From: Animesh Jain Date: Tue, 15 Oct 2019 19:12:01 +0000 (-0700) Subject: [Relay][AlterOpLayout] NHWC to NCHWc pad operator. (#4103) X-Git-Tag: upstream/0.7.0~1781 X-Git-Url: http://review.tizen.org/git/?a=commitdiff_plain;h=4ee534ba5654dfaa73bbd58d058290631ac9c299;p=platform%2Fupstream%2Ftvm.git [Relay][AlterOpLayout] NHWC to NCHWc pad operator. (#4103) * [Relay][AlterOpLayout] NHWC to NCHWc pad operator. * Fixing culprit. * Flaky test 1. * Flaky test 2. --- diff --git a/src/relay/op/nn/pad.cc b/src/relay/op/nn/pad.cc index 5127ee4..2e34580 100644 --- a/src/relay/op/nn/pad.cc +++ b/src/relay/op/nn/pad.cc @@ -36,6 +36,82 @@ namespace relay { // relay.nn.pad TVM_REGISTER_NODE_TYPE(PadAttrs); +Array > PadInferCorrectLayout( + const Attrs& attrs, + const Array& new_in_layouts, + const Array& old_in_layouts, + const Array> &old_in_shapes) { + // NOTE: Discard "const" qualifier here. + PadAttrs *params = const_cast(attrs.as()); + + Layout ret; + // If new_in_layouts are defined, this code tries to modify the layout. + bool is_layout_modified = new_in_layouts.defined(); + if (new_in_layouts.defined()) { + // Create a map of axis to param_width. For the new layout, a new param_width is generated using + // the map. The new layout is rejected, if the padding is happening along the axis which was + // split. + + // 1) Create a map from axis to param_width using old layout. + std::map> axis_pad_width; + int index_counter = 0; + CHECK_EQ(new_in_layouts.size(), 1); + CHECK_EQ(old_in_layouts.size(), 1); + for (auto iter_var : old_in_layouts[0]->axes) { + const auto& old_layout_axis = LayoutAxis::Get(iter_var); + axis_pad_width.emplace(old_layout_axis.name(), params->pad_width[index_counter]); + index_counter++; + } + + // 2) Create new pad width by walking over the new layout and using the map. + tvm::Array> new_pad_width; + for (auto iter_var : new_in_layouts[0]->axes) { + const auto& new_layout_axis = LayoutAxis::Get(iter_var); + auto axis_name = new_layout_axis.name(); + if (axis_pad_width.count(axis_name) != 0 && new_layout_axis.IsPrimal()) { + // This is primal axis. So, directly use the original pad_width. + new_pad_width.push_back(axis_pad_width.at(axis_name)); + } else { + // This is the axis that got split. So, check that pad_width was [0, 0] originally. + const auto& dual_axis = new_layout_axis.ToPrimal(); + auto dual_axis_name = dual_axis.name(); + CHECK(axis_pad_width.count(dual_axis_name)) + << "Missing axis " << dual_axis << " in " << old_in_layouts[0].name(); + new_pad_width.push_back(axis_pad_width.at(dual_axis_name)); + + // If any pad_width element is not zero, do not change the layout. + for (auto width : axis_pad_width.at(dual_axis_name)) { + if (auto* width_imm = width.as()) { + if (width_imm->value != 0) { + is_layout_modified = false; + } + } else { + is_layout_modified = false; + } + } + } + } + + // If the above conditions satisfied, we can set the newly created pad_width and use the new + // layout. + if (is_layout_modified) { + ret = new_in_layouts[0]; + params->pad_width = new_pad_width; + } + } + + if (!is_layout_modified) { + if (old_in_layouts.defined()) { + CHECK_EQ(old_in_layouts.size(), 1); + ret = old_in_layouts[0]; + } else { + ret = Layout::Undef(); + } + } + + return Array >{{ret}, {ret}}; +} + bool PadRel(const Array& types, int num_inputs, const Attrs& attrs, @@ -133,6 +209,7 @@ RELAY_REGISTER_OP("nn.pad") .add_argument("data", "Tensor", "The input tensor.") .set_support_level(2) .add_type_rel("Pad", PadRel) +.set_attr("FInferCorrectLayout", PadInferCorrectLayout) .set_attr("TOpPattern", kInjective) .set_attr("FTVMCompute", PadCompute); diff --git a/tests/python/frontend/coreml/test_forward.py b/tests/python/frontend/coreml/test_forward.py index a023414..b4ad300 100644 --- a/tests/python/frontend/coreml/test_forward.py +++ b/tests/python/frontend/coreml/test_forward.py @@ -47,8 +47,10 @@ def run_model_checkonly(model_file, model_name='', input_name='image'): model = cm.models.MLModel(model_file) x = model_zoo.get_cat_image() shape_dict = {input_name : x.shape} - mod, params = relay.frontend.from_coreml(model, shape_dict) + # Some Relay passes change operators on the fly. Ensuring that we generate + # new graph for each target. for target, ctx in ctx_list(): + mod, params = relay.frontend.from_coreml(model, shape_dict) tvm_output = get_tvm_output(mod["main"], x, params, target, ctx) print(target, ctx, model_name, 'prediction id: ', np.argmax(tvm_output.flat)) diff --git a/tests/python/relay/test_pass_alter_op_layout.py b/tests/python/relay/test_pass_alter_op_layout.py index adb8676..8ae7777 100644 --- a/tests/python/relay/test_pass_alter_op_layout.py +++ b/tests/python/relay/test_pass_alter_op_layout.py @@ -641,6 +641,120 @@ def test_alter_layout_prelu(): assert(analysis.alpha_equal(a, b)) +def test_alter_layout_pad(): + """ Check NCHW, NHWC and corner case for pad layout conversion""" + # Register alter op layout. "level" is used to override the previously registered functions. + @register_alter_op_layout("nn.conv2d", level=112) + def alter_conv2d(attrs, inputs, tinfos): + data, weight = inputs + new_attrs = dict(attrs) + new_attrs['data_layout'] = 'NCHW16c' + return relay.nn.conv2d(data, weight, **new_attrs) + + # Check NCHW conversion. + def before_nchw(): + x = relay.var("x", shape=(1, 64, 56, 56)) + weight1 = relay.var('weight1') + y = relay.nn.conv2d(x, weight1, + channels=32, + kernel_size=(3, 3), + padding=(1, 1)) + ret = relay.nn.pad(y, pad_width=((0, 0), (0, 0), (1, 1), (1, 1))) + y = relay.Function(analysis.free_vars(ret), ret) + return y + + def expected_nchw(): + x = relay.var("x", shape=(1, 64, 56, 56)) + weight1 = relay.var('weight1') + y = relay.layout_transform(x, "NCHW", "NCHW16c") + y = relay.nn.conv2d(y, weight1, + channels=32, + kernel_size=(3, 3), + padding=(1, 1), + data_layout="NCHW16c") + ret = relay.nn.pad(y, pad_width=((0, 0), (0, 0), (1, 1), (1, 1), (0, 0))) + ret = relay.layout_transform(ret, "NCHW16c", "NCHW") + y = relay.Function(analysis.free_vars(ret), ret) + return y + + a = before_nchw() + a = run_opt_pass(a, transform.AlterOpLayout()) + + b = expected_nchw() + b = run_opt_pass(b, transform.InferType()) + + assert analysis.alpha_equal(a, b), "Actual = \n" + str(a) + + # Check NHWC conversion. + def before_nhwc(): + x = relay.var("x", shape=(1, 56, 56, 64)) + weight1 = relay.var('weight1') + y = relay.nn.conv2d(x, weight1, + channels=32, + kernel_size=(3, 3), + padding=(1, 1), + data_layout='NHWC') + ret = relay.nn.pad(y, pad_width=((0, 0), (1, 1), (1, 1), (0, 0))) + y = relay.Function(analysis.free_vars(ret), ret) + return y + + def expected_nhwc(): + x = relay.var("x", shape=(1, 56, 56, 64)) + weight1 = relay.var('weight1') + y = relay.layout_transform(x, "NHWC", "NCHW16c") + y = relay.nn.conv2d(y, weight1, + channels=32, + kernel_size=(3, 3), + padding=(1, 1), + data_layout="NCHW16c") + ret = relay.nn.pad(y, pad_width=((0, 0), (0, 0), (1, 1), (1, 1), (0, 0))) + ret = relay.layout_transform(ret, "NCHW16c", "NHWC") + y = relay.Function(analysis.free_vars(ret), ret) + return y + + a = before_nhwc() + a = run_opt_pass(a, transform.AlterOpLayout()) + + b = expected_nhwc() + b = run_opt_pass(b, transform.InferType()) + + assert analysis.alpha_equal(a, b), "Actual = \n" + str(a) + + # Check that conversion does not happen when padding along split axis.. + def before(): + x = relay.var("x", shape=(1, 64, 56, 56)) + weight1 = relay.var('weight1') + y = relay.nn.conv2d(x, weight1, + channels=32, + kernel_size=(3, 3), + padding=(1, 1)) + ret = relay.nn.pad(y, pad_width=((0, 0), (1, 1), (1, 1), (1, 1))) + y = relay.Function(analysis.free_vars(ret), ret) + return y + + def expected(): + x = relay.var("x", shape=(1, 64, 56, 56)) + weight1 = relay.var('weight1') + y = relay.layout_transform(x, "NCHW", "NCHW16c") + y = relay.nn.conv2d(y, weight1, + channels=32, + kernel_size=(3, 3), + padding=(1, 1), + data_layout="NCHW16c") + ret = relay.layout_transform(y, "NCHW16c", "NCHW") + ret = relay.nn.pad(ret, pad_width=((0, 0), (1, 1), (1, 1), (1, 1))) + y = relay.Function(analysis.free_vars(ret), ret) + return y + + a = before() + a = run_opt_pass(a, transform.AlterOpLayout()) + + b = expected() + b = run_opt_pass(b, transform.InferType()) + + assert analysis.alpha_equal(a, b), "Actual = \n" + str(a) + + def test_alter_layout_pool(): """ Check NCHW, NHWC pool layout conversion""" # Register alter op layout. "level" is used to override the previously registered functions. @@ -815,5 +929,6 @@ if __name__ == "__main__": test_alter_layout_strided_slice() test_alter_layout_depthwise_conv2d() test_alter_layout_prelu() + test_alter_layout_pad() test_alter_layout_pool() test_alter_layout_sum()