From: Matteo Martincigh Date: Mon, 1 Oct 2018 08:26:39 +0000 (+0100) Subject: IVGCVSW-1863 Unit tests for NHWC L2Normalization X-Git-Tag: submit/tizen/20190109.005305~181 X-Git-Url: http://review.tizen.org/git/?a=commitdiff_plain;h=539b44dbd620c9f793f84933c1bcc51ce3ff085e;p=platform%2Fupstream%2Farmnn.git IVGCVSW-1863 Unit tests for NHWC L2Normalization * Added NHWC unit test implementation * Programmatically selected the channel dimension when creating the ACL Normalization layer info * Set the input/output data layout in the constructor of the L2Normalization workload Change-Id: Ie69f1a360022c29d1a3a3808c1f26b69243fa8f9 --- diff --git a/src/backends/aclCommon/ArmComputeUtils.hpp b/src/backends/aclCommon/ArmComputeUtils.hpp index db472964e..ec3701bb3 100644 --- a/src/backends/aclCommon/ArmComputeUtils.hpp +++ b/src/backends/aclCommon/ArmComputeUtils.hpp @@ -15,9 +15,11 @@ namespace armnn { inline arm_compute::NormalizationLayerInfo -CreateAclNormalizationLayerInfoForL2Normalization(const armnn::TensorInfo& tensorInfo) +CreateAclNormalizationLayerInfoForL2Normalization(const armnn::TensorInfo& tensorInfo, + armnn::DataLayout dataLayout) { - const unsigned int depth = tensorInfo.GetShape()[1]; + unsigned int depthDimension = dataLayout == armnn::DataLayout::NCHW ? 1 : 3; + const unsigned int depth = tensorInfo.GetShape()[depthDimension]; // At the time of writing, {CL|Neon}L2Normalization performs the reduction only along dimension 0. This version of // L2 Normalization always performs the reduction along the depth axis, though. Thus, we repurpose diff --git a/src/backends/cl/workloads/ClL2NormalizationFloatWorkload.cpp b/src/backends/cl/workloads/ClL2NormalizationFloatWorkload.cpp index edc13bcfe..f84801601 100644 --- a/src/backends/cl/workloads/ClL2NormalizationFloatWorkload.cpp +++ b/src/backends/cl/workloads/ClL2NormalizationFloatWorkload.cpp @@ -22,7 +22,7 @@ arm_compute::Status ClL2NormalizationWorkloadValidate(const TensorInfo& input, const arm_compute::TensorInfo aclOutput = BuildArmComputeTensorInfo(output, descriptor.m_DataLayout); arm_compute::NormalizationLayerInfo normalizationInfo = - CreateAclNormalizationLayerInfoForL2Normalization(input); + CreateAclNormalizationLayerInfoForL2Normalization(input, descriptor.m_DataLayout); return arm_compute::CLNormalizationLayer::validate(&aclInput, &aclOutput, normalizationInfo); } @@ -35,7 +35,14 @@ ClL2NormalizationFloatWorkload::ClL2NormalizationFloatWorkload(const L2Normaliza arm_compute::ICLTensor& input = static_cast(m_Data.m_Inputs[0])->GetTensor(); arm_compute::ICLTensor& output = static_cast(m_Data.m_Outputs[0])->GetTensor(); - m_Layer.configure(&input, &output, CreateAclNormalizationLayerInfoForL2Normalization(info.m_InputTensorInfos[0])); + + arm_compute::DataLayout aclDataLayout = ConvertDataLayout(m_Data.m_Parameters.m_DataLayout); + input.info()->set_data_layout(aclDataLayout); + output.info()->set_data_layout(aclDataLayout); + + m_Layer.configure(&input, &output, + CreateAclNormalizationLayerInfoForL2Normalization(info.m_InputTensorInfos[0], + m_Data.m_Parameters.m_DataLayout)); } void ClL2NormalizationFloatWorkload::Execute() const @@ -45,6 +52,3 @@ void ClL2NormalizationFloatWorkload::Execute() const } } //namespace armnn - - - diff --git a/src/backends/neon/workloads/NeonL2NormalizationFloatWorkload.cpp b/src/backends/neon/workloads/NeonL2NormalizationFloatWorkload.cpp index 4bddd9a24..17c39bc8a 100644 --- a/src/backends/neon/workloads/NeonL2NormalizationFloatWorkload.cpp +++ b/src/backends/neon/workloads/NeonL2NormalizationFloatWorkload.cpp @@ -18,7 +18,7 @@ arm_compute::Status NeonL2NormalizationWorkloadValidate(const TensorInfo& input, const arm_compute::TensorInfo aclOutput = BuildArmComputeTensorInfo(output, descriptor.m_DataLayout); arm_compute::NormalizationLayerInfo normalizationInfo = - CreateAclNormalizationLayerInfoForL2Normalization(input); + CreateAclNormalizationLayerInfoForL2Normalization(input, descriptor.m_DataLayout); return arm_compute::NENormalizationLayer::validate(&aclInput, &aclOutput, normalizationInfo); } @@ -32,7 +32,14 @@ NeonL2NormalizationFloatWorkload::NeonL2NormalizationFloatWorkload(const L2Norma arm_compute::ITensor& input = boost::polymorphic_downcast(m_Data.m_Inputs[0])->GetTensor(); arm_compute::ITensor& output = boost::polymorphic_downcast(m_Data.m_Outputs[0])->GetTensor(); - m_Layer.configure(&input, &output, CreateAclNormalizationLayerInfoForL2Normalization(info.m_InputTensorInfos[0])); + + arm_compute::DataLayout aclDataLayout = ConvertDataLayout(m_Data.m_Parameters.m_DataLayout); + input.info()->set_data_layout(aclDataLayout); + output.info()->set_data_layout(aclDataLayout); + + m_Layer.configure(&input, &output, + CreateAclNormalizationLayerInfoForL2Normalization(info.m_InputTensorInfos[0], + m_Data.m_Parameters.m_DataLayout)); } void