixman_gradient_stop_t *stops; + int num_stops; + unsigned int spread; + + int need_reset; +} GradientWalker; + +static void +_gradient_walker_init (GradientWalker *walker, + gradient_t *gradient, + unsigned int spread) +{ + walker->num_stops = gradient->n_stops; + walker->stops = gradient->stops; + walker->left_x = 0; + walker->right_x = 0x10000; + walker->stepper = 0; + walker->left_ag = 0; + walker->left_rb = 0; + walker->right_ag = 0; + walker->right_rb = 0; + walker->spread = spread; + + walker->need_reset = TRUE; +} + +static void +_gradient_walker_reset (GradientWalker *walker, + pixman_fixed_32_32_t pos) +{ + int32_t x, left_x, right_x; + pixman_color_t *left_c, *right_c; + int n, count = walker->num_stops; + pixman_gradient_stop_t * stops = walker->stops; + + static const pixman_color_t transparent_black = { 0, 0, 0, 0 }; + + switch (walker->spread) + { + case PIXMAN_REPEAT_NORMAL: + x = (int32_t)pos & 0xFFFF; + for (n = 0; n < count; n++) + if (x < stops[n].x) + break; + if (n == 0) { + left_x = stops[count-1].x - 0x10000; + left_c = &stops[count-1].color; + } else { + left_x = stops[n-1].x; + left_c = &stops[n-1].color; + } + + if (n == count) { + right_x = stops[0].x + 0x10000; + right_c = &stops[0].color; + } else { + right_x = stops[n].x; + right_c = &stops[n].color; + } + left_x += (pos - x); + right_x += (pos - x); + break; + + case PIXMAN_REPEAT_PAD: + for (n = 0; n < count; n++) + if (pos < stops[n].x) + break; + + if (n == 0) { + left_x = INT32_MIN; + left_c = &stops[0].color; + } else { + left_x = stops[n-1].x; + left_c = &stops[n-1].color; + } + + if (n == count) { + right_x = INT32_MAX; + right_c = &stops[n-1].color; + } else { + right_x = stops[n].x; + right_c = &stops[n].color; + } + break; + + case PIXMAN_REPEAT_REFLECT: + x = (int32_t)pos & 0xFFFF; + if ((int32_t)pos & 0x10000) + x = 0x10000 - x; + for (n = 0; n < count; n++) + if (x < stops[n].x) + break; + + if (n == 0) { + left_x = -stops[0].x; + left_c = &stops[0].color; + } else { + left_x = stops[n-1].x; + left_c = &stops[n-1].color; + } + + if (n == count) { + right_x = 0x20000 - stops[n-1].x; + right_c = &stops[n-1].color; + } else { + right_x = stops[n].x; + right_c = &stops[n].color; + } + + if ((int32_t)pos & 0x10000) { + pixman_color_t *tmp_c; + int32_t tmp_x; + + tmp_x = 0x10000 - right_x; + right_x = 0x10000 - left_x; + left_x = tmp_x; + + tmp_c = right_c; + right_c = left_c; + left_c = tmp_c; + + x = 0x10000 - x; + } + left_x += (pos - x); + right_x += (pos - x); + break; + + default: /* RepeatNone */ + for (n = 0; n < count; n++) + if (pos < stops[n].x) + break; + + if (n == 0) + { + left_x = INT32_MIN; + right_x = stops[0].x; + left_c = right_c = (pixman_color_t*) &transparent_black; + } + else if (n == count) + { + left_x = stops[n-1].x; + right_x = INT32_MAX; + left_c = right_c = (pixman_color_t*) &transparent_black; + } + else + { + left_x = stops[n-1].x; + right_x = stops[n].x; + left_c = &stops[n-1].color; + right_c = &stops[n].color; + } + } + + walker->left_x = left_x; + walker->right_x = right_x; + walker->left_ag = ((left_c->alpha >> 8) << 16) | (left_c->green >> 8); + walker->left_rb = ((left_c->red & 0xff00) << 8) | (left_c->blue >> 8); + walker->right_ag = ((right_c->alpha >> 8) << 16) | (right_c->green >> 8); + walker->right_rb = ((right_c->red & 0xff00) << 8) | (right_c->blue >> 8); + + if ( walker->left_x == walker->right_x || + ( walker->left_ag == walker->right_ag && + walker->left_rb == walker->right_rb ) ) + { + walker->stepper = 0; + } + else + { + int32_t width = right_x - left_x; + walker->stepper = ((1 << 24) + width/2)/width; + } + + walker->need_reset = FALSE; +} + +#define GRADIENT_WALKER_NEED_RESET(w,x) \ + ( (w)->need_reset || (x) < (w)->left_x || (x) >= (w)->right_x) + + +/* the following assumes that GRADIENT_WALKER_NEED_RESET(w,x) is FALSE */ +static uint32_t +_gradient_walker_pixel (GradientWalker *walker, + pixman_fixed_32_32_t x) +{ + int dist, idist; + uint32_t t1, t2, a, color; + + if (GRADIENT_WALKER_NEED_RESET (walker, x)) + _gradient_walker_reset (walker, x); + + dist = ((int)(x - walker->left_x)*walker->stepper) >> 16; + idist = 256 - dist; + + /* combined INTERPOLATE and premultiply */ + t1 = walker->left_rb*idist + walker->right_rb*dist; + t1 = (t1 >> 8) & 0xff00ff; + + t2 = walker->left_ag*idist + walker->right_ag*dist; + t2 &= 0xff00ff00; + + color = t2 & 0xff000000; + a = t2 >> 24; + + t1 = t1*a + 0x800080; + t1 = (t1 + ((t1 >> 8) & 0xff00ff)) >> 8; + + t2 = (t2 >> 8)*a + 0x800080; + t2 = (t2 + ((t2 >> 8) & 0xff00ff)); + + return (color | (t1 & 0xff00ff) | (t2 & 0xff00)); +} + +void pixmanFetchSourcePict(source_image_t * pict, int x, int y, int width, + uint32_t *buffer, uint32_t *mask, uint32_t maskBits) +{ +#if 0 + SourcePictPtr pGradient = pict->pSourcePict; +#endif + GradientWalker walker; + uint32_t *end = buffer + width; + gradient_t *gradient; + + if (pict->common.type == SOLID) + { + register uint32_t color = ((solid_fill_t *)pict)->color; + + while (buffer < end) + *(buffer++) = color; + + return; + } + + gradient = (gradient_t *)pict; + + _gradient_walker_init (&walker, gradient, pict->common.repeat); + + if (pict->common.type == LINEAR) { + pixman_vector_t v, unit; + pixman_fixed_32_32_t l; + pixman_fixed_48_16_t dx, dy, a, b, off; + linear_gradient_t *linear = (linear_gradient_t *)pict; + + /* reference point is the center of the pixel */ + v.vector[0] = pixman_int_to_fixed(x) + pixman_fixed_1/2; + v.vector[1] = pixman_int_to_fixed(y) + pixman_fixed_1/2; + v.vector[2] = pixman_fixed_1; + if (pict->common.transform) { + if (!pixman_transform_point_3d (pict->common.transform, &v)) + return; + unit.vector[0] = pict->common.transform->matrix[0][0]; + unit.vector[1] = pict->common.transform->matrix[1][0]; + unit.vector[2] = pict->common.transform->matrix[2][0]; + } else { + unit.vector[0] = pixman_fixed_1; + unit.vector[1] = 0; + unit.vector[2] = 0; + } + + dx = linear->p2.x - linear->p1.x; + dy = linear->p2.y - linear->p1.y; + l = dx*dx + dy*dy; + if (l != 0) { + a = (dx << 32) / l; + b = (dy << 32) / l; + off = (-a*linear->p1.x - b*linear->p1.y)>>16; + } + if (l == 0 || (unit.vector[2] == 0 && v.vector[2] == pixman_fixed_1)) { + pixman_fixed_48_16_t inc, t; + /* affine transformation only */ + if (l == 0) { + t = 0; + inc = 0; + } else { + t = ((a*v.vector[0] + b*v.vector[1]) >> 16) + off; + inc = (a * unit.vector[0] + b * unit.vector[1]) >> 16; + } + + if (pict->class == SOURCE_IMAGE_CLASS_VERTICAL) + { + register uint32_t color; + + color = _gradient_walker_pixel( &walker, t ); + while (buffer < end) + *(buffer++) = color; + } + else + { + if (!mask) { + while (buffer < end) + { + *(buffer) = _gradient_walker_pixel (&walker, t); + buffer += 1; + t += inc; + } + } else { + while (buffer < end) { + if (*mask++ & maskBits) + { + *(buffer) = _gradient_walker_pixel (&walker, t); + } + buffer += 1; + t += inc; + } + } + } + } + else /* projective transformation */ + { + pixman_fixed_48_16_t t; + + if (pict->class == SOURCE_IMAGE_CLASS_VERTICAL) + { + register uint32_t color; + + if (v.vector[2] == 0) + { + t = 0; + } + else + { + pixman_fixed_48_16_t x, y; + + x = ((pixman_fixed_48_16_t) v.vector[0] << 16) / v.vector[2]; + y = ((pixman_fixed_48_16_t) v.vector[1] << 16) / v.vector[2]; + t = ((a * x + b * y) >> 16) + off; + } + + color = _gradient_walker_pixel( &walker, t ); + while (buffer < end) + *(buffer++) = color; + } + else + { + while (buffer < end) + { + if (!mask || *mask++ & maskBits) + { + if (v.vector[2] == 0) { + t = 0; + } else { + pixman_fixed_48_16_t x, y; + x = ((pixman_fixed_48_16_t)v.vector[0] << 16) / v.vector[2]; + y = ((pixman_fixed_48_16_t)v.vector[1] << 16) / v.vector[2]; + t = ((a*x + b*y) >> 16) + off; + } + *(buffer) = _gradient_walker_pixel (&walker, t); + } + ++buffer; + v.vector[0] += unit.vector[0]; + v.vector[1] += unit.vector[1]; + v.vector[2] += unit.vector[2]; + } + } + } + } else { + +/* + * In the radial gradient problem we are given two circles (c₁,r₁) and + * (c₂,r₂) that define the gradient itself. Then, for any point p, we + * must compute the value(s) of t within [0.0, 1.0] representing the + * circle(s) that would color the point. + * + * There are potentially two values of t since the point p can be + * colored by both sides of the circle, (which happens whenever one + * circle is not entirely contained within the other). + * + * If we solve for a value of t that is outside of [0.0, 1.0] then we + * use the extend mode (NONE, REPEAT, REFLECT, or PAD) to map to a + * value within [0.0, 1.0]. + * + * Here is an illustration of the problem: + * + * p₂ + * p • + * • ╲ + * · ╲r₂ + * p₁ · ╲ + * • θ╲ + * ╲ ╌╌• + * ╲r₁ · c₂ + * θ╲ · + * ╌╌• + * c₁ + * + * Given (c₁,r₁), (c₂,r₂) and p, we must find an angle θ such that two + * points p₁ and p₂ on the two circles are collinear with p. Then, the + * desired value of t is the ratio of the length of p₁p to the length + * of p₁p₂. + * + * So, we have six unknown values: (p₁x, p₁y), (p₂x, p₂y), θ and t. + * We can also write six equations that constrain the problem: + * + * Point p₁ is a distance r₁ from c₁ at an angle of θ: + * + * 1. p₁x = c₁x + r₁·cos θ + * 2. p₁y = c₁y + r₁·sin θ + * + * Point p₂ is a distance r₂ from c₂ at an angle of θ: + * + * 3. p₂x = c₂x + r2·cos θ + * 4. p₂y = c₂y + r2·sin θ + * + * Point p lies at a fraction t along the line segment p₁p₂: + * + * 5. px = t·p₂x + (1-t)·p₁x + * 6. py = t·p₂y + (1-t)·p₁y + * + * To solve, first subtitute 1-4 into 5 and 6: + * + * px = t·(c₂x + r₂·cos θ) + (1-t)·(c₁x + r₁·cos θ) + * py = t·(c₂y + r₂·sin θ) + (1-t)·(c₁y + r₁·sin θ) + * + * Then solve each for cos θ and sin θ expressed as a function of t: + * + * cos θ = (-(c₂x - c₁x)·t + (px - c₁x)) / ((r₂-r₁)·t + r₁) + * sin θ = (-(c₂y - c₁y)·t + (py - c₁y)) / ((r₂-r₁)·t + r₁) + * + * To simplify this a bit, we define new variables for several of the + * common terms as shown below: + * + * p₂ + * p • + * • ╲ + * · ┆ ╲r₂ + * p₁ · ┆ ╲ + * • pdy┆ ╲ + * ╲ ┆ •c₂ + * ╲r₁ ┆ · ┆ + * ╲ ·┆ ┆cdy + * •╌╌╌╌┴╌╌╌╌╌╌╌┘ + * c₁ pdx cdx + * + * cdx = (c₂x - c₁x) + * cdy = (c₂y - c₁y) + * dr = r₂-r₁ + * pdx = px - c₁x + * pdy = py - c₁y + * + * Note that cdx, cdy, and dr do not depend on point p at all, so can + * be pre-computed for the entire gradient. The simplifed equations + * are now: + * + * cos θ = (-cdx·t + pdx) / (dr·t + r₁) + * sin θ = (-cdy·t + pdy) / (dr·t + r₁) + * + * Finally, to get a single function of t and eliminate the last + * unknown θ, we use the identity sin²θ + cos²θ = 1. First, square + * each equation, (we knew a quadratic was coming since it must be + * possible to obtain two solutions in some cases): + * + * cos²θ = (cdx²t² - 2·cdx·pdx·t + pdx²) / (dr²·t² + 2·r₁·dr·t + r₁²) + * sin²θ = (cdy²t² - 2·cdy·pdy·t + pdy²) / (dr²·t² + 2·r₁·dr·t + r₁²) + * + * Then add both together, set the result equal to 1, and express as a + * standard quadratic equation in t of the form At² + Bt + C = 0 + * + * (cdx² + cdy² - dr²)·t² - 2·(cdx·pdx + cdy·pdy + r₁·dr)·t + (pdx² + pdy² - r₁²) = 0 + * + * In other words: + * + * A = cdx² + cdy² - dr² + * B = -2·(pdx·cdx + pdy·cdy + r₁·dr) + * C = pdx² + pdy² - r₁² + * + * And again, notice that A does not depend on p, so can be + * precomputed. From here we just use the quadratic formula to solve + * for t: + * + * t = (-2·B ± ⎷(B² - 4·A·C)) / 2·A + */ + /* radial or conical */ + pixman_bool_t affine = TRUE; + double cx = 1.; + double cy = 0.; + double cz = 0.; + double rx = x + 0.5; + double ry = y + 0.5; + double rz = 1.; + + if (pict->common.transform) { + pixman_vector_t v; + /* reference point is the center of the pixel */ + v.vector[0] = pixman_int_to_fixed(x) + pixman_fixed_1/2; + v.vector[1] = pixman_int_to_fixed(y) + pixman_fixed_1/2; + v.vector[2] = pixman_fixed_1; + if (!pixman_transform_point_3d (pict->common.transform, &v)) + return; + + cx = pict->common.transform->matrix[0][0]/65536.; + cy = pict->common.transform->matrix[1][0]/65536.; + cz = pict->common.transform->matrix[2][0]/65536.; + rx = v.vector[0]/65536.; + ry = v.vector[1]/65536.; + rz = v.vector[2]/65536.; + affine = pict->common.transform->matrix[2][0] == 0 && v.vector[2] == pixman_fixed_1; + } + + if (pict->common.type == RADIAL) { + radial_gradient_t *radial = (radial_gradient_t *)pict; + if (affine) { + while (buffer < end) { + if (!mask || *mask++ & maskBits) + { + double pdx, pdy; + double B, C; + double det; + double c1x = radial->c1.x / 65536.0; + double c1y = radial->c1.y / 65536.0; + double r1 = radial->c1.radius / 65536.0; + pixman_fixed_48_16_t t; + + pdx = rx - c1x; + pdy = ry - c1y; + + B = -2 * ( pdx * radial->cdx + + pdy * radial->cdy + + r1 * radial->dr); + C = (pdx * pdx + pdy * pdy - r1 * r1); + + det = (B * B) - (4 * radial->A * C); + if (det < 0.0) + det = 0.0; + + if (radial->A < 0) + t = (pixman_fixed_48_16_t) ((- B - sqrt(det)) / (2.0 * radial->A) * 65536); + else + t = (pixman_fixed_48_16_t) ((- B + sqrt(det)) / (2.0 * radial->A) * 65536); + + *(buffer) = _gradient_walker_pixel (&walker, t); + } + ++buffer; + + rx += cx; + ry += cy; + } + } else { + /* projective */ + while (buffer < end) { + if (!mask || *mask++ & maskBits) + { + double pdx, pdy; + double B, C; + double det; + double c1x = radial->c1.x / 65536.0; + double c1y = radial->c1.y / 65536.0; + double r1 = radial->c1.radius / 65536.0; + pixman_fixed_48_16_t t; + double x, y; + + if (rz != 0) { + x = rx/rz; + y = ry/rz; + } else { + x = y = 0.; + } + + pdx = x - c1x; + pdy = y - c1y; + + B = -2 * ( pdx * radial->cdx + + pdy * radial->cdy + + r1 * radial->dr); + C = (pdx * pdx + pdy * pdy - r1 * r1); + + det = (B * B) - (4 * radial->A * C); + if (det < 0.0) + det = 0.0; + + if (radial->A < 0) + t = (pixman_fixed_48_16_t) ((- B - sqrt(det)) / (2.0 * radial->A) * 65536); + else + t = (pixman_fixed_48_16_t) ((- B + sqrt(det)) / (2.0 * radial->A) * 65536); + + *(buffer) = _gradient_walker_pixel (&walker, t); + } + ++buffer; + + rx += cx; + ry += cy; + rz += cz; + } + } + } else /* SourcePictTypeConical */ { + conical_gradient_t *conical = (conical_gradient_t *)pict; + double a = conical->angle/(180.*65536); + if (affine) { + rx -= conical->center.x/65536.; + ry -= conical->center.y/65536.; + + while (buffer < end) { + double angle; + + if (!mask || *mask++ & maskBits) + { + pixman_fixed_48_16_t t; + + angle = atan2(ry, rx) + a; + t = (pixman_fixed_48_16_t) (angle * (65536. / (2*M_PI))); + + *(buffer) = _gradient_walker_pixel (&walker, t); + } + + ++buffer; + rx += cx; + ry += cy; + } + } else { + while (buffer < end) { + double x, y; + double angle; + + if (!mask || *mask++ & maskBits) + { + pixman_fixed_48_16_t t; + + if (rz != 0) { + x = rx/rz; + y = ry/rz; + } else { + x = y = 0.; + } + x -= conical->center.x/65536.; + y -= conical->center.y/65536.; + angle = atan2(y, x) + a; + t = (pixman_fixed_48_16_t) (angle * (65536. / (2*M_PI))); + + *(buffer) = _gradient_walker_pixel (&walker, t); + } + + ++buffer; + rx += cx; + ry += cy; + rz += cz; + } + } + } + } +}