From: 이상규/On-Device Lab(SR)/Principal Engineer/삼성전자 Date: Tue, 25 Jun 2019 06:51:58 +0000 (+0900) Subject: [nnpackage] initial commit (specification and schema) (#5462) X-Git-Tag: submit/tizen/20190809.050447~637 X-Git-Url: http://review.tizen.org/git/?a=commitdiff_plain;h=8365ec03c71132932cab0ec91e25d1eed36be2b9;p=platform%2Fcore%2Fml%2Fnnfw.git [nnpackage] initial commit (specification and schema) (#5462) * nnpackage initial commit (specification and schema) It is the initial commit of nnpackage specification and specification. Signed-off-by: Sanggyu Lee --- diff --git a/contrib/nnpackage/schema/nnpackage_model.fbs b/contrib/nnpackage/schema/nnpackage_model.fbs new file mode 100644 index 0000000..38476e2 --- /dev/null +++ b/contrib/nnpackage/schema/nnpackage_model.fbs @@ -0,0 +1,806 @@ +// Copyright 2017 The TensorFlow Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// Revision History +// Version 0: Initial version. +// Version 1: Add subgraphs to schema. +// Version 2: Rename operators to conform to NN API. +// Version 3: Move buffer data from Model.Subgraph.Tensors to Model.Buffers. + +namespace tflite; + +// This corresponds to the version. +file_identifier "TFL3"; +// File extension of any written files. +file_extension "tflite"; + +// IMPORTANT: All new members of tables, enums and unions must be added at the +// end to ensure backwards compatibility. + +// The type of data stored in a tensor. +enum TensorType : byte { + FLOAT32 = 0, + FLOAT16 = 1, + INT32 = 2, + UINT8 = 3, + INT64 = 4, + STRING = 5, + BOOL = 6, + INT16 = 7, + COMPLEX64 = 8, + INT8 = 9, +} + +// Custom quantization parameters for experimenting with new quantization +// techniques. +table CustomQuantization { + custom:[ubyte] (force_align: 16); +} + +// Represents a specific quantization technique's parameters. +union QuantizationDetails { + CustomQuantization, +} + +// Parameters for converting a quantized tensor back to float. +table QuantizationParameters { + // These four parameters are the asymmetric linear quantization parameters. + // Given a quantized value q, the corresponding float value f should be: + // f = scale * (q - zero_point) + // For other quantization types, the QuantizationDetails below is used. + min:[float]; // For importing back into tensorflow. + max:[float]; // For importing back into tensorflow. + scale:[float]; // For dequantizing the tensor's values. + zero_point:[long]; + + // If this is not none, the quantization parameters above are ignored and the + // value of the QuantizationDetails union below should be used. + details:QuantizationDetails; +} + +table Tensor { + // The tensor shape. The meaning of each entry is operator-specific but + // builtin ops use: [batch size, height, width, number of channels] (That's + // Tensorflow's NHWC). + shape:[int]; + type:TensorType; + // An index that refers to the buffers table at the root of the model. Or, + // if there is no data buffer associated (i.e. intermediate results), then + // this is 0 (which refers to an always existent empty buffer). + // + // The data_buffer itself is an opaque container, with the assumption that the + // target device is little-endian. In addition, all builtin operators assume + // the memory is ordered such that if `shape` is [4, 3, 2], then index + // [i, j, k] maps to data_buffer[i*3*2 + j*2 + k]. + buffer:uint; + name:string; // For debugging and importing back into tensorflow. + quantization:QuantizationParameters; // Optional. + + is_variable:bool = false; +} + +// A list of builtin operators. Builtin operators are slightly faster than custom +// ones, but not by much. Moreover, while custom operators accept an opaque +// object containing configuration parameters, builtins have a predetermined +// set of acceptable options. +enum BuiltinOperator : byte { + ADD = 0, + AVERAGE_POOL_2D = 1, + CONCATENATION = 2, + CONV_2D = 3, + DEPTHWISE_CONV_2D = 4, + // DEPTH_TO_SPACE = 5, + DEQUANTIZE = 6, + EMBEDDING_LOOKUP = 7, + FLOOR = 8, + FULLY_CONNECTED = 9, + HASHTABLE_LOOKUP = 10, + L2_NORMALIZATION = 11, + L2_POOL_2D = 12, + LOCAL_RESPONSE_NORMALIZATION = 13, + LOGISTIC = 14, + LSH_PROJECTION = 15, + LSTM = 16, + MAX_POOL_2D = 17, + MUL = 18, + RELU = 19, + // NOTE(aselle): RELU_N1_TO_1 used to be called RELU1, but it was renamed + // since different model developers use RELU1 in different ways. Never + // create another op called RELU1. + RELU_N1_TO_1 = 20, + RELU6 = 21, + RESHAPE = 22, + RESIZE_BILINEAR = 23, + RNN = 24, + SOFTMAX = 25, + SPACE_TO_DEPTH = 26, + SVDF = 27, + TANH = 28, + // TODO(aselle): Consider rename to CONCATENATE_EMBEDDINGS + CONCAT_EMBEDDINGS = 29, + SKIP_GRAM = 30, + CALL = 31, + CUSTOM = 32, + EMBEDDING_LOOKUP_SPARSE = 33, + PAD = 34, + UNIDIRECTIONAL_SEQUENCE_RNN = 35, + GATHER = 36, + BATCH_TO_SPACE_ND = 37, + SPACE_TO_BATCH_ND = 38, + TRANSPOSE = 39, + MEAN = 40, + SUB = 41, + DIV = 42, + SQUEEZE = 43, + UNIDIRECTIONAL_SEQUENCE_LSTM = 44, + STRIDED_SLICE = 45, + BIDIRECTIONAL_SEQUENCE_RNN = 46, + EXP = 47, + TOPK_V2 = 48, + SPLIT = 49, + LOG_SOFTMAX = 50, + // DELEGATE is a special op type for the operations which are delegated to + // other backends. + // WARNING: Experimental interface, subject to change + DELEGATE = 51, + BIDIRECTIONAL_SEQUENCE_LSTM = 52, + CAST = 53, + PRELU = 54, + MAXIMUM = 55, + ARG_MAX = 56, + MINIMUM = 57, + LESS = 58, + NEG = 59, + PADV2 = 60, + GREATER = 61, + GREATER_EQUAL = 62, + LESS_EQUAL = 63, + SELECT = 64, + SLICE = 65, + SIN = 66, + TRANSPOSE_CONV = 67, + SPARSE_TO_DENSE = 68, + TILE = 69, + EXPAND_DIMS = 70, + EQUAL = 71, + NOT_EQUAL = 72, + LOG = 73, + SUM = 74, + SQRT = 75, + RSQRT = 76, + SHAPE = 77, + POW = 78, + ARG_MIN = 79, + FAKE_QUANT = 80, + REDUCE_PROD = 81, + REDUCE_MAX = 82, + PACK = 83, + LOGICAL_OR = 84, + ONE_HOT = 85, + LOGICAL_AND = 86, + LOGICAL_NOT = 87, + UNPACK = 88, + REDUCE_MIN = 89, + FLOOR_DIV = 90, + REDUCE_ANY = 91, + SQUARE = 92, + ZEROS_LIKE = 93, + FILL = 94, + FLOOR_MOD = 95, + RANGE = 96, + RESIZE_NEAREST_NEIGHBOR = 97, + LEAKY_RELU = 98, + SQUARED_DIFFERENCE = 99, + MIRROR_PAD = 100, + ABS = 101, + SPLIT_V = 102, +} + +// Options for the builtin operators. +union BuiltinOptions { + Conv2DOptions, + DepthwiseConv2DOptions, + ConcatEmbeddingsOptions, + LSHProjectionOptions, + Pool2DOptions, + SVDFOptions, + RNNOptions, + FullyConnectedOptions, + SoftmaxOptions, + ConcatenationOptions, + AddOptions, + L2NormOptions, + LocalResponseNormalizationOptions, + LSTMOptions, + ResizeBilinearOptions, + CallOptions, + ReshapeOptions, + SkipGramOptions, + SpaceToDepthOptions, + EmbeddingLookupSparseOptions, + MulOptions, + PadOptions, + GatherOptions, + BatchToSpaceNDOptions, + SpaceToBatchNDOptions, + TransposeOptions, + ReducerOptions, + SubOptions, + DivOptions, + SqueezeOptions, + SequenceRNNOptions, + StridedSliceOptions, + ExpOptions, + TopKV2Options, + SplitOptions, + LogSoftmaxOptions, + CastOptions, + DequantizeOptions, + MaximumMinimumOptions, + ArgMaxOptions, + LessOptions, + NegOptions, + PadV2Options, + GreaterOptions, + GreaterEqualOptions, + LessEqualOptions, + SelectOptions, + SliceOptions, + TransposeConvOptions, + SparseToDenseOptions, + TileOptions, + ExpandDimsOptions, + EqualOptions, + NotEqualOptions, + ShapeOptions, + PowOptions, + ArgMinOptions, + FakeQuantOptions, + PackOptions, + LogicalOrOptions, + OneHotOptions, + LogicalAndOptions, + LogicalNotOptions, + UnpackOptions, + FloorDivOptions, + SquareOptions, + ZerosLikeOptions, + FillOptions, + BidirectionalSequenceLSTMOptions, + BidirectionalSequenceRNNOptions, + UnidirectionalSequenceLSTMOptions, + FloorModOptions, + RangeOptions, + ResizeNearestNeighborOptions, + LeakyReluOptions, + SquaredDifferenceOptions, + MirrorPadOptions, + AbsOptions, + SplitVOptions, +} + +enum