NeonL2NormalizationFloatWorkload::Execute() const diff --git a/src/backends/test/ArmComputeCl.cpp b/src/backends/test/ArmComputeCl.cpp index a106c789a..af30ff0c2 100644 --- a/src/backends/test/ArmComputeCl.cpp +++ b/src/backends/test/ArmComputeCl.cpp @@ -174,11 +174,17 @@ ARMNN_AUTO_TEST_CASE(MultiplicationBroadcast1DVectorUint8, MultiplicationBroadca // Batch Norm ARMNN_AUTO_TEST_CASE(BatchNorm, BatchNormTest) +// L2 Normalization ARMNN_AUTO_TEST_CASE(L2Normalization1d, L2Normalization1dTest) ARMNN_AUTO_TEST_CASE(L2Normalization2d, L2Normalization2dTest) ARMNN_AUTO_TEST_CASE(L2Normalization3d, L2Normalization3dTest) ARMNN_AUTO_TEST_CASE(L2Normalization4d, L2Normalization4dTest) +ARMNN_AUTO_TEST_CASE(L2Normalization1dNhwc, L2Normalization1dNhwcTest) +ARMNN_AUTO_TEST_CASE(L2Normalization2dNhwc, L2Normalization2dNhwcTest) +ARMNN_AUTO_TEST_CASE(L2Normalization3dNhwc, L2Normalization3dNhwcTest) +ARMNN_AUTO_TEST_CASE(L2Normalization4dNhwc, L2Normalization4dNhwcTest) + // Resize Bilinear ARMNN_AUTO_TEST_CASE(SimpleResizeBilinear, SimpleResizeBilinearTest) ARMNN_AUTO_TEST_CASE(ResizeBilinearNop, ResizeBilinearNopTest) diff --git a/src/backends/test/ArmComputeNeon.cpp b/src/backends/test/ArmComputeNeon.cpp index 66cce250c..214f8d8f0 100644 --- a/src/backends/test/ArmComputeNeon.cpp +++ b/src/backends/test/ArmComputeNeon.cpp @@ -368,10 +368,15 @@ ARMNN_AUTO_TEST_CASE(Concatenation3dDim2DiffInputDims, Concatenation3dDim2DiffIn ARMNN_AUTO_TEST_CASE(Concatenation3dDim2DiffInputDimsUint8, Concatenation3dDim2DiffInputDimsUint8Test) // L2 Normalization -ARMNN_AUTO_TEST_CASE(L2Normalization1d, L2Normalization1dTest); -ARMNN_AUTO_TEST_CASE(L2Normalization2d, L2Normalization2dTest); -ARMNN_AUTO_TEST_CASE(L2Normalization3d, L2Normalization3dTest); -ARMNN_AUTO_TEST_CASE(L2Normalization4d, L2Normalization4dTest); +ARMNN_AUTO_TEST_CASE(L2Normalization1d, L2Normalization1dTest) +ARMNN_AUTO_TEST_CASE(L2Normalization2d, L2Normalization2dTest) +ARMNN_AUTO_TEST_CASE(L2Normalization3d, L2Normalization3dTest) +ARMNN_AUTO_TEST_CASE(L2Normalization4d, L2Normalization4dTest) + +ARMNN_AUTO_TEST_CASE(L2Normalization1dNhwc, L2Normalization1dNhwcTest) +ARMNN_AUTO_TEST_CASE(L2Normalization2dNhwc, L2Normalization2dNhwcTest) +ARMNN_AUTO_TEST_CASE(L2Normalization3dNhwc, L2Normalization3dNhwcTest) +ARMNN_AUTO_TEST_CASE(L2Normalization4dNhwc, L2Normalization4dNhwcTest) // Floor ARMNN_AUTO_TEST_CASE(SimpleFloor, SimpleFloorTest) diff --git a/src/backends/test/BatchNormTestImpl.hpp b/src/backends/test/BatchNormTestImpl.hpp index d551221ae..ab5413d27 100644 --- a/src/backends/test/BatchNormTestImpl.hpp +++ b/src/backends/test/BatchNormTestImpl.hpp @@ -17,8 +17,8 @@ template LayerTestResult BatchNormTestImpl(armnn::IWorkloadFactory& workloadFactory, - float qScale, - int32_t qOffset) + float qScale, + int32_t qOffset) { const unsigned int width = 2; const unsigned int height = 3; @@ -103,9 +103,10 @@ LayerTestResult BatchNormTestImpl(armnn::IWorkloadFactory& workloadFactory, CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]); + workloadFactory.Finalize(); workload->Execute(); CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get()); return ret; -} \ No newline at end of file +} diff --git a/src/backends/test/ClContextControlFixture.hpp b/src/backends/test/ClContextControlFixture.hpp index c81428ff8..fd53e3fcf 100644 --- a/src/backends/test/ClContextControlFixture.hpp +++ b/src/backends/test/ClContextControlFixture.hpp @@ -10,9 +10,22 @@ template struct ClContextControlFixtureBase { + static ClContextControlFixtureBase*& Instance() + { + static ClContextControlFixtureBase* s_Instance = nullptr; + return s_Instance; + } + // Initialising ClContextControl to ensure OpenCL is loaded correctly for each test case - ClContextControlFixtureBase() : m_ClContextControl(nullptr, ProfilingEnabled) {} - ~ClContextControlFixtureBase() {} + ClContextControlFixtureBase() + : m_ClContextControl(nullptr, ProfilingEnabled) + { + Instance() = this; + } + ~ClContextControlFixtureBase() + { + Instance() = nullptr; + } armnn::ClContextControl m_ClContextControl; }; diff --git a/src/backends/test/LayerTests.cpp b/src/backends/test/LayerTests.cpp index 267a8d6ba..78d4d6208 100644 --- a/src/backends/test/LayerTests.cpp +++ b/src/backends/test/LayerTests.cpp @@ -39,6 +39,8 @@ #include "ConvertFp16ToFp32TestImpl.hpp" #include "ConvertFp32ToFp16TestImpl.hpp" +#include "ClContextControlFixture.hpp" + // 3-channel 16x8 image used as common input data for a number of Conv2d tests. static std::vector