From: hyeonseok lee Date: Tue, 9 Feb 2021 06:29:20 +0000 (+0900) Subject: Fix svace issue GraphWatcher UNINIT.CTOR X-Git-Tag: submit/tizen/20210209.084149~3 X-Git-Url: http://review.tizen.org/git/?a=commitdiff_plain;h=5adec490d078b5613730cb4c1ed955f792b6a1e4;p=platform%2Fcore%2Fml%2Fnntrainer.git Fix svace issue GraphWatcher UNINIT.CTOR In the constructor the member variable expected_loss is not initialized. expected_loss will be read later in readIteration function so initialized with 0.0 Signed-off-by: hyeonseok lee --- diff --git a/Applications/TransferLearning/CIFAR_Classification/jni/main_func.cpp b/Applications/TransferLearning/CIFAR_Classification/jni/main_func.cpp index cc59819b..709ab433 100644 --- a/Applications/TransferLearning/CIFAR_Classification/jni/main_func.cpp +++ b/Applications/TransferLearning/CIFAR_Classification/jni/main_func.cpp @@ -270,7 +270,8 @@ int main(int argc, char *argv[]) { dataset = createDataset(ml::train::DatasetType::GENERATOR); dataset->setGeneratorFunc(ml::train::DatasetDataType::DATA_TRAIN, getBatch_train); - dataset->setGeneratorFunc(ml::train::DatasetDataType::DATA_VAL, getBatch_val); + dataset->setGeneratorFunc(ml::train::DatasetDataType::DATA_VAL, + getBatch_val); } catch (...) { std::cerr << "Error creating dataset" << std::endl; return 1; diff --git a/nntrainer/tensor/manager.cpp b/nntrainer/tensor/manager.cpp index 9d41baca..cf8f3355 100644 --- a/nntrainer/tensor/manager.cpp +++ b/nntrainer/tensor/manager.cpp @@ -81,12 +81,12 @@ MMapedMemory::MMapedMemory(size_t size, bool allocate_fd) : } if (buf_ == MAP_FAILED) { - #ifdef __ANDROID__ - if (fd_ != -1) { - // unlink / close the given fd here - close(fd_); - } - #endif +#ifdef __ANDROID__ + if (fd_ != -1) { + // unlink / close the given fd here + close(fd_); + } +#endif throw std::runtime_error("[MMapedMemory] mmap failed"); } diff --git a/test/unittest/unittest_nntrainer_models.cpp b/test/unittest/unittest_nntrainer_models.cpp index de76dcdd..1ad3714f 100644 --- a/test/unittest/unittest_nntrainer_models.cpp +++ b/test/unittest/unittest_nntrainer_models.cpp @@ -292,6 +292,7 @@ void NodeWatcher::backward(int iteration, bool verify_deriv, bool verify_grad) { } GraphWatcher::GraphWatcher(const std::string &config, const bool opt) : + expected_loss(0.0), optimize(opt) { nn = nntrainer::NeuralNetwork();