Padding : byte { SAME, VALID } + +enum ActivationFunctionType : byte { + NONE = 0, + RELU = 1, + RELU_N1_TO_1 = 2, + RELU6 = 3, + TANH = 4, + SIGN_BIT = 5, +} + +table Conv2DOptions { + padding:Padding; + stride_w:int; + stride_h:int; + fused_activation_function:ActivationFunctionType; + dilation_w_factor:int = 1; + dilation_h_factor:int = 1; +} + +table Pool2DOptions { + padding:Padding; + stride_w:int; + stride_h:int; + filter_width:int; + filter_height:int; + fused_activation_function:ActivationFunctionType; +} + +table DepthwiseConv2DOptions { + // Parameters for DepthwiseConv version 1 or above. + padding:Padding; + stride_w:int; + stride_h:int; + depth_multiplier:int; + fused_activation_function:ActivationFunctionType; + // Parameters for DepthwiseConv version 2 or above. + dilation_w_factor:int = 1; + dilation_h_factor:int = 1; +} + +table ConcatEmbeddingsOptions { + num_channels:int; + num_columns_per_channel:[int]; + embedding_dim_per_channel:[int]; // This could be inferred from parameters. +} + +enum LSHProjectionType: byte { + UNKNOWN = 0, + SPARSE = 1, + DENSE = 2, +} + +table LSHProjectionOptions { + type: LSHProjectionType; +} + +table SVDFOptions { + rank:int; + fused_activation_function:ActivationFunctionType; +} + +// An implementation of TensorFlow RNNCell. +table RNNOptions { + fused_activation_function:ActivationFunctionType; +} + +// An implementation of TensorFlow dynamic_rnn with RNNCell. +table SequenceRNNOptions { + time_major:bool; + fused_activation_function:ActivationFunctionType; +} + +// An implementation of TensorFlow bidrectional_dynamic_rnn with RNNCell. +table BidirectionalSequenceRNNOptions { + time_major:bool; + fused_activation_function:ActivationFunctionType; + merge_outputs: bool; +} + +enum FullyConnectedOptionsWeightsFormat: byte { + DEFAULT = 0, + SHUFFLED4x16INT8 = 1, +} + +// An implementation of TensorFlow fully_connected (a.k.a Dense) layer. +table FullyConnectedOptions { + // Parameters for FullyConnected version 1 or above. + fused_activation_function:ActivationFunctionType; + + // Parameters for FullyConnected version 2 or above. + weights_format:FullyConnectedOptionsWeightsFormat = DEFAULT; +} + +table SoftmaxOptions { + beta: float; +} + +// An implementation of TensorFlow concat. +table ConcatenationOptions { + axis:int; + fused_activation_function:ActivationFunctionType; +} + +table AddOptions { + fused_activation_function:ActivationFunctionType; +} + +table MulOptions { + fused_activation_function:ActivationFunctionType; +} + +table L2NormOptions { + fused_activation_function:ActivationFunctionType; +} + +table LocalResponseNormalizationOptions { + radius:int; + bias:float; + alpha:float; + beta:float; +} + +enum LSTMKernelType : byte { + // Full LSTM kernel which supports peephole and projection. + FULL = 0, + // Basic LSTM kernels. Equivalent to TensorFlow BasicLSTMCell. + BASIC = 1, +} + +// An implementation of TensorFlow LSTMCell and CoupledInputForgetGateLSTMCell +table LSTMOptions { + // Parameters for LSTM version 1 or above. + fused_activation_function:ActivationFunctionType; + cell_clip: float; // Optional, 0.0 means no clipping + proj_clip: float; // Optional, 0.0 means no clipping + + // Parameters for LSTM version 2 or above. + // Basic kernel is only