ConvInput3x8x16({ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, @@ -3159,47 +3161,30 @@ LayerTestResult FakeQuantizationTest(armnn::IWorkloadFactory& workload return ret; } -LayerTestResult L2Normalization1dTest(armnn::IWorkloadFactory& workloadFactory) +namespace { - constexpr unsigned int inputWidth = 1; - constexpr unsigned int inputHeight = 1; - constexpr unsigned int inputChannels = 10; - constexpr unsigned int inputBatchSize = 1; - - constexpr unsigned int outputWidth = inputWidth; - constexpr unsigned int outputHeight = inputHeight; - constexpr unsigned int outputChannels = inputChannels; - constexpr unsigned int outputBatchSize = inputBatchSize; - const armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth }, - armnn::DataType::Float32); - const armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth }, - armnn::DataType::Float32); +LayerTestResult L2NormalizationTestImpl(armnn::IWorkloadFactory& workloadFactory, + const armnn::TensorShape& inputOutputTensorShape, + const std::vector& inputValues, + const std::vector& expectedOutputValues, + armnn::DataLayout dataLayout) +{ + const armnn::TensorInfo inputTensorInfo(inputOutputTensorShape, armnn::DataType::Float32); + const armnn::TensorInfo outputTensorInfo(inputOutputTensorShape, armnn::DataType::Float32); - auto input = MakeTensor(inputTensorInfo, std::vector({ - 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f - })); + auto inputTensor = MakeTensor(inputTensorInfo, std::vector(inputValues)); - const float approxInvL2Norm = 0.050964719f; LayerTestResult result(outputTensorInfo); - result.outputExpected = MakeTensor(inputTensorInfo, std::vector({ - 1.0f * approxInvL2Norm, - 2.0f * approxInvL2Norm, - 3.0f * approxInvL2Norm, - 4.0f * approxInvL2Norm, - 5.0f * approxInvL2Norm, - 6.0f * approxInvL2Norm, - 7.0f * approxInvL2Norm, - 8.0f * approxInvL2Norm, - 9.0f * approxInvL2Norm, - 10.0f * approxInvL2Norm - })); + result.outputExpected = MakeTensor(inputTensorInfo, std::vector(expectedOutputValues)); std::unique_ptr inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo); std::unique_ptr outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo); armnn::L2NormalizationQueueDescriptor descriptor; + descriptor.m_Parameters.m_DataLayout = dataLayout; armnn::WorkloadInfo info; + AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get()); AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get()); @@ -3207,18 +3192,17 @@ LayerTestResult L2Normalization1dTest(armnn::IWorkloadFactory& workloa inputHandle->Allocate(); outputHandle->Allocate(); - CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]); + + CopyDataToITensorHandle(inputHandle.get(), &inputTensor[0][0][0][0]); workloadFactory.Finalize(); workload->Execute(); CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get()); + return result; } -namespace -{ - float CalcInvL2Norm(std::initializer_list elements) { const float reduction = std::accumulate(elements.begin(), elements.end(), 0.0f, @@ -3226,99 +3210,207 @@ float CalcInvL2Norm(std::initializer_list elements) return 1.0f / sqrtf(reduction); } -} +} // anonymous namespace -LayerTestResult L2Normalization2dTest(armnn::IWorkloadFactory& workloadFactory) +LayerTestResult L2Normalization1dTest(armnn::IWorkloadFactory& workloadFactory) { - constexpr unsigned int inputWidth = 5; - constexpr unsigned int inputHeight = 1; - constexpr unsigned int inputChannels = 2; - constexpr unsigned int inputBatchSize = 1; + // Width: 1 + // Height: 1 + // Channels: 10 + // BatchSize: 1 - constexpr unsigned int outputWidth = inputWidth; - constexpr unsigned int outputHeight = inputHeight; - constexpr unsigned int outputChannels = inputChannels; - constexpr unsigned int outputBatchSize = inputBatchSize; + const armnn::TensorShape inputOutputShape{ 1, 10, 1, 1 }; + std::vector inputValues + { + // Batch 0, Channel 0, Height (1) x Width (1) + 1.0f, - const armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth }, - armnn::DataType::Float32); - const armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth }, - armnn::DataType::Float32); + // Batch 0, Channel 1, Height (1) x Width (1) + 2.0f, - auto input = MakeTensor(inputTensorInfo, std::vector({ - 1.0f, 3.0f, 5.0f, 7.0f, 9.0f, - 2.0f, 4.0f, 6.0f, 8.0f, 10.0f - })); + // Batch 0, Channel 2, Height (1) x Width (1) + 3.0f, - LayerTestResult result(outputTensorInfo); - result.outputExpected = MakeTensor(inputTensorInfo, std::vector({ - 1.0f * CalcInvL2Norm({ 1.0f, 2.0f }), - 3.0f * CalcInvL2Norm({ 3.0f, 4.0f }), - 5.0f * CalcInvL2Norm({ 5.0f, 6.0f }), - 7.0f * CalcInvL2Norm({ 7.0f, 8.0f }), - 9.0f * CalcInvL2Norm({ 9.0f, 10.0f }), + // Batch 0, Channel 3, Height (1) x Width (1) + 4.0f, - 2.0f * CalcInvL2Norm({ 1.0f, 2.0f }), - 4.0f * CalcInvL2Norm({ 3.0f, 4.0f }), - 6.0f * CalcInvL2Norm({ 5.0f, 6.0f }), - 8.0f * CalcInvL2Norm({ 7.0f, 8.0f }), - 10.0f * CalcInvL2Norm({ 9.0f, 10.0f }) - })); + // Batch 0, Channel 4, Height (1) x Width (1) + 5.0f, - std::unique_ptr inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo); - std::unique_ptr outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo); + // Batch 0, Channel 5, Height (1) x Width (1) + 6.0f, - armnn::L2NormalizationQueueDescriptor descriptor; - armnn::WorkloadInfo info; - AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get()); - AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get()); + // Batch 0, Channel 6, Height (1) x Width (1) + 7.0f, - std::unique_ptr workload = workloadFactory.CreateL2Normalization(descriptor, info); + // Batch 0, Channel 7, Height (1) x Width (1) + 8.0f, - inputHandle->Allocate(); - outputHandle->Allocate(); - CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]); + // Batch 0, Channel 8, Height (1) x Width (1) + 9.0f, - workloadFactory.Finalize(); - workload->Execute(); + // Batch 0, Channel 9, Height (1) x Width (1) + 10.0f + }; + const float approxInvL2Norm = 0.050964719f; + std::vector expectedOutputValues + { + // Batch 0, Channel 0, Height (1) x Width (1) + 1.0f * approxInvL2Norm, + 2.0f * approxInvL2Norm, + 3.0f * approxInvL2Norm, + 4.0f * approxInvL2Norm, + 5.0f * approxInvL2Norm, + 6.0f * approxInvL2Norm, + 7.0f * approxInvL2Norm, + 8.0f * approxInvL2Norm, + 9.0f * approxInvL2Norm, + 10.0f * approxInvL2Norm + }; - CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get()); - return result; + return L2NormalizationTestImpl(workloadFactory, inputOutputShape, + inputValues, expectedOutputValues, armnn::DataLayout::NCHW); } -LayerTestResult L2Normalization3dTest(armnn::IWorkloadFactory& workloadFactory) +LayerTestResult L2Normalization1dNhwcTest(armnn::IWorkloadFactory& workloadFactory) { - constexpr unsigned int inputWidth = 3; - constexpr unsigned int inputHeight = 4; - constexpr unsigned int inputChannels = 2; - constexpr unsigned int inputBatchSize = 1; +#ifdef ARMCOMPUTECL_ENABLED + // Clear the CL cache before this test when using ACL + if (ClContextControlFixture::Instance()) + { + ClContextControlFixture::Instance()->m_ClContextControl.ClearClCache(); + } +#endif - constexpr unsigned int outputWidth = inputWidth; - constexpr unsigned int outputHeight = inputHeight; - constexpr unsigned int outputChannels = inputChannels; - constexpr unsigned int outputBatchSize = inputBatchSize; + // Width: 1 + // Height: 1 + // Channels: 10 + // BatchSize: 1 - const armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth }, - armnn::DataType::Float32); - const armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth }, - armnn::DataType::Float32); + const armnn::TensorShape inputOutputShape{ 1, 1, 1, 10 }; + std::vector inputValues + { + // Batch 0, Height 0, Width (1) x Channel (10) + 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f + }; + const float approxInvL2Norm = 0.050964719f; + std::vector expectedOutputValues + { + // Batch 0, Height 0, Width (1) x Channel (10) + 1.0f * approxInvL2Norm, + 2.0f * approxInvL2Norm, + 3.0f * approxInvL2Norm, + 4.0f * approxInvL2Norm, + 5.0f * approxInvL2Norm, + 6.0f * approxInvL2Norm, + 7.0f * approxInvL2Norm, + 8.0f * approxInvL2Norm, + 9.0f * approxInvL2Norm, + 10.0f * approxInvL2Norm + }; - auto input = MakeTensor(inputTensorInfo, std::vector({ - // Channel 0 + return L2NormalizationTestImpl(workloadFactory, inputOutputShape, + inputValues, expectedOutputValues, armnn::DataLayout::NHWC); +} + +LayerTestResult L2Normalization2dTest(armnn::IWorkloadFactory& workloadFactory) +{ + // Width: 5 + // Height: 1 + // Channels: 2 + // BatchSize: 1 + + const armnn::TensorShape inputOutputShape{ 1, 2, 1, 5 }; + std::vector inputValues + { + // Batch 0, Channel 0, Height (1) x Width (5) + 1.0f, 3.0f, 5.0f, 7.0f, 9.0f, + + // Batch 0, Channel 1, Height (1) x Width (5) + 2.0f, 4.0f, 6.0f, 8.0f, 10.0f + }; + std::vector expectedOutputValues + { + // Batch 0, Channel 0, Height (1) x Width (5) + 1.0f * CalcInvL2Norm({ 1.0f, 2.0f }), + 3.0f * CalcInvL2Norm({ 3.0f, 4.0f }), + 5.0f * CalcInvL2Norm({ 5.0f, 6.0f }), + 7.0f * CalcInvL2Norm({ 7.0f, 8.0f }), + 9.0f * CalcInvL2Norm({ 9.0f, 10.0f }), + + // Batch 0, Channel 1, Height (1) x Width (5) + 2.0f * CalcInvL2Norm({ 1.0f, 2.0f }), + 4.0f * CalcInvL2Norm({ 3.0f, 4.0f }), + 6.0f * CalcInvL2Norm({ 5.0f, 6.0f }), + 8.0f * CalcInvL2Norm({ 7.0f, 8.0f }), + 10.0f * CalcInvL2Norm({ 9.0f, 10.0f }) + }; + + return L2NormalizationTestImpl(workloadFactory, inputOutputShape, + inputValues, expectedOutputValues, armnn::DataLayout::NCHW); +} + +LayerTestResult