supported in version 2 or above. + kernel_type: LSTMKernelType = FULL; +} + +// An implementation of TensorFlow dynamic_rnn with LSTMCell. +table UnidirectionalSequenceLSTMOptions { + fused_activation_function:ActivationFunctionType; + cell_clip: float; // Optional, 0.0 means no clipping + proj_clip: float; // Optional, 0.0 means no clipping + + // If true then first dimension is sequence, otherwise batch. + time_major:bool; +} + +table BidirectionalSequenceLSTMOptions { + fused_activation_function:ActivationFunctionType; + cell_clip: float; // Optional, 0.0 means no clipping + proj_clip: float; // Optional, 0.0 means no clipping + + // If true, store the outputs of both directions into the first output. + merge_outputs: bool; +} + +table ResizeBilinearOptions { + new_height: int (deprecated); + new_width: int (deprecated); + align_corners: bool; +} + +table ResizeNearestNeighborOptions { + align_corners: bool; +} + +// A call operation options +table CallOptions { + // The subgraph index that needs to be called. + subgraph:uint; +} + +table PadOptions { +} + +table PadV2Options { +} + +table ReshapeOptions { + new_shape:[int]; +} + +table SpaceToBatchNDOptions { +} + +table BatchToSpaceNDOptions { +} + +table SkipGramOptions { + ngram_size: int; + max_skip_size: int; + include_all_ngrams: bool; +} + +table SpaceToDepthOptions { + block_size: int; +} + +table SubOptions { + fused_activation_function:ActivationFunctionType; +} + +table DivOptions { + fused_activation_function:ActivationFunctionType; +} + +table TopKV2Options { +} + +enum CombinerType : byte { + SUM = 0, + MEAN = 1, + SQRTN = 2, +} + +table EmbeddingLookupSparseOptions { + combiner:CombinerType; +} + +table GatherOptions { + axis: int; +} + +table TransposeOptions { +} + +table ExpOptions { +} + +table ReducerOptions { + keep_dims: bool; +} + +table SqueezeOptions { + squeeze_dims:[int]; +} + +table SplitOptions { + num_splits: int; +} + +table SplitVOptions { + num_splits: int; +} + +table StridedSliceOptions { + begin_mask: int; + end_mask: int; + ellipsis_mask: int; + new_axis_mask: int; + shrink_axis_mask: int; +} + +table LogSoftmaxOptions { +} + +table CastOptions { + in_data_type: TensorType; + out_data_type: TensorType; +} + +table DequantizeOptions { +} + +table MaximumMinimumOptions { +} + +table TileOptions { +} + +table ArgMaxOptions { + output_type : TensorType; +} + +table ArgMinOptions { + output_type : TensorType; +} + +table GreaterOptions { +} + +table GreaterEqualOptions { +} + +table LessOptions { +} + +table LessEqualOptions { +} + +table NegOptions { +} + +table SelectOptions { +} + +table SliceOptions { +} + +table TransposeConvOptions { + padding:Padding; + stride_w:int; + stride_h:int; +} + +table ExpandDimsOptions { +} + +table SparseToDenseOptions { + validate_indices:bool; +} + +table EqualOptions { +} + +table NotEqualOptions { +} + +table ShapeOptions { + // Optional output type of the operation (int32 or int64). Defaults to int32. + out_type : TensorType; +} + +table PowOptions { +} + +table FakeQuantOptions { + // Parameters supported by version 1: + min:float; + max:float; + num_bits:int; + + // Parameters supported by version 2: + narrow_range:bool; +} + +table PackOptions { + values_count:int; + axis:int; +} + +table LogicalOrOptions { +} + +table OneHotOptions { + axis:int; +} + +table AbsOptions { +} + + +table LogicalAndOptions { +} + +table LogicalNotOptions { +} + +table UnpackOptions { + num:int; + axis:int; +} + +table FloorDivOptions { +} + +table SquareOptions { +} + +table ZerosLikeOptions { +} + +table FillOptions { +} + +table FloorModOptions { +} + +table RangeOptions { +} + +table LeakyReluOptions { + alpha:float; +} + +table SquaredDifferenceOptions { +} + +enum MirrorPadMode : byte { + // Doesn't include borders. + REFLECT = 0, + // Includes borders. + SYMMETRIC = 1, +} + +table MirrorPadOptions { + mode:MirrorPadMode; +} + +// An OperatorCode can be an enum value (BuiltinOperator) if the operator is a +// builtin, or a string if the operator is custom. +table OperatorCode { + builtin_code:BuiltinOperator; + custom_code:string; + + // The version of the operator. The version need to be bumped whenever new + // parameters are introduced into an op. + version:int = 1; +} + +enum CustomOptionsFormat : byte { + FLEXBUFFERS = 0, +} + +enum DataFormat : byte { + // For 2D data, NHWC(batch, height, width, channels) + // For 3D data, NDHWC(batch, depth, height, width, channels) + CHANNELS_LAST = 0, + // For 2D data, NCHW(batch, channels, height, width) + // For 3D data, NCDHW(batch, channels, depth, height, width) + CHANNELS_FIRST = 1, +} + +// An operator takes tensors as inputs and outputs. The type of operation being +// performed is determined by an index into the list of valid OperatorCodes, +// while the specifics of each operations is configured using builtin_options +// or custom_options. +table Operator { + // Index into the operator_codes array. Using an integer here avoids + // complicate map lookups. + opcode_index:uint; + + // Optional input and output tensors are indicated by -1. + inputs:[int]; + outputs:[int]; + + builtin_options:BuiltinOptions; + custom_options:[ubyte]; + custom_options_format:CustomOptionsFormat; + + // A list of booleans indicating the input tensors which are being mutated by + // this operator.(e.g. used by RNN and LSTM). + // For example, if the "inputs" array refers to 5 tensors and the second and + // fifth are mutable variables, then this list will contain + // [false, true, false, false, true]. + // + // If the list is empty, no variable is mutated in this operator. + // The list either has the same length as `inputs`, or is empty. + mutating_variable_inputs:[bool]; +} + +// The root type, defining a subgraph, which typically represents an entire +// model. +table SubGraph { + // A list of all tensors used in this subgraph. + tensors:[Tensor]; + + // Indices of the tensors that are inputs into this subgraph. Note this is + // the list of non-static tensors that feed into the subgraph for inference. + inputs:[int]; + + // Indices of the tensors that are outputs out of this subgraph. Note this is + // the list of output tensors that are considered the product of the + // subgraph's inference. + outputs:[int]; + + // All operators, in execution order. + operators:[Operator]; + + // Name of this subgraph (used for debugging). + name:string; + + // Data format for input/output of SubGraph + data_format: DataFormat +} + +// Table of raw data buffers (used for constant tensors). Referenced by tensors +// by index. The generous alignment accommodates mmap-friendly data structures. +table Buffer { + data:[ubyte] (force_align: 16); +} + +table Model { + // Version of the schema. + version:uint; + + // A list of all operator codes used in this model. This is + // kept in order because operators carry an index into this + // vector. + operator_codes:[OperatorCode]; + + // All the subgraphs of the model. The 0th is assumed to be the main + // model. + subgraphs:[SubGraph]; + + // A description of the model. + description:string; + + // Buffers of the model. + // Note the 0th entry of this array must be an empty buffer (sentinel). + // This is a convention so that tensors without a buffer can provide 0 as + // their buffer. + buffers:[Buffer]; + + // Metadata about the model. Indirects into