L2Normalization2dNhwcTest(armnn::IWorkloadFactory& workloadFactory) +{ + // Width: 5 + // Height: 1 + // Channels: 2 + // BatchSize: 1 + + const armnn::TensorShape inputOutputShape{ 1, 1, 5, 2 }; + std::vector inputValues + { + // Batch 0, Height 0, Width (5) x Channel (2) + 1.0f, 2.0f, + 3.0f, 4.0f, + 5.0f, 6.0f, + 7.0f, 8.0f, + 9.0f, 10.0f + }; + std::vector expectedOutputValues + { + // Batch 0, Height 0, Width (5) x Channel (2) + 1.0f * CalcInvL2Norm({ 1.0f, 2.0f }), + 2.0f * CalcInvL2Norm({ 1.0f, 2.0f }), + 3.0f * CalcInvL2Norm({ 3.0f, 4.0f }), + 4.0f * CalcInvL2Norm({ 3.0f, 4.0f }), + 5.0f * CalcInvL2Norm({ 5.0f, 6.0f }), + 6.0f * CalcInvL2Norm({ 5.0f, 6.0f }), + 7.0f * CalcInvL2Norm({ 7.0f, 8.0f }), + 8.0f * CalcInvL2Norm({ 7.0f, 8.0f }), + 9.0f * CalcInvL2Norm({ 9.0f, 10.0f }), + 10.0f * CalcInvL2Norm({ 9.0f, 10.0f }) + }; + + return L2NormalizationTestImpl(workloadFactory, inputOutputShape, + inputValues, expectedOutputValues, armnn::DataLayout::NHWC); +} + +LayerTestResult L2Normalization3dTest(armnn::IWorkloadFactory& workloadFactory) +{ + // Width: 3 + // Height: 4 + // Channels: 2 + // BatchSize: 1 + + const armnn::TensorShape inputOutputShape{ 1, 2, 4, 3 }; + std::vector inputValues + { + // Batch 0, Channel 0, Height (4) x Width (3) 119.0f, 21.0f, 150.0f, 149.0f, 32.0f, 179.0f, 15.0f, 227.0f, 141.0f, 147.0f, 199.0f, 220.0f, - // Channel 1 + // Batch 0, Channel 1, Height (4) x Width (3) 110.0f, 140.0f, 73.0f, 211.0f, 212.0f, 89.0f, 24.0f, 138.0f, 188.0f, - 162.0f, 12.0f, 161.0f, - })); - - LayerTestResult result(outputTensorInfo); - result.outputExpected = MakeTensor(inputTensorInfo, std::vector({ + 162.0f, 12.0f, 161.0f + }; + std::vector expectedOutputValues + { + // Batch 0, Channel 0, Height (4) x Width (3) 119.0f * CalcInvL2Norm({ 119.0f, 110.0f }), 21.0f * CalcInvL2Norm({ 21.0f, 140.0f }), 150.0f * CalcInvL2Norm({ 150.0f, 73.0f }), @@ -3332,6 +3424,7 @@ LayerTestResult L2Normalization3dTest(armnn::IWorkloadFactory& workloa 199.0f * CalcInvL2Norm({ 199.0f, 12.0f }), 220.0f * CalcInvL2Norm({ 220.0f, 161.0f }), + // Batch 0, Channel 1, Height (4) x Width (3) 110.0f * CalcInvL2Norm({ 119.0f, 110.0f }), 140.0f * CalcInvL2Norm({ 21.0f, 140.0f }), 73.0f * CalcInvL2Norm({ 150.0f, 73.0f }), @@ -3343,89 +3436,131 @@ LayerTestResult L2Normalization3dTest(armnn::IWorkloadFactory& workloa 188.0f * CalcInvL2Norm({ 141.0f, 188.0f }), 162.0f * CalcInvL2Norm({ 147.0f, 162.0f }), 12.0f * CalcInvL2Norm({ 199.0f, 12.0f }), - 161.0f * CalcInvL2Norm({ 220.0f, 161.0f }), - })); + 161.0f * CalcInvL2Norm({ 220.0f, 161.0f }) + }; - std::unique_ptr inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo); - std::unique_ptr outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo); + return L2NormalizationTestImpl(workloadFactory, inputOutputShape, + inputValues, expectedOutputValues, armnn::DataLayout::NCHW); +} - armnn::L2NormalizationQueueDescriptor descriptor; - armnn::WorkloadInfo info; - AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get()); - AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get()); +LayerTestResult L2Normalization3dNhwcTest(armnn::IWorkloadFactory& workloadFactory) +{ + // Width: 3 + // Height: 4 + // Channels: 2 + // BatchSize: 1 - std::unique_ptr workload = workloadFactory.CreateL2Normalization(descriptor, info); + const armnn::TensorShape inputOutputShape{ 1, 4, 3, 2 }; + std::vector inputValues + { + // Batch 0, Height 0, Width (3) x Channel (2) + 119.0f, 110.0f, + 21.0f, 140.0f, + 150.0f, 73.0f, + + // Batch 0, Height 1, Width (3) x Channel (2) + 149.0f, 211.0f, + 32.0f, 212.0f, + 179.0f, 89.0f, + + // Batch 0, Height 2, Width (3) x Channel (2) + 15.0f, 24.0f, + 227.0f, 138.0f, + 141.0f, 188.0f, + + // Batch 0, Height 3, Width (3) x Channel (2) + 147.0f, 162.0f, + 199.0f, 12.0f, + 220.0f, 161.0f + }; + std::vector expectedOutputValues + { + // Batch 0, Height 0, Width (3) x Channel (2) + 119.0f * CalcInvL2Norm({ 119.0f, 110.0f }), + 110.0f * CalcInvL2Norm({ 119.0f, 110.0f }), + 21.0f * CalcInvL2Norm({ 21.0f, 140.0f }), + 140.0f * CalcInvL2Norm({ 21.0f, 140.0f }), + 150.0f * CalcInvL2Norm({ 150.0f, 73.0f }), + 73.0f * CalcInvL2Norm({ 150.0f, 73.0f }), - inputHandle->Allocate(); - outputHandle->Allocate(); - CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]); + // Batch 0, Height 1, Width (3) x Channel (2) + 149.0f * CalcInvL2Norm({ 149.0f, 211.0f }), + 211.0f * CalcInvL2Norm({ 149.0f, 211.0f }), + 32.0f * CalcInvL2Norm({ 32.0f, 212.0f }), + 212.0f * CalcInvL2Norm({ 32.0f, 212.0f }), + 179.0f * CalcInvL2Norm({ 179.0f, 89.0f }), + 89.0f * CalcInvL2Norm({ 179.0f, 89.0f }), - workloadFactory.Finalize(); - workload->Execute(); + // Batch 0, Height 2, Width (3) x Channel (2) + 15.0f * CalcInvL2Norm({ 15.0f, 24.0f }), + 24.0f * CalcInvL2Norm({ 15.0f, 24.0f }), + 227.0f * CalcInvL2Norm({ 227.0f, 138.0f }), + 138.0f * CalcInvL2Norm({ 227.0f, 138.0f }), + 141.0f * CalcInvL2Norm({ 141.0f, 188.0f }), + 188.0f * CalcInvL2Norm({ 141.0f, 188.0f }), - CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get()); - return result; + // Batch 0, Height 3, Width (3) x Channel (2) + 147.0f * CalcInvL2Norm({ 147.0f, 162.0f }), + 162.0f * CalcInvL2Norm({ 147.0f, 162.0f }), + 199.0f * CalcInvL2Norm({ 199.0f, 12.0f }), + 12.0f * CalcInvL2Norm({ 199.0f, 12.0f }), + 220.0f * CalcInvL2Norm({ 220.0f, 161.0f }), + 161.0f * CalcInvL2Norm({ 220.0f, 161.0f }) + }; + + return L2NormalizationTestImpl(workloadFactory, inputOutputShape, + inputValues, expectedOutputValues, armnn::DataLayout::NHWC); } LayerTestResult L2Normalization4dTest(armnn::IWorkloadFactory& workloadFactory) { - constexpr unsigned int inputWidth = 3; - constexpr unsigned int inputHeight = 4; - constexpr unsigned int inputChannels = 3; - constexpr unsigned int inputBatchSize = 2; - - constexpr unsigned int outputWidth = inputWidth; - constexpr unsigned int outputHeight = inputHeight; - constexpr unsigned int outputChannels = inputChannels; - constexpr unsigned int outputBatchSize = inputBatchSize; - - const armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth }, - armnn::DataType::Float32); - const armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth }, - armnn::DataType::Float32); + // Width: 3 + // Height: 4 + // Channels: 3 + // BatchSize: 2 - auto input = MakeTensor(inputTensorInfo, std::vector({ - // Batch 0, Channel 0 + const armnn::TensorShape inputOutputShape{ 2, 3, 4, 3 }; + std::vector inputValues + { + // Batch 0, Channel 0, Height (4) x Width (3) 235.0f, 46.0f, 178.0f, 100.0f, 123.0f, 19.0f, 172.0f, 74.0f, 250.0f, 6.0f, 195.0f, 80.0f, - // Batch 0, Channel 1 + // Batch 0, Channel 1, Height (4) x Width (3) 113.0f, 95.0f, 202.0f, 77.0f, 114.0f, 71.0f, 122.0f, 246.0f, 166.0f, 82.0f, 28.0f, 37.0f, - // Batch 0, Channel 2 + // Batch 0, Channel 2, Height (4) x Width (3) 56.0f, 170.0f, 162.0f, 194.0f, 89.0f, 254.0f, 12.0f, 209.0f, 200.0f, 1.0f, 64.0f, 54.0f, - // Batch 1, Channel 0 + // Batch 1, Channel 0, Height (4) x Width (3) 67.0f, 90.0f, 49.0f, 7.0f, 163.0f, 18.0f, 25.0f, 117.0f, 103.0f, 247.0f, 59.0f, 189.0f, - // Batch 1, Channel 1 + // Batch 1, Channel 1, Height (4) x Width (3) 239.0f, 104.0f, 199.0f, 17.0f, 124.0f, 153.0f, 222.0f, 217.0f, 75.0f, 32.0f, 126.0f, 21.0f, - // Batch 1, Channel 2 + // Batch 1, Channel 2, Height (4) x Width (3) 97.0f, 145.0f, 215.0f, 115.0f, 116.0f, 238.0f, 226.0f, 16.0f, 132.0f, - 92.0f, 125.0f, 88.0f, - })); - - LayerTestResult result(outputTensorInfo); - result.outputExpected = MakeTensor(inputTensorInfo, std::vector({ - - // Batch 0, Channel 0 + 92.0f, 125.0f, 88.0f + }; + std::vector expectedOutputValues + { + // Batch 0, Channel 0, Height (4) x Width (3) 235.0f * CalcInvL2Norm({ 235.0f, 113.0f, 56.0f }), 46.0f * CalcInvL2Norm({ 46.0f, 95.0f, 170.0f }), 178.0f * CalcInvL2Norm({ 178.0f, 202.0F, 162.0f }), @@ -3439,7 +3574,7 @@ LayerTestResult L2Normalization4dTest(armnn::IWorkloadFactory& workloa 195.0f * CalcInvL2Norm({ 195.0f, 28.0f, 64.0f }), 80.0f * CalcInvL2Norm({ 80.0f, 37.0f, 54.0f }), - // Batch 0, Channel 1 + // Batch 0, Channel 1, Height (4) x Width (3) 113.0f * CalcInvL2Norm({ 235.0f, 113.0f, 56.0f }), 95.0f * CalcInvL2Norm({ 46.0f, 95.0f, 170.0f }), 202.0f * CalcInvL2Norm({ 178.0f, 202.0F, 162.0f }), @@ -3453,7 +3588,7 @@ LayerTestResult L2Normalization4dTest(armnn::IWorkloadFactory& workloa 28.0f * CalcInvL2Norm({ 195.0f, 28.0f, 64.0f }), 37.0f * CalcInvL2Norm({ 80.0f, 37.0f, 54.0f }), - // Batch 0, Channel 2 + // Batch 0, Channel 2, Height (4) x Width (3) 56.0f * CalcInvL2Norm({ 235.0f, 113.0f, 56.0f }), 170.0f * CalcInvL2Norm({ 46.0f, 95.0f, 170.0f }), 162.0f * CalcInvL2Norm({ 178.0f, 202.0F, 162.0f }), @@ -3467,7 +3602,7 @@ LayerTestResult L2Normalization4dTest(armnn::IWorkloadFactory& workloa 64.0f * CalcInvL2Norm({ 195.0f, 28.0f, 64.0f }), 54.0f * CalcInvL2Norm({ 80.0f, 37.0f, 54.0f }), - // Batch 1, Channel 0 + // Batch 1, Channel 0, Height (4) x Width (3) 67.0f * CalcInvL2Norm({ 67.0f, 239.0f, 97.0f }), 90.0f * CalcInvL2Norm({ 90.0f, 104.0f, 145.0f }), 49.0f * CalcInvL2Norm({ 49.0f, 199.0f, 215.0f }), @@ -3481,7 +3616,7 @@ LayerTestResult L2Normalization4dTest(armnn::IWorkloadFactory& workloa 59.0f * CalcInvL2Norm({ 59.0f, 126.0f, 125.0f }), 189.0f * CalcInvL2Norm({ 189.0f, 21.0f, 88.0f }), - // Batch 1, Channel 1 + // Batch 1, Channel 1, Height (4) x Width (3) 239.0f * CalcInvL2Norm({ 67.0f, 239.0f, 97.0f }), 104.0f * CalcInvL2Norm({ 90.0f, 104.0f, 145.0f }), 199.0f * CalcInvL2Norm({ 49.0f, 199.0f, 215.0f }), @@ -3495,7 +3630,7 @@ LayerTestResult L2Normalization4dTest(armnn::IWorkloadFactory& workloa 126.0f * CalcInvL2Norm({ 59.0f, 126.0f, 125.0f }), 21.0f * CalcInvL2Norm({ 189.0f, 21.0f, 88.0f }), - // Batch 1, Channel 2 + // Batch 1, Channel 2, Height (4) x Width (3) 97.0f * CalcInvL2Norm({ 67.0f, 239.0f, 97.0f }), 145.0f * CalcInvL2Norm({ 90.0f, 104.0f, 145.0f }), 215.0f * CalcInvL2Norm({ 49.0f, 199.0f, 215.0f }), @@ -3507,28 +3642,156 @@ LayerTestResult L2Normalization4dTest(armnn::IWorkloadFactory& workloa 132.0f * CalcInvL2Norm({ 103.0f, 75.0f, 132.0f }), 92.0f * CalcInvL2Norm({ 247.0f, 32.0f, 92.0f }), 125.0f * CalcInvL2Norm({ 59.0f, 126.0f, 125.0f }), - 88.0f * CalcInvL2Norm({ 189.0f, 21.0f, 88.0f }), - })); + 88.0f * CalcInvL2Norm({ 189.0f, 21.0f, 88.0f }) + }; - std::unique_ptr inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo); - std::unique_ptr outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo); + return L2NormalizationTestImpl(workloadFactory, inputOutputShape, + inputValues, expectedOutputValues, armnn::DataLayout::NCHW); +} - armnn::L2NormalizationQueueDescriptor descriptor; - armnn::WorkloadInfo info; - AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get()); - AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get()); +LayerTestResult L2Normalization4dNhwcTest(armnn::IWorkloadFactory& workloadFactory) +{ + // Width: 3 + // Height: 4 + // Channels: 3 + // BatchSize: 2 - std::unique_ptr workload = workloadFactory.CreateL2Normalization(descriptor, info); + const armnn::TensorShape inputOutputShape{ 2, 4, 3, 3 }; + std::vector inputValues + { + // Batch 0, Height 0, Width (3) x Channel (3) + 235.0f, 113.0f, 56.0f, + 46.0f, 95.0f, 170.0f, + 178.0f, 202.0f, 162.0f, + + // Batch 0, Height 1, Width (3) x Channel (3) + 100.0f, 77.0f, 194.0f, + 123.0f, 114.0f, 89.0f, + 19.0f, 71.0f, 254.0f, + + // Batch 0, Height 2, Width (3) x Channel (3) + 172.0f, 122.0f, 12.0f, + 74.0f, 246.0f, 209.0f, + 250.0f, 166.0f, 200.0f, + + // Batch 0, Height 3, Width (3) x Channel (3) + 6.0f, 82.0f, 1.0f, + 195.0f, 28.0f, 64.0f, + 80.0f, 37.0f, 54.0f, + + // Batch 1, Height 0, Width (3) x Channel (3) + 67.0f, 239.0f, 97.0f, + 90.0f, 104.0f, 145.0f, + 49.0f, 199.0f, 215.0f, + + // Batch 1, Height 1, Width (3) x Channel (3) + 7.0f, 17.0f, 115.0f, + 163.0f, 124.0f, 116.0f, + 18.0f, 153.0f, 238.0f, + + // Batch 1, Height 2, Width (3) x Channel (3) + 25.0f, 222.0f, 226.0f, + 117.0f, 217.0f, 16.0f, + 103.0f, 75.0f, 132.0f, + + // Batch 1, Height 3, Width (3) x Channel (3) + 247.0f, 32.0f, 92.0f, + 59.0f, 126.0f, 125.0f, + 189.0f, 21.0f, 88.0f + }; + std::vector expectedOutputValues + { + // Batch 0, Height 0, Width (3) x Channel (3) + 235.0f * CalcInvL2Norm({ 235.0f, 113.0f, 56.0f }), + 113.0f * CalcInvL2Norm({ 235.0f, 113.0f, 56.0f }), + 56.0f * CalcInvL2Norm({ 235.0f, 113.0f, 56.0f }), + 46.0f * CalcInvL2Norm({ 46.0f, 95.0f, 170.0f }), + 95.0f * CalcInvL2Norm({ 46.0f, 95.0f, 170.0f }), + 170.0f * CalcInvL2Norm({ 46.0f, 95.0f, 170.0f }), + 178.0f * CalcInvL2Norm({ 178.0f, 202.0F, 162.0f }), + 202.0f * CalcInvL2Norm({ 178.0f, 202.0F, 162.0f }), + 162.0f * CalcInvL2Norm({ 178.0f, 202.0F, 162.0f }), - inputHandle->Allocate(); - outputHandle->Allocate(); - CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]); + // Batch 0, Height 1, Width (3) x Channel (3) + 100.0f * CalcInvL2Norm({ 100.0f, 77.0f, 194.0f }), + 77.0f * CalcInvL2Norm({ 100.0f, 77.0f, 194.0f }), + 194.0f * CalcInvL2Norm({ 100.0f, 77.0f, 194.0f }), + 123.0f * CalcInvL2Norm({ 123.0f, 114.0f, 89.0f }), + 114.0f * CalcInvL2Norm({ 123.0f, 114.0f, 89.0f }), + 89.0f * CalcInvL2Norm({ 123.0f, 114.0f, 89.0f }), + 19.0f * CalcInvL2Norm({ 19.0f, 71.0f, 254.0f }), + 71.0f * CalcInvL2Norm({ 19.0f, 71.0f, 254.0f }), + 254.0f * CalcInvL2Norm({ 19.0f, 71.0f, 254.0f }), - workloadFactory.Finalize(); - workload->Execute(); + // Batch 0, Height 2, Width (3) x Channel (3) + 172.0f * CalcInvL2Norm({ 172.0f, 122.0f, 12.0f }), + 122.0f * CalcInvL2Norm({ 172.0f, 122.0f, 12.0f }), + 12.0f * CalcInvL2Norm({ 172.0f, 122.0f, 12.0f }), + 74.0f * CalcInvL2Norm({ 74.0f, 246.0f, 209.0f }), + 246.0f * CalcInvL2Norm({ 74.0f, 246.0f, 209.0f }), + 209.0f * CalcInvL2Norm({ 74.0f, 246.0f, 209.0f }), + 250.0f * CalcInvL2Norm({ 250.0f, 166.0f, 200.0f }), + 166.0f * CalcInvL2Norm({ 250.0f, 166.0f, 200.0f }), + 200.0f * CalcInvL2Norm({ 250.0f, 166.0f, 200.0f }), - CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get()); - return result; + // Batch 0, Height 3, Width (3) x Channel (3) + 6.0f * CalcInvL2Norm({ 6.0f, 82.0f, 1.0f }), + 82.0f * CalcInvL2Norm({ 6.0f, 82.0f, 1.0f }), + 1.0f * CalcInvL2Norm({ 6.0f, 82.0f, 1.0f }), + 195.0f * CalcInvL2Norm({ 195.0f, 28.0f, 64.0f }), + 28.0f * CalcInvL2Norm({ 195.0f, 28.0f, 64.0f }), + 64.0f * CalcInvL2Norm({ 195.0f, 28.0f, 64.0f }), + 80.0f * CalcInvL2Norm({ 80.0f, 37.0f, 54.0f }), + 37.0f * CalcInvL2Norm({ 80.0f, 37.0f, 54.0f }), + 54.0f * CalcInvL2Norm({ 80.0f, 37.0f, 54.0f }), + + // Batch 1, Height 0, Width (3) x Channel (3) + 67.0f * CalcInvL2Norm({ 67.0f, 239.0f, 97.0f }), + 239.0f * CalcInvL2Norm({ 67.0f, 239.0f, 97.0f }), + 97.0f * CalcInvL2Norm({ 67.0f, 239.0f, 97.0f }), + 90.0f * CalcInvL2Norm({ 90.0f, 104.0f, 145.0f }), + 104.0f * CalcInvL2Norm({ 90.0f, 104.0f, 145.0f }), + 145.0f * CalcInvL2Norm({ 90.0f, 104.0f, 145.0f }), + 49.0f * CalcInvL2Norm({ 49.0f, 199.0f, 215.0f }), + 199.0f * CalcInvL2Norm({ 49.0f, 199.0f, 215.0f }), + 215.0f * CalcInvL2Norm({ 49.0f, 199.0f, 215.0f }), + + // Batch 1, Height 1, Width (3) x Channel (3) + 7.0f * CalcInvL2Norm({ 7.0f, 17.0f, 115.0f }), + 17.0f * CalcInvL2Norm({ 7.0f, 17.0f, 115.0f }), + 115.0f * CalcInvL2Norm({ 7.0f, 17.0f, 115.0f }), + 163.0f * CalcInvL2Norm({ 163.0f, 124.0f, 116.0f }), + 124.0f * CalcInvL2Norm({ 163.0f, 124.0f, 116.0f }), + 116.0f * CalcInvL2Norm({ 163.0f, 124.0f, 116.0f }), + 18.0f * CalcInvL2Norm({ 18.0f, 153.0f, 238.0f }), + 153.0f * CalcInvL2Norm({ 18.0f, 153.0f, 238.0f }), + 238.0f * CalcInvL2Norm({ 18.0f, 153.0f, 238.0f }), + + // Batch 1, Height 2, Width (3) x Channel (3) + 25.0f * CalcInvL2Norm({ 25.0f, 222.0f, 226.0f }), + 222.0f * CalcInvL2Norm({ 25.0f, 222.0f, 226.0f }), + 226.0f * CalcInvL2Norm({ 25.0f, 222.0f, 226.0f }), + 117.0f * CalcInvL2Norm({ 117.0f, 217.0f, 16.0f }), + 217.0f * CalcInvL2Norm({ 117.0f, 217.0f, 16.0f }), + 16.0f * CalcInvL2Norm({ 117.0f, 217.0f, 16.0f }), + 103.0f * CalcInvL2Norm({ 103.0f, 75.0f, 132.0f }), + 75.0f * CalcInvL2Norm({ 103.0f, 75.0f, 132.0f }), + 132.0f * CalcInvL2Norm({ 103.0f, 75.0f, 132.0f }), + + // Batch 1, Height 3, Width (3) x Channel (3) + 247.0f * CalcInvL2Norm({ 247.0f, 32.0f, 92.0f }), + 32.0f * CalcInvL2Norm({ 247.0f, 32.0f, 92.0f }), + 92.0f * CalcInvL2Norm({ 247.0f, 32.0f, 92.0f }), + 59.0f * CalcInvL2Norm({ 59.0f, 126.0f, 125.0f }), + 126.0f * CalcInvL2Norm({ 59.0f, 126.0f, 125.0f }), + 125.0f * CalcInvL2Norm({ 59.0f, 126.0f, 125.0f }), + 189.0f * CalcInvL2Norm({ 189.0f, 21.0f, 88.0f }), + 21.0f * CalcInvL2Norm({ 189.0f, 21.0f, 88.0f }), + 88.0f * CalcInvL2Norm({ 189.0f, 21.0f, 88.0f }) + }; + + return L2NormalizationTestImpl(workloadFactory, inputOutputShape, + inputValues, expectedOutputValues, armnn::DataLayout::NHWC); } template diff --git a/src/backends/test/LayerTests.hpp b/src/backends/test/LayerTests.hpp index 3e5bb3d31..e4ebaff52 100644 --- a/src/backends/test/LayerTests.hpp +++ b/src/backends/test/LayerTests.hpp @@ -249,6 +249,11 @@ LayerTestResult L2Normalization2dTest(armnn::IWorkloadFactory& workloa LayerTestResult L2Normalization3dTest(armnn::IWorkloadFactory& workloadFactory); LayerTestResult L2Normalization4dTest(armnn::IWorkloadFactory& workloadFactory); +LayerTestResult L2Normalization1dNhwcTest(armnn::IWorkloadFactory& workloadFactory); +LayerTestResult L2Normalization2dNhwcTest(armnn::IWorkloadFactory& workloadFactory); +LayerTestResult L2Normalization3dNhwcTest(armnn::IWorkloadFactory& workloadFactory); +LayerTestResult L2Normalization4dNhwcTest(armnn::IWorkloadFactory& workloadFactory); + LayerTestResult ConstantTest(armnn::IWorkloadFactory& workloadFactory); LayerTestResult ConstantTestUint8(armnn::IWorkloadFactory& workloadFactory); diff --git a/src/backends/test/Reference.cpp b/src/backends/test/Reference.cpp index 30a8f8e1a..05ebf2e8b 100644 --- a/src/backends/test/Reference.cpp +++ b/src/backends/test/Reference.cpp @@ -193,12 +193,18 @@ ARMNN_AUTO_TEST_CASE(ResizeBilinearMagUint8, ResizeBilinearMagUint8Test) // Fake Quantization ARMNN_AUTO_TEST_CASE(FakeQuantization, FakeQuantizationTest) -// L2 Noramlization +// L2 Normalization ARMNN_AUTO_TEST_CASE(L2Normalization1d, L2Normalization1dTest) ARMNN_AUTO_TEST_CASE(L2Normalization2d, L2Normalization2dTest) ARMNN_AUTO_TEST_CASE(L2Normalization3d, L2Normalization3dTest) ARMNN_AUTO_TEST_CASE(L2Normalization4d, L2Normalization4dTest) +// NOTE: These tests are disabled until NHWC is supported by the reference L2Normalization implementation. +//ARMNN_AUTO_TEST_CASE(L2Normalization1dNhwc, L2Normalization1dNhwcTest); +//ARMNN_AUTO_TEST_CASE(L2Normalization2dNhwc, L2Normalization2dNhwcTest); +//ARMNN_AUTO_TEST_CASE(L2Normalization3dNhwc, L2Normalization3dNhwcTest); +//ARMNN_AUTO_TEST_CASE(L2Normalization4dNhwc, L2Normalization4dNhwcTest); + // Constant ARMNN_AUTO_TEST_CASE(Constant, ConstantTest) ARMNN_AUTO_TEST_CASE(ConstantUint8, ConstantUint8Test)