the existings buffers list. + metadata_buffer:[int]; +} + +root_type Model; diff --git a/contrib/nnpackage/spec/00_requirement.md b/contrib/nnpackage/spec/00_requirement.md new file mode 100644 index 0000000..5052709 --- /dev/null +++ b/contrib/nnpackage/spec/00_requirement.md @@ -0,0 +1,34 @@ +# Requirements (or Checkpoint) + +## Packaging + +### Packaging Format + +- [ ] PF1. support royalty free compression +- [ ] PF2. compatible with low end devices + +### Manifest + +- [ ] MF1. human readable +- [ ] MF2. easy to parse for several types of configuration variables. +- [ ] MF3. small binary size for parsing (since the parser will be part of runtime) + +## Model + +- [ ] MD1. support multiple tensor layout (such as NHWC, NCHW, etc) + - define layout for model / submodel / other unit? + - use operator (such as loco) +- [ ] MD2. describe operand? + - include in operator vs. independent field for operand + - support unspecified dimension value & unspecified rank? +- [ ] MD3. describe operation type + - string vs. enum value? +- [ ] MD4. support many quantization + - howto (ex. union type quantization parameter field, field handle quantization parameter table for quantization methodology) +- [ ] MD5. backward-compatibility and maintainability + +## Custom Op + +- [ ] CO1. support tizen in-house custom op developer +- [ ] CO2. minimize exposed headers (structures and functions) +- [ ] CO3. acceptable performance diff --git a/contrib/nnpackage/spec/10_packaging_and_manifest.md b/contrib/nnpackage/spec/10_packaging_and_manifest.md new file mode 100644 index 0000000..a5d2a56 --- /dev/null +++ b/contrib/nnpackage/spec/10_packaging_and_manifest.md @@ -0,0 +1,53 @@ +# Packaging and Manifest + +## 1. Overview + +`nnpackage` is the input of nnruntime(`neurun`), and the output of nncompiler(`nncc`). + +`nnpackage` contains all data (such as model, `MANIFEST`, custom_op) that requires to run a given model. + +The document will cover packaging and `MANIFEST` only. + +For `model` and `custom_op`, see [20_model_and_operators.md](20_model_and_operators.md) and [30_custom_op.md](30_custom_op.md). + +## 2. Packaging Structure + +`nnpackage` is a Zip archive in the following structure: + +``` +nnpackage +├── custom_op +├── metadata +│   └── MANIFEST +└── mymodel.model +``` + +- `mymodel.model` is a model file that has computation graph and weights. +- `metadata` is a directory that contains all metadata including `MANIFEST`. +- `MANIFEST` is a collection of attributes about this package. +- `custom_op` is a directory that contains implementation objects. + +## 3. Packaging Format + +`nnpackage` is contained in `Zip Archive`, which could be either `compressed` or `stored` (no compression). + +## 4. Manifest + +`MANIFEST` is a collection of attributes about `nnpacakge`. + +### Attributes + +#### main-model + +`main-model` is the name of model that the runtime will load and execute. +It has relative path from nnpackage's root directory. + +### Example + +Here is an example of `MANIFEST`. + +``` +{ + "main-model" : "mymodel.model" +} +``` diff --git a/contrib/nnpackage/spec/20_model_and_operators.md b/contrib/nnpackage/spec/20_model_and_operators.md new file mode 100644 index 0000000..e939df3 --- /dev/null +++ b/contrib/nnpackage/spec/20_model_and_operators.md @@ -0,0 +1,7 @@ +# Model + +## Model Schema + +See [flatbuffers schema for nnpackage model](../schema/nnpackage_model.fbs). + +# Operator diff --git a/contrib/nnpackage/spec/30_custom_op.md b/contrib/nnpackage/spec/30_custom_op.md new file mode 100644 index 0000000..7ba3823 --- /dev/null +++ b/contrib/nnpackage/spec/30_custom_op.md @@ -0,0 +1,3 @@ +# Custom Operators